Total Complexity | 45 |
Total Lines | 930 |
Duplicated Lines | 1.4 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.power_plants often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with power plant data. |
||
2 | """ |
||
3 | from geoalchemy2 import Geometry |
||
4 | from sqlalchemy import BigInteger, Column, Float, Integer, Sequence, String |
||
5 | from sqlalchemy.dialects.postgresql import JSONB |
||
6 | from sqlalchemy.ext.declarative import declarative_base |
||
7 | from sqlalchemy.orm import sessionmaker |
||
8 | import geopandas as gpd |
||
9 | import numpy as np |
||
10 | import pandas as pd |
||
11 | |||
12 | from egon.data import db |
||
13 | from egon.data.datasets import Dataset |
||
14 | from egon.data.datasets.mastr import ( |
||
15 | WORKING_DIR_MASTR_OLD, WORKING_DIR_MASTR_NEW |
||
16 | ) |
||
17 | from egon.data.datasets.power_plants.conventional import ( |
||
18 | match_nep_no_chp, |
||
19 | select_nep_power_plants, |
||
20 | select_no_chp_combustion_mastr, |
||
21 | ) |
||
22 | from egon.data.datasets.power_plants.mastr import ( |
||
23 | EgonPowerPlantsBiomass, |
||
24 | EgonPowerPlantsHydro, |
||
25 | EgonPowerPlantsPv, |
||
26 | EgonPowerPlantsWind, |
||
27 | import_mastr, |
||
28 | ) |
||
29 | from egon.data.datasets.power_plants.pv_rooftop import pv_rooftop_per_mv_grid |
||
30 | from egon.data.datasets.power_plants.pv_rooftop_buildings import ( |
||
31 | geocode_mastr_data, |
||
32 | pv_rooftop_to_buildings, |
||
33 | ) |
||
34 | import egon.data.config |
||
35 | import egon.data.datasets.power_plants.assign_weather_data as assign_weather_data # noqa: E501 |
||
36 | import egon.data.datasets.power_plants.pv_ground_mounted as pv_ground_mounted |
||
37 | import egon.data.datasets.power_plants.wind_farms as wind_onshore |
||
38 | import egon.data.datasets.power_plants.wind_offshore as wind_offshore |
||
39 | |||
40 | Base = declarative_base() |
||
41 | |||
42 | |||
43 | View Code Duplication | class EgonPowerPlants(Base): |
|
|
|||
44 | __tablename__ = "egon_power_plants" |
||
45 | __table_args__ = {"schema": "supply"} |
||
46 | id = Column(BigInteger, Sequence("pp_seq"), primary_key=True) |
||
47 | sources = Column(JSONB) |
||
48 | source_id = Column(JSONB) |
||
49 | carrier = Column(String) |
||
50 | el_capacity = Column(Float) |
||
51 | bus_id = Column(Integer) |
||
52 | voltage_level = Column(Integer) |
||
53 | weather_cell_id = Column(Integer) |
||
54 | scenario = Column(String) |
||
55 | geom = Column(Geometry("POINT", 4326), index=True) |
||
56 | |||
57 | |||
58 | class PowerPlants(Dataset): |
||
59 | def __init__(self, dependencies): |
||
60 | super().__init__( |
||
61 | name="PowerPlants", |
||
62 | version="0.0.15", |
||
63 | dependencies=dependencies, |
||
64 | tasks=( |
||
65 | create_tables, |
||
66 | import_mastr, |
||
67 | insert_hydro_biomass, |
||
68 | allocate_conventional_non_chp_power_plants, |
||
69 | allocate_other_power_plants, |
||
70 | { |
||
71 | wind_onshore.insert, |
||
72 | pv_ground_mounted.insert, |
||
73 | ( |
||
74 | pv_rooftop_per_mv_grid, |
||
75 | geocode_mastr_data, |
||
76 | pv_rooftop_to_buildings, |
||
77 | ), |
||
78 | }, |
||
79 | wind_offshore.insert, |
||
80 | assign_weather_data.weatherId_and_busId, |
||
81 | ), |
||
82 | ) |
||
83 | |||
84 | |||
85 | def create_tables(): |
||
86 | """Create tables for power plant data |
||
87 | Returns |
||
88 | ------- |
||
89 | None. |
||
90 | """ |
||
91 | |||
92 | # Tables for future scenarios |
||
93 | cfg = egon.data.config.datasets()["power_plants"] |
||
94 | db.execute_sql(f"CREATE SCHEMA IF NOT EXISTS {cfg['target']['schema']};") |
||
95 | engine = db.engine() |
||
96 | db.execute_sql( |
||
97 | f"""DROP TABLE IF EXISTS |
||
98 | {cfg['target']['schema']}.{cfg['target']['table']}""" |
||
99 | ) |
||
100 | |||
101 | db.execute_sql("""DROP SEQUENCE IF EXISTS pp_seq""") |
||
102 | EgonPowerPlants.__table__.create(bind=engine, checkfirst=True) |
||
103 | |||
104 | # Tables for status quo |
||
105 | tables = [ |
||
106 | EgonPowerPlantsWind, |
||
107 | EgonPowerPlantsPv, |
||
108 | EgonPowerPlantsBiomass, |
||
109 | EgonPowerPlantsHydro, |
||
110 | ] |
||
111 | for t in tables: |
||
112 | db.execute_sql( |
||
113 | f"DROP TABLE IF EXISTS {t.__table_args__['schema']}.{t.__tablename__} CASCADE;" |
||
114 | ) |
||
115 | t.__table__.create(bind=engine, checkfirst=True) |
||
116 | |||
117 | |||
118 | def scale_prox2now(df, target, level="federal_state"): |
||
119 | """Scale installed capacities linear to status quo power plants |
||
120 | |||
121 | Parameters |
||
122 | ---------- |
||
123 | df : pandas.DataFrame |
||
124 | Status Quo power plants |
||
125 | target : pandas.Series |
||
126 | Target values for future scenario |
||
127 | level : str, optional |
||
128 | Scale per 'federal_state' or 'country'. The default is 'federal_state'. |
||
129 | |||
130 | Returns |
||
131 | ------- |
||
132 | df : pandas.DataFrame |
||
133 | Future power plants |
||
134 | |||
135 | """ |
||
136 | |||
137 | if level == "federal_state": |
||
138 | df.loc[:, "Nettonennleistung"] = ( |
||
139 | df.groupby(df.Bundesland) |
||
140 | .Nettonennleistung.apply(lambda grp: grp / grp.sum()) |
||
141 | .mul(target[df.Bundesland.values].values) |
||
142 | ) |
||
143 | else: |
||
144 | df.loc[:, "Nettonennleistung"] = df.Nettonennleistung.apply( |
||
145 | lambda x: x / x.sum() |
||
146 | ).mul(target.values) |
||
147 | |||
148 | df = df[df.Nettonennleistung > 0] |
||
149 | |||
150 | return df |
||
151 | |||
152 | |||
153 | def select_target(carrier, scenario): |
||
154 | """Select installed capacity per scenario and carrier |
||
155 | |||
156 | Parameters |
||
157 | ---------- |
||
158 | carrier : str |
||
159 | Name of energy carrier |
||
160 | scenario : str |
||
161 | Name of scenario |
||
162 | |||
163 | Returns |
||
164 | ------- |
||
165 | pandas.Series |
||
166 | Target values for carrier and scenario |
||
167 | |||
168 | """ |
||
169 | cfg = egon.data.config.datasets()["power_plants"] |
||
170 | |||
171 | return ( |
||
172 | pd.read_sql( |
||
173 | f"""SELECT DISTINCT ON (b.gen) |
||
174 | REPLACE(REPLACE(b.gen, '-', ''), 'ü', 'ue') as state, |
||
175 | a.capacity |
||
176 | FROM {cfg['sources']['capacities']} a, |
||
177 | {cfg['sources']['geom_federal_states']} b |
||
178 | WHERE a.nuts = b.nuts |
||
179 | AND scenario_name = '{scenario}' |
||
180 | AND carrier = '{carrier}' |
||
181 | AND b.gen NOT IN ('Baden-Württemberg (Bodensee)', |
||
182 | 'Bayern (Bodensee)')""", |
||
183 | con=db.engine(), |
||
184 | ) |
||
185 | .set_index("state") |
||
186 | .capacity |
||
187 | ) |
||
188 | |||
189 | |||
190 | def filter_mastr_geometry(mastr, federal_state=None): |
||
191 | """Filter data from MaStR by geometry |
||
192 | |||
193 | Parameters |
||
194 | ---------- |
||
195 | mastr : pandas.DataFrame |
||
196 | All power plants listed in MaStR |
||
197 | federal_state : str or None |
||
198 | Name of federal state whoes power plants are returned. |
||
199 | If None, data for Germany is returned |
||
200 | |||
201 | Returns |
||
202 | ------- |
||
203 | mastr_loc : pandas.DataFrame |
||
204 | Power plants listed in MaStR with geometry inside German boundaries |
||
205 | |||
206 | """ |
||
207 | cfg = egon.data.config.datasets()["power_plants"] |
||
208 | |||
209 | if type(mastr) == pd.core.frame.DataFrame: |
||
210 | # Drop entries without geometry for insert |
||
211 | mastr_loc = mastr[ |
||
212 | mastr.Laengengrad.notnull() & mastr.Breitengrad.notnull() |
||
213 | ] |
||
214 | |||
215 | # Create geodataframe |
||
216 | mastr_loc = gpd.GeoDataFrame( |
||
217 | mastr_loc, |
||
218 | geometry=gpd.points_from_xy( |
||
219 | mastr_loc.Laengengrad, mastr_loc.Breitengrad, crs=4326 |
||
220 | ), |
||
221 | ) |
||
222 | else: |
||
223 | mastr_loc = mastr.copy() |
||
224 | |||
225 | # Drop entries outside of germany or federal state |
||
226 | if not federal_state: |
||
227 | sql = f"SELECT geometry as geom FROM {cfg['sources']['geom_germany']}" |
||
228 | else: |
||
229 | sql = f""" |
||
230 | SELECT geometry as geom |
||
231 | FROM boundaries.vg250_lan_union |
||
232 | WHERE REPLACE(REPLACE(gen, '-', ''), 'ü', 'ue') = '{federal_state}'""" |
||
233 | |||
234 | mastr_loc = ( |
||
235 | gpd.sjoin( |
||
236 | gpd.read_postgis(sql, con=db.engine()).to_crs(4326), |
||
237 | mastr_loc, |
||
238 | how="right", |
||
239 | ) |
||
240 | .query("index_left==0") |
||
241 | .drop("index_left", axis=1) |
||
242 | ) |
||
243 | |||
244 | return mastr_loc |
||
245 | |||
246 | |||
247 | def insert_biomass_plants(scenario): |
||
248 | """Insert biomass power plants of future scenario |
||
249 | |||
250 | Parameters |
||
251 | ---------- |
||
252 | scenario : str |
||
253 | Name of scenario. |
||
254 | |||
255 | Returns |
||
256 | ------- |
||
257 | None. |
||
258 | |||
259 | """ |
||
260 | cfg = egon.data.config.datasets()["power_plants"] |
||
261 | |||
262 | # import target values from NEP 2021, scneario C 2035 |
||
263 | target = select_target("biomass", scenario) |
||
264 | |||
265 | # import data for MaStR |
||
266 | mastr = pd.read_csv( |
||
267 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_biomass"]).query( |
||
268 | "EinheitBetriebsstatus=='InBetrieb'" |
||
269 | ) |
||
270 | |||
271 | # Drop entries without federal state or 'AusschließlichWirtschaftszone' |
||
272 | mastr = mastr[ |
||
273 | mastr.Bundesland.isin( |
||
274 | pd.read_sql( |
||
275 | f"""SELECT DISTINCT ON (gen) |
||
276 | REPLACE(REPLACE(gen, '-', ''), 'ü', 'ue') as states |
||
277 | FROM {cfg['sources']['geom_federal_states']}""", |
||
278 | con=db.engine(), |
||
279 | ).states.values |
||
280 | ) |
||
281 | ] |
||
282 | |||
283 | # Scaling will be done per federal state in case of eGon2035 scenario. |
||
284 | if scenario == "eGon2035": |
||
285 | level = "federal_state" |
||
286 | else: |
||
287 | level = "country" |
||
288 | |||
289 | # Choose only entries with valid geometries inside DE/test mode |
||
290 | mastr_loc = filter_mastr_geometry(mastr).set_geometry("geometry") |
||
291 | |||
292 | # Scale capacities to meet target values |
||
293 | mastr_loc = scale_prox2now(mastr_loc, target, level=level) |
||
294 | |||
295 | # Assign bus_id |
||
296 | if len(mastr_loc) > 0: |
||
297 | mastr_loc["voltage_level"] = assign_voltage_level( |
||
298 | mastr_loc, cfg, WORKING_DIR_MASTR_OLD |
||
299 | ) |
||
300 | mastr_loc = assign_bus_id(mastr_loc, cfg) |
||
301 | |||
302 | # Insert entries with location |
||
303 | session = sessionmaker(bind=db.engine())() |
||
304 | |||
305 | for i, row in mastr_loc.iterrows(): |
||
306 | if not row.ThermischeNutzleistung > 0: |
||
307 | entry = EgonPowerPlants( |
||
308 | sources={"el_capacity": "MaStR scaled with NEP 2021"}, |
||
309 | source_id={"MastrNummer": row.EinheitMastrNummer}, |
||
310 | carrier="biomass", |
||
311 | el_capacity=row.Nettonennleistung, |
||
312 | scenario=scenario, |
||
313 | bus_id=row.bus_id, |
||
314 | voltage_level=row.voltage_level, |
||
315 | geom=f"SRID=4326;POINT({row.Laengengrad} {row.Breitengrad})", |
||
316 | ) |
||
317 | session.add(entry) |
||
318 | |||
319 | session.commit() |
||
320 | |||
321 | |||
322 | def insert_hydro_plants(scenario): |
||
323 | """Insert hydro power plants of future scenario. |
||
324 | |||
325 | Hydro power plants are diveded into run_of_river and reservoir plants |
||
326 | according to Marktstammdatenregister. |
||
327 | Additional hydro technologies (e.g. turbines inside drinking water |
||
328 | systems) are not considered. |
||
329 | |||
330 | Parameters |
||
331 | ---------- |
||
332 | scenario : str |
||
333 | Name of scenario. |
||
334 | |||
335 | Returns |
||
336 | ------- |
||
337 | None. |
||
338 | |||
339 | """ |
||
340 | cfg = egon.data.config.datasets()["power_plants"] |
||
341 | |||
342 | # Map MaStR carriers to eGon carriers |
||
343 | map_carrier = { |
||
344 | "run_of_river": ["Laufwasseranlage"], |
||
345 | "reservoir": ["Speicherwasseranlage"], |
||
346 | } |
||
347 | |||
348 | for carrier in map_carrier.keys(): |
||
349 | |||
350 | # import target values |
||
351 | target = select_target(carrier, scenario) |
||
352 | |||
353 | # import data for MaStR |
||
354 | mastr = pd.read_csv( |
||
355 | WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_hydro"]).query( |
||
356 | "EinheitBetriebsstatus=='InBetrieb'" |
||
357 | ) |
||
358 | |||
359 | # Choose only plants with specific carriers |
||
360 | mastr = mastr[mastr.ArtDerWasserkraftanlage.isin(map_carrier[carrier])] |
||
361 | |||
362 | # Drop entries without federal state or 'AusschließlichWirtschaftszone' |
||
363 | mastr = mastr[ |
||
364 | mastr.Bundesland.isin( |
||
365 | pd.read_sql( |
||
366 | f"""SELECT DISTINCT ON (gen) |
||
367 | REPLACE(REPLACE(gen, '-', ''), 'ü', 'ue') as states |
||
368 | FROM {cfg['sources']['geom_federal_states']}""", |
||
369 | con=db.engine(), |
||
370 | ).states.values |
||
371 | ) |
||
372 | ] |
||
373 | |||
374 | # Scaling will be done per federal state in case of eGon2035 scenario. |
||
375 | if scenario == "eGon2035": |
||
376 | level = "federal_state" |
||
377 | else: |
||
378 | level = "country" |
||
379 | |||
380 | # Scale capacities to meet target values |
||
381 | mastr = scale_prox2now(mastr, target, level=level) |
||
382 | |||
383 | # Choose only entries with valid geometries inside DE/test mode |
||
384 | mastr_loc = filter_mastr_geometry(mastr).set_geometry("geometry") |
||
385 | # TODO: Deal with power plants without geometry |
||
386 | |||
387 | # Assign bus_id and voltage level |
||
388 | if len(mastr_loc) > 0: |
||
389 | mastr_loc["voltage_level"] = assign_voltage_level( |
||
390 | mastr_loc, cfg, WORKING_DIR_MASTR_NEW |
||
391 | ) |
||
392 | mastr_loc = assign_bus_id(mastr_loc, cfg) |
||
393 | |||
394 | # Insert entries with location |
||
395 | session = sessionmaker(bind=db.engine())() |
||
396 | for i, row in mastr_loc.iterrows(): |
||
397 | entry = EgonPowerPlants( |
||
398 | sources={"el_capacity": "MaStR scaled with NEP 2021"}, |
||
399 | source_id={"MastrNummer": row.EinheitMastrNummer}, |
||
400 | carrier=carrier, |
||
401 | el_capacity=row.Nettonennleistung, |
||
402 | scenario=scenario, |
||
403 | bus_id=row.bus_id, |
||
404 | voltage_level=row.voltage_level, |
||
405 | geom=f"SRID=4326;POINT({row.Laengengrad} {row.Breitengrad})", |
||
406 | ) |
||
407 | session.add(entry) |
||
408 | |||
409 | session.commit() |
||
410 | |||
411 | |||
412 | def assign_voltage_level(mastr_loc, cfg, mastr_working_dir): |
||
413 | """Assigns voltage level to power plants. |
||
414 | |||
415 | If location data inluding voltage level is available from |
||
416 | Marktstammdatenregister, this is used. Otherwise the voltage level is |
||
417 | assigned according to the electrical capacity. |
||
418 | |||
419 | Parameters |
||
420 | ---------- |
||
421 | mastr_loc : pandas.DataFrame |
||
422 | Power plants listed in MaStR with geometry inside German boundaries |
||
423 | |||
424 | Returns |
||
425 | ------- |
||
426 | pandas.DataFrame |
||
427 | Power plants including voltage_level |
||
428 | |||
429 | """ |
||
430 | mastr_loc["Spannungsebene"] = np.nan |
||
431 | mastr_loc["voltage_level"] = np.nan |
||
432 | |||
433 | if "LokationMastrNummer" in mastr_loc.columns: |
||
434 | # Adjust column names to format of MaStR location dataset |
||
435 | if mastr_working_dir == WORKING_DIR_MASTR_OLD: |
||
436 | cols = ["LokationMastrNummer", "Spannungsebene"] |
||
437 | elif mastr_working_dir == WORKING_DIR_MASTR_NEW: |
||
438 | cols = ["MaStRNummer", "Spannungsebene"] |
||
439 | else: |
||
440 | raise ValueError("Invalid MaStR working directory!") |
||
441 | |||
442 | location = pd.read_csv( |
||
443 | mastr_working_dir / cfg["sources"]["mastr_location"], |
||
444 | usecols=cols, |
||
445 | ).rename( |
||
446 | columns={"MaStRNummer": "LokationMastrNummer"} |
||
447 | ).set_index("LokationMastrNummer") |
||
448 | |||
449 | location = location[~location.index.duplicated(keep="first")] |
||
450 | |||
451 | mastr_loc.loc[ |
||
452 | mastr_loc[ |
||
453 | mastr_loc.LokationMastrNummer.isin(location.index) |
||
454 | ].index, |
||
455 | "Spannungsebene", |
||
456 | ] = location.Spannungsebene[ |
||
457 | mastr_loc[ |
||
458 | mastr_loc.LokationMastrNummer.isin(location.index) |
||
459 | ].LokationMastrNummer |
||
460 | ].values |
||
461 | |||
462 | # Transfer voltage_level as integer from Spanungsebene |
||
463 | map_voltage_levels = pd.Series( |
||
464 | data={ |
||
465 | "Höchstspannung": 1, |
||
466 | "Hoechstspannung": 1, |
||
467 | "UmspannungZurHochspannung": 2, |
||
468 | "Hochspannung": 3, |
||
469 | "UmspannungZurMittelspannung": 4, |
||
470 | "Mittelspannung": 5, |
||
471 | "UmspannungZurNiederspannung": 6, |
||
472 | "Niederspannung": 7, |
||
473 | } |
||
474 | ) |
||
475 | |||
476 | mastr_loc.loc[ |
||
477 | mastr_loc[mastr_loc["Spannungsebene"].notnull()].index, |
||
478 | "voltage_level", |
||
479 | ] = map_voltage_levels[ |
||
480 | mastr_loc.loc[ |
||
481 | mastr_loc[mastr_loc["Spannungsebene"].notnull()].index, |
||
482 | "Spannungsebene", |
||
483 | ].values |
||
484 | ].values |
||
485 | |||
486 | else: |
||
487 | print( |
||
488 | "No information about MaStR location available. " |
||
489 | "All voltage levels are assigned using threshold values." |
||
490 | ) |
||
491 | |||
492 | # If no voltage level is available from mastr, choose level according |
||
493 | # to threshold values |
||
494 | |||
495 | mastr_loc.voltage_level = assign_voltage_level_by_capacity(mastr_loc) |
||
496 | |||
497 | return mastr_loc.voltage_level |
||
498 | |||
499 | |||
500 | def assign_voltage_level_by_capacity(mastr_loc): |
||
501 | |||
502 | for i, row in mastr_loc[mastr_loc.voltage_level.isnull()].iterrows(): |
||
503 | |||
504 | if row.Nettonennleistung > 120: |
||
505 | level = 1 |
||
506 | elif row.Nettonennleistung > 20: |
||
507 | level = 3 |
||
508 | elif row.Nettonennleistung > 5.5: |
||
509 | level = 4 |
||
510 | elif row.Nettonennleistung > 0.2: |
||
511 | level = 5 |
||
512 | elif row.Nettonennleistung > 0.1: |
||
513 | level = 6 |
||
514 | else: |
||
515 | level = 7 |
||
516 | |||
517 | mastr_loc.loc[i, "voltage_level"] = level |
||
518 | |||
519 | mastr_loc.voltage_level = mastr_loc.voltage_level.astype(int) |
||
520 | |||
521 | return mastr_loc.voltage_level |
||
522 | |||
523 | |||
524 | def assign_bus_id(power_plants, cfg): |
||
525 | """Assigns bus_ids to power plants according to location and voltage level |
||
526 | |||
527 | Parameters |
||
528 | ---------- |
||
529 | power_plants : pandas.DataFrame |
||
530 | Power plants including voltage level |
||
531 | |||
532 | Returns |
||
533 | ------- |
||
534 | power_plants : pandas.DataFrame |
||
535 | Power plants including voltage level and bus_id |
||
536 | |||
537 | """ |
||
538 | |||
539 | mv_grid_districts = db.select_geodataframe( |
||
540 | f""" |
||
541 | SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
||
542 | """, |
||
543 | epsg=4326, |
||
544 | ) |
||
545 | |||
546 | ehv_grid_districts = db.select_geodataframe( |
||
547 | f""" |
||
548 | SELECT * FROM {cfg['sources']['ehv_voronoi']} |
||
549 | """, |
||
550 | epsg=4326, |
||
551 | ) |
||
552 | |||
553 | # Assign power plants in hv and below to hvmv bus |
||
554 | power_plants_hv = power_plants[power_plants.voltage_level >= 3].index |
||
555 | if len(power_plants_hv) > 0: |
||
556 | power_plants.loc[power_plants_hv, "bus_id"] = gpd.sjoin( |
||
557 | power_plants[power_plants.index.isin(power_plants_hv)], |
||
558 | mv_grid_districts, |
||
559 | ).bus_id |
||
560 | |||
561 | # Assign power plants in ehv to ehv bus |
||
562 | power_plants_ehv = power_plants[power_plants.voltage_level < 3].index |
||
563 | |||
564 | if len(power_plants_ehv) > 0: |
||
565 | ehv_join = gpd.sjoin( |
||
566 | power_plants[power_plants.index.isin(power_plants_ehv)], |
||
567 | ehv_grid_districts, |
||
568 | ) |
||
569 | |||
570 | if "bus_id_right" in ehv_join.columns: |
||
571 | power_plants.loc[power_plants_ehv, "bus_id"] = gpd.sjoin( |
||
572 | power_plants[power_plants.index.isin(power_plants_ehv)], |
||
573 | ehv_grid_districts, |
||
574 | ).bus_id_right |
||
575 | |||
576 | else: |
||
577 | power_plants.loc[power_plants_ehv, "bus_id"] = gpd.sjoin( |
||
578 | power_plants[power_plants.index.isin(power_plants_ehv)], |
||
579 | ehv_grid_districts, |
||
580 | ).bus_id |
||
581 | |||
582 | # Assert that all power plants have a bus_id |
||
583 | assert power_plants.bus_id.notnull().all(), f"""Some power plants are |
||
584 | not attached to a bus: {power_plants[power_plants.bus_id.isnull()]}""" |
||
585 | |||
586 | return power_plants |
||
587 | |||
588 | |||
589 | def insert_hydro_biomass(): |
||
590 | """Insert hydro and biomass power plants in database |
||
591 | |||
592 | Returns |
||
593 | ------- |
||
594 | None. |
||
595 | |||
596 | """ |
||
597 | cfg = egon.data.config.datasets()["power_plants"] |
||
598 | db.execute_sql( |
||
599 | f""" |
||
600 | DELETE FROM {cfg['target']['schema']}.{cfg['target']['table']} |
||
601 | WHERE carrier IN ('biomass', 'reservoir', 'run_of_river') |
||
602 | """ |
||
603 | ) |
||
604 | |||
605 | for scenario in ["eGon2035"]: |
||
606 | insert_biomass_plants(scenario) |
||
607 | insert_hydro_plants(scenario) |
||
608 | |||
609 | |||
610 | def allocate_conventional_non_chp_power_plants(): |
||
611 | |||
612 | carrier = ["oil", "gas"] |
||
613 | |||
614 | cfg = egon.data.config.datasets()["power_plants"] |
||
615 | |||
616 | # Delete existing plants in the target table |
||
617 | db.execute_sql( |
||
618 | f""" |
||
619 | DELETE FROM {cfg ['target']['schema']}.{cfg ['target']['table']} |
||
620 | WHERE carrier IN ('gas', 'oil') |
||
621 | AND scenario='eGon2035'; |
||
622 | """ |
||
623 | ) |
||
624 | |||
625 | for carrier in carrier: |
||
626 | |||
627 | nep = select_nep_power_plants(carrier) |
||
628 | |||
629 | if nep.empty: |
||
630 | print(f"DataFrame from NEP for carrier {carrier} is empty!") |
||
631 | |||
632 | else: |
||
633 | |||
634 | mastr = select_no_chp_combustion_mastr(carrier) |
||
635 | |||
636 | # Assign voltage level to MaStR |
||
637 | mastr["voltage_level"] = assign_voltage_level( |
||
638 | mastr.rename({"el_capacity": "Nettonennleistung"}, axis=1), |
||
639 | cfg, |
||
640 | WORKING_DIR_MASTR_OLD |
||
641 | ) |
||
642 | |||
643 | # Initalize DataFrame for matching power plants |
||
644 | matched = gpd.GeoDataFrame( |
||
645 | columns=[ |
||
646 | "carrier", |
||
647 | "el_capacity", |
||
648 | "scenario", |
||
649 | "geometry", |
||
650 | "MaStRNummer", |
||
651 | "source", |
||
652 | "voltage_level", |
||
653 | ] |
||
654 | ) |
||
655 | |||
656 | # Match combustion plants of a certain carrier from NEP list |
||
657 | # using PLZ and capacity |
||
658 | matched, mastr, nep = match_nep_no_chp( |
||
659 | nep, |
||
660 | mastr, |
||
661 | matched, |
||
662 | buffer_capacity=0.1, |
||
663 | consider_carrier=False, |
||
664 | ) |
||
665 | |||
666 | # Match plants from NEP list using city and capacity |
||
667 | matched, mastr, nep = match_nep_no_chp( |
||
668 | nep, |
||
669 | mastr, |
||
670 | matched, |
||
671 | buffer_capacity=0.1, |
||
672 | consider_carrier=False, |
||
673 | consider_location="city", |
||
674 | ) |
||
675 | |||
676 | # Match plants from NEP list using plz, |
||
677 | # neglecting the capacity |
||
678 | matched, mastr, nep = match_nep_no_chp( |
||
679 | nep, |
||
680 | mastr, |
||
681 | matched, |
||
682 | consider_location="plz", |
||
683 | consider_carrier=False, |
||
684 | consider_capacity=False, |
||
685 | ) |
||
686 | |||
687 | # Match plants from NEP list using city, |
||
688 | # neglecting the capacity |
||
689 | matched, mastr, nep = match_nep_no_chp( |
||
690 | nep, |
||
691 | mastr, |
||
692 | matched, |
||
693 | consider_location="city", |
||
694 | consider_carrier=False, |
||
695 | consider_capacity=False, |
||
696 | ) |
||
697 | |||
698 | # Match remaining plants from NEP using the federal state |
||
699 | matched, mastr, nep = match_nep_no_chp( |
||
700 | nep, |
||
701 | mastr, |
||
702 | matched, |
||
703 | buffer_capacity=0.1, |
||
704 | consider_location="federal_state", |
||
705 | consider_carrier=False, |
||
706 | ) |
||
707 | |||
708 | # Match remaining plants from NEP using the federal state |
||
709 | matched, mastr, nep = match_nep_no_chp( |
||
710 | nep, |
||
711 | mastr, |
||
712 | matched, |
||
713 | buffer_capacity=0.7, |
||
714 | consider_location="federal_state", |
||
715 | consider_carrier=False, |
||
716 | ) |
||
717 | |||
718 | print(f"{matched.el_capacity.sum()} MW of {carrier} matched") |
||
719 | print(f"{nep.c2035_capacity.sum()} MW of {carrier} not matched") |
||
720 | |||
721 | matched.crs = "EPSG:4326" |
||
722 | |||
723 | # Assign bus_id |
||
724 | # Load grid district polygons |
||
725 | mv_grid_districts = db.select_geodataframe( |
||
726 | f""" |
||
727 | SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
||
728 | """, |
||
729 | epsg=4326, |
||
730 | ) |
||
731 | |||
732 | ehv_grid_districts = db.select_geodataframe( |
||
733 | f""" |
||
734 | SELECT * FROM {cfg['sources']['ehv_voronoi']} |
||
735 | """, |
||
736 | epsg=4326, |
||
737 | ) |
||
738 | |||
739 | # Perform spatial joins for plants in ehv and hv level seperately |
||
740 | power_plants_hv = gpd.sjoin( |
||
741 | matched[matched.voltage_level >= 3], |
||
742 | mv_grid_districts[["bus_id", "geom"]], |
||
743 | how="left", |
||
744 | ).drop(columns=["index_right"]) |
||
745 | power_plants_ehv = gpd.sjoin( |
||
746 | matched[matched.voltage_level < 3], |
||
747 | ehv_grid_districts[["bus_id", "geom"]], |
||
748 | how="left", |
||
749 | ).drop(columns=["index_right"]) |
||
750 | |||
751 | # Combine both dataframes |
||
752 | power_plants = pd.concat([power_plants_hv, power_plants_ehv]) |
||
753 | |||
754 | # Insert into target table |
||
755 | session = sessionmaker(bind=db.engine())() |
||
756 | for i, row in power_plants.iterrows(): |
||
757 | entry = EgonPowerPlants( |
||
758 | sources={"el_capacity": row.source}, |
||
759 | source_id={"MastrNummer": row.MaStRNummer}, |
||
760 | carrier=row.carrier, |
||
761 | el_capacity=row.el_capacity, |
||
762 | voltage_level=row.voltage_level, |
||
763 | bus_id=row.bus_id, |
||
764 | scenario=row.scenario, |
||
765 | geom=f"SRID=4326;POINT({row.geometry.x} {row.geometry.y})", |
||
766 | ) |
||
767 | session.add(entry) |
||
768 | session.commit() |
||
769 | |||
770 | |||
771 | def allocate_other_power_plants(): |
||
772 | |||
773 | # Get configuration |
||
774 | cfg = egon.data.config.datasets()["power_plants"] |
||
775 | boundary = egon.data.config.settings()["egon-data"]["--dataset-boundary"] |
||
776 | |||
777 | db.execute_sql( |
||
778 | f""" |
||
779 | DELETE FROM {cfg['target']['schema']}.{cfg['target']['table']} |
||
780 | WHERE carrier ='others' |
||
781 | """ |
||
782 | ) |
||
783 | |||
784 | # Define scenario, carrier 'others' is only present in 'eGon2035' |
||
785 | scenario = "eGon2035" |
||
786 | |||
787 | # Select target values for carrier 'others' |
||
788 | target = db.select_dataframe( |
||
789 | f""" |
||
790 | SELECT sum(capacity) as capacity, carrier, scenario_name, nuts |
||
791 | FROM {cfg['sources']['capacities']} |
||
792 | WHERE scenario_name = '{scenario}' |
||
793 | AND carrier = 'others' |
||
794 | GROUP BY carrier, nuts, scenario_name; |
||
795 | """ |
||
796 | ) |
||
797 | |||
798 | # Assign name of federal state |
||
799 | |||
800 | map_states = { |
||
801 | "DE1": "BadenWuerttemberg", |
||
802 | "DEA": "NordrheinWestfalen", |
||
803 | "DE7": "Hessen", |
||
804 | "DE4": "Brandenburg", |
||
805 | "DE5": "Bremen", |
||
806 | "DEB": "RheinlandPfalz", |
||
807 | "DEE": "SachsenAnhalt", |
||
808 | "DEF": "SchleswigHolstein", |
||
809 | "DE8": "MecklenburgVorpommern", |
||
810 | "DEG": "Thueringen", |
||
811 | "DE9": "Niedersachsen", |
||
812 | "DED": "Sachsen", |
||
813 | "DE6": "Hamburg", |
||
814 | "DEC": "Saarland", |
||
815 | "DE3": "Berlin", |
||
816 | "DE2": "Bayern", |
||
817 | } |
||
818 | |||
819 | target = ( |
||
820 | target.replace({"nuts": map_states}) |
||
821 | .rename(columns={"nuts": "Bundesland"}) |
||
822 | .set_index("Bundesland") |
||
823 | ) |
||
824 | target = target.capacity |
||
825 | |||
826 | # Select 'non chp' power plants from mastr table |
||
827 | mastr_combustion = select_no_chp_combustion_mastr("others") |
||
828 | |||
829 | # Rename columns |
||
830 | mastr_combustion = mastr_combustion.rename( |
||
831 | columns={ |
||
832 | "carrier": "Energietraeger", |
||
833 | "plz": "Postleitzahl", |
||
834 | "city": "Ort", |
||
835 | "federal_state": "Bundesland", |
||
836 | "el_capacity": "Nettonennleistung", |
||
837 | } |
||
838 | ) |
||
839 | |||
840 | # Select power plants representing carrier 'others' from MaStR files |
||
841 | mastr_sludge = pd.read_csv( |
||
842 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_gsgk"]).query( |
||
843 | """EinheitBetriebsstatus=='InBetrieb'and Energietraeger=='Klaerschlamm'""" # noqa: E501 |
||
844 | ) |
||
845 | mastr_geothermal = pd.read_csv( |
||
846 | WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_gsgk"]).query( |
||
847 | "EinheitBetriebsstatus=='InBetrieb' and Energietraeger=='Geothermie' " |
||
848 | "and Technologie == 'ORCOrganicRankineCycleAnlage'" |
||
849 | ) |
||
850 | |||
851 | mastr_sg = mastr_sludge.append(mastr_geothermal) |
||
852 | |||
853 | # Insert geometry column |
||
854 | mastr_sg = mastr_sg[~(mastr_sg["Laengengrad"].isnull())] |
||
855 | mastr_sg = gpd.GeoDataFrame( |
||
856 | mastr_sg, |
||
857 | geometry=gpd.points_from_xy( |
||
858 | mastr_sg["Laengengrad"], mastr_sg["Breitengrad"], crs=4326 |
||
859 | ), |
||
860 | ) |
||
861 | |||
862 | # Exclude columns which are not essential |
||
863 | mastr_sg = mastr_sg.filter( |
||
864 | [ |
||
865 | "EinheitMastrNummer", |
||
866 | "Nettonennleistung", |
||
867 | "geometry", |
||
868 | "Energietraeger", |
||
869 | "Postleitzahl", |
||
870 | "Ort", |
||
871 | "Bundesland", |
||
872 | ], |
||
873 | axis=1, |
||
874 | ) |
||
875 | # Rename carrier |
||
876 | mastr_sg.Energietraeger = "others" |
||
877 | |||
878 | # Change data type |
||
879 | mastr_sg["Postleitzahl"] = mastr_sg["Postleitzahl"].astype(int) |
||
880 | |||
881 | # Capacity in MW |
||
882 | mastr_sg.loc[:, "Nettonennleistung"] *= 1e-3 |
||
883 | |||
884 | # Merge different sources to one df |
||
885 | mastr_others = mastr_sg.append(mastr_combustion).reset_index() |
||
886 | |||
887 | # Delete entries outside Schleswig-Holstein for test mode |
||
888 | if boundary == "Schleswig-Holstein": |
||
889 | mastr_others = mastr_others[ |
||
890 | mastr_others["Bundesland"] == "SchleswigHolstein" |
||
891 | ] |
||
892 | |||
893 | # Scale capacities prox to now to meet target values |
||
894 | mastr_prox = scale_prox2now(mastr_others, target, level="federal_state") |
||
895 | |||
896 | # Assign voltage_level based on scaled capacity |
||
897 | mastr_prox["voltage_level"] = np.nan |
||
898 | mastr_prox["voltage_level"] = assign_voltage_level_by_capacity(mastr_prox) |
||
899 | |||
900 | # Rename columns |
||
901 | mastr_prox = mastr_prox.rename( |
||
902 | columns={ |
||
903 | "Energietraeger": "carrier", |
||
904 | "Postleitzahl": "plz", |
||
905 | "Ort": "city", |
||
906 | "Bundesland": "federal_state", |
||
907 | "Nettonennleistung": "el_capacity", |
||
908 | } |
||
909 | ) |
||
910 | |||
911 | # Assign bus_id |
||
912 | mastr_prox = assign_bus_id(mastr_prox, cfg) |
||
913 | mastr_prox = mastr_prox.set_crs(4326, allow_override=True) |
||
914 | |||
915 | # Insert into target table |
||
916 | session = sessionmaker(bind=db.engine())() |
||
917 | for i, row in mastr_prox.iterrows(): |
||
918 | entry = EgonPowerPlants( |
||
919 | sources=row.el_capacity, |
||
920 | source_id={"MastrNummer": row.EinheitMastrNummer}, |
||
921 | carrier=row.carrier, |
||
922 | el_capacity=row.el_capacity, |
||
923 | voltage_level=row.voltage_level, |
||
924 | bus_id=row.bus_id, |
||
925 | scenario=scenario, |
||
926 | geom=f"SRID=4326; {row.geometry}", |
||
927 | ) |
||
928 | session.add(entry) |
||
929 | session.commit() |
||
930 |