1
|
|
|
""" |
2
|
|
|
* Calculate number of electric vehicles and allocate on different spatial |
3
|
|
|
levels: :func:`allocate_evs_numbers` |
4
|
|
|
* Allocate specific EVs to MV grid districts: |
5
|
|
|
:func:`allocate_evs_to_grid_districts` |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
from itertools import permutations |
9
|
|
|
|
10
|
|
|
from sqlalchemy.sql import func |
11
|
|
|
import numpy as np |
12
|
|
|
import pandas as pd |
13
|
|
|
|
14
|
|
|
from egon.data import db |
15
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.db_classes import ( |
16
|
|
|
EgonEvCountMunicipality, |
17
|
|
|
EgonEvCountMvGridDistrict, |
18
|
|
|
EgonEvCountRegistrationDistrict, |
19
|
|
|
EgonEvMvGridDistrict, |
20
|
|
|
EgonEvPool, |
21
|
|
|
) |
22
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.helpers import ( |
23
|
|
|
COLUMNS_KBA, |
24
|
|
|
CONFIG_EV, |
25
|
|
|
TESTMODE_OFF, |
26
|
|
|
read_kba_data, |
27
|
|
|
read_rs7_data, |
28
|
|
|
) |
29
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel.tests import ( |
30
|
|
|
validate_electric_vehicles_numbers, |
31
|
|
|
) |
32
|
|
|
from egon.data.datasets.mv_grid_districts import MvGridDistricts |
33
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
34
|
|
|
from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
35
|
|
|
from egon.data.datasets.zensus_vg250 import ( |
36
|
|
|
DestatisZensusPopulationPerHaInsideGermany, |
37
|
|
|
MapZensusVg250, |
38
|
|
|
Vg250Gem, |
39
|
|
|
Vg250GemPopulation, |
40
|
|
|
) |
41
|
|
|
import egon.data.config |
42
|
|
|
|
43
|
|
|
RANDOM_SEED = egon.data.config.settings()["egon-data"]["--random-seed"] |
44
|
|
|
|
45
|
|
|
|
46
|
|
|
def fix_missing_ags_municipality_regiostar(muns, rs7_data): |
47
|
|
|
"""Check if all AGS of municipality dataset are included in RegioStaR7 |
48
|
|
|
dataset and vice versa. |
49
|
|
|
|
50
|
|
|
As of Dec 2021, some municipalities are not included int he RegioStaR7 |
51
|
|
|
dataset. This is mostly caused by incorporations of a municipality by |
52
|
|
|
another municipality. This is fixed by assining a RS7 id from another |
53
|
|
|
municipality with similar AGS (most likely a neighboured one). |
54
|
|
|
|
55
|
|
|
Missing entries in the municipality dataset is printed but not fixed |
56
|
|
|
as it doesn't result in bad data. Nevertheless, consider to update the |
57
|
|
|
municipality/VG250 dataset. |
58
|
|
|
|
59
|
|
|
Parameters |
60
|
|
|
---------- |
61
|
|
|
muns : pandas.DataFrame |
62
|
|
|
Municipality data |
63
|
|
|
rs7_data : pandas.DataFrame |
64
|
|
|
RegioStaR7 data |
65
|
|
|
|
66
|
|
|
Returns |
67
|
|
|
------- |
68
|
|
|
pandas.DataFrame |
69
|
|
|
Fixed RegioStaR7 data |
70
|
|
|
""" |
71
|
|
|
|
72
|
|
|
if len(muns.ags.unique()) != len(rs7_data.ags): |
73
|
|
|
print( |
74
|
|
|
"==========> Number of AGS differ between VG250 and RS7, " |
75
|
|
|
"trying to fix this..." |
76
|
|
|
) |
77
|
|
|
|
78
|
|
|
# Get AGS differences |
79
|
|
|
ags_datasets = {"RS7": rs7_data.ags, "VG250": muns.ags} |
80
|
|
|
ags_datasets_missing = {k: [] for k in ags_datasets.keys()} |
81
|
|
|
perm = permutations(ags_datasets.items()) |
82
|
|
|
for (name1, ags1), (name2, ags2) in perm: |
83
|
|
|
print(f" Checking if all AGS of {name1} are in {name2}...") |
84
|
|
|
missing = [_ for _ in ags1 if _ not in ags2.to_list()] |
85
|
|
|
if len(missing) > 0: |
86
|
|
|
ags_datasets_missing[name2] = missing |
87
|
|
|
print(f" AGS in {name1} but not in {name2}: ", missing) |
88
|
|
|
else: |
89
|
|
|
print(" OK") |
90
|
|
|
|
91
|
|
|
print("") |
92
|
|
|
|
93
|
|
|
# Try to fix |
94
|
|
|
for name, missing in ags_datasets_missing.items(): |
95
|
|
|
if len(missing) > 0: |
96
|
|
|
# RS7 entries missing: use RS7 number from mun with similar AGS |
97
|
|
|
if name == "RS7": |
98
|
|
|
for ags in missing: |
99
|
|
|
similar_entry = rs7_data[ |
100
|
|
|
round((rs7_data.ags.div(10))) == round(ags / 10) |
101
|
|
|
].iloc[0] |
102
|
|
|
if len(similar_entry) > 0: |
103
|
|
|
print( |
104
|
|
|
f"Adding dataset from VG250 to RS7 " |
105
|
|
|
f"based upon AGS {ags}." |
106
|
|
|
) |
107
|
|
|
similar_entry.ags = ags |
108
|
|
|
rs7_data = rs7_data.append(similar_entry) |
109
|
|
|
print("Consider to update RS7.") |
110
|
|
|
# VG250 entries missing: |
111
|
|
|
elif name == "VG250": |
112
|
|
|
print( |
113
|
|
|
"Cannot guess VG250 entries. This error does not " |
114
|
|
|
"result in bad data but consider to update VG250." |
115
|
|
|
) |
116
|
|
|
|
117
|
|
|
if len(muns.ags.unique()) != len(rs7_data.ags): |
118
|
|
|
print("==========> AGS could not be fixed!") |
119
|
|
|
else: |
120
|
|
|
print("==========> AGS were fixed!") |
121
|
|
|
|
122
|
|
|
return rs7_data |
123
|
|
|
|
124
|
|
|
|
125
|
|
|
def calc_evs_per_reg_district(scenario_variation_parameters, kba_data): |
126
|
|
|
"""Calculate EVs per registration district |
127
|
|
|
|
128
|
|
|
Parameters |
129
|
|
|
---------- |
130
|
|
|
scenario_variation_parameters : dict |
131
|
|
|
Parameters of scenario variation |
132
|
|
|
kba_data : pandas.DataFrame |
133
|
|
|
Vehicle registration data for registration district |
134
|
|
|
|
135
|
|
|
Returns |
136
|
|
|
------- |
137
|
|
|
pandas.DataFrame |
138
|
|
|
EVs per registration district |
139
|
|
|
""" |
140
|
|
|
|
141
|
|
|
scenario_variation_parameters["mini_share"] = ( |
142
|
|
|
scenario_variation_parameters["bev_mini_share"] |
143
|
|
|
+ scenario_variation_parameters["phev_mini_share"] |
144
|
|
|
) |
145
|
|
|
scenario_variation_parameters["medium_share"] = ( |
146
|
|
|
scenario_variation_parameters["bev_medium_share"] |
147
|
|
|
+ scenario_variation_parameters["phev_medium_share"] |
148
|
|
|
) |
149
|
|
|
scenario_variation_parameters["luxury_share"] = ( |
150
|
|
|
scenario_variation_parameters["bev_luxury_share"] |
151
|
|
|
+ scenario_variation_parameters["phev_luxury_share"] |
152
|
|
|
) |
153
|
|
|
|
154
|
|
|
factor_dict = dict() |
155
|
|
|
factor_dict["mini_factor"] = ( |
156
|
|
|
scenario_variation_parameters["mini_share"] |
157
|
|
|
* scenario_variation_parameters["ev_count"] |
158
|
|
|
/ kba_data.mini.sum() |
159
|
|
|
) |
160
|
|
|
factor_dict["medium_factor"] = ( |
161
|
|
|
scenario_variation_parameters["medium_share"] |
162
|
|
|
* scenario_variation_parameters["ev_count"] |
163
|
|
|
/ kba_data.medium.sum() |
164
|
|
|
) |
165
|
|
|
factor_dict["luxury_factor"] = ( |
166
|
|
|
scenario_variation_parameters["luxury_share"] |
167
|
|
|
* scenario_variation_parameters["ev_count"] |
168
|
|
|
/ kba_data.luxury.sum() |
169
|
|
|
) |
170
|
|
|
|
171
|
|
|
# Define shares and factors |
172
|
|
|
ev_data = kba_data.copy() |
173
|
|
|
|
174
|
|
|
for tech, params in CONFIG_EV.items(): |
175
|
|
|
ev_data[tech] = ( |
176
|
|
|
( |
177
|
|
|
kba_data[params["column"]] |
178
|
|
|
* factor_dict[params["factor"]] |
179
|
|
|
* scenario_variation_parameters[params["tech_share"]] |
180
|
|
|
/ scenario_variation_parameters[params["share"]] |
181
|
|
|
) |
182
|
|
|
.round() |
183
|
|
|
.astype("int") |
184
|
|
|
) |
185
|
|
|
|
186
|
|
|
ev_data.drop( |
187
|
|
|
columns=[_ for _ in COLUMNS_KBA if _ != "reg_district"], inplace=True |
188
|
|
|
) |
189
|
|
|
|
190
|
|
|
return ev_data |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
def calc_evs_per_municipality(ev_data, rs7_data): |
194
|
|
|
"""Calculate EVs per municipality |
195
|
|
|
|
196
|
|
|
Parameters |
197
|
|
|
---------- |
198
|
|
|
ev_data : pandas.DataFrame |
199
|
|
|
EVs per regstration district |
200
|
|
|
rs7_data : pandas.DataFrame |
201
|
|
|
RegioStaR7 data |
202
|
|
|
""" |
203
|
|
|
with db.session_scope() as session: |
204
|
|
|
query = session.query( |
205
|
|
|
Vg250GemPopulation.ags_0.label("ags"), |
206
|
|
|
Vg250GemPopulation.gen, |
207
|
|
|
Vg250GemPopulation.population_total.label("pop"), |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
muns = pd.read_sql( |
211
|
|
|
query.statement, query.session.bind, index_col=None |
212
|
|
|
).astype({"ags": "int64"}) |
213
|
|
|
|
214
|
|
|
muns["ags_district"] = ( |
215
|
|
|
muns.ags.multiply(1 / 1000).apply(np.floor).astype("int") |
216
|
|
|
) |
217
|
|
|
|
218
|
|
|
# Manual fix of Trier-Saarburg: Introduce new `ags_reg_district` |
219
|
|
|
# for correct allocation of mun to registration district |
220
|
|
|
# (Zulassungsbezirk), see above for background. |
221
|
|
|
muns["ags_reg_district"] = muns["ags_district"] |
222
|
|
|
muns.loc[muns["ags_reg_district"] == 7235, "ags_reg_district"] = 7211 |
223
|
|
|
|
224
|
|
|
# Remove multiple municipality entries (due to 'gf' in VG250) |
225
|
|
|
# by summing up population |
226
|
|
|
muns = ( |
227
|
|
|
muns[["ags", "gen", "ags_reg_district", "pop"]] |
228
|
|
|
.groupby(["ags", "gen", "ags_reg_district"]) |
229
|
|
|
.sum() |
230
|
|
|
.reset_index() |
231
|
|
|
) |
232
|
|
|
|
233
|
|
|
# Add population of registration district |
234
|
|
|
pop_per_reg_district = ( |
235
|
|
|
muns[["ags_reg_district", "pop"]] |
236
|
|
|
.groupby("ags_reg_district") |
237
|
|
|
.sum() |
238
|
|
|
.rename(columns={"pop": "pop_district"}) |
239
|
|
|
.reset_index() |
240
|
|
|
) |
241
|
|
|
|
242
|
|
|
# Fix missing ags in mun data if not in testmode |
243
|
|
|
if TESTMODE_OFF: |
244
|
|
|
rs7_data = fix_missing_ags_municipality_regiostar(muns, rs7_data) |
245
|
|
|
|
246
|
|
|
# Merge municipality, EV data and pop per district |
247
|
|
|
ev_data_muns = muns.merge(ev_data, on="ags_reg_district").merge( |
248
|
|
|
pop_per_reg_district, on="ags_reg_district" |
249
|
|
|
) |
250
|
|
|
|
251
|
|
|
# Disaggregate EV numbers to municipality |
252
|
|
|
for tech in ev_data[CONFIG_EV.keys()]: |
253
|
|
|
ev_data_muns[tech] = round( |
254
|
|
|
ev_data_muns[tech] |
255
|
|
|
* ev_data_muns["pop"] |
256
|
|
|
/ ev_data_muns["pop_district"] |
257
|
|
|
).astype("int") |
258
|
|
|
|
259
|
|
|
# Filter columns |
260
|
|
|
cols = ["ags"] |
261
|
|
|
cols.extend(CONFIG_EV.keys()) |
262
|
|
|
ev_data_muns = ev_data_muns[cols] |
263
|
|
|
|
264
|
|
|
# Merge RS7 data |
265
|
|
|
ev_data_muns = ev_data_muns.merge(rs7_data[["ags", "rs7_id"]], on="ags") |
266
|
|
|
|
267
|
|
|
return ev_data_muns |
268
|
|
|
|
269
|
|
|
|
270
|
|
|
def calc_evs_per_grid_district(ev_data_muns): |
271
|
|
|
"""Calculate EVs per grid district by using population weighting |
272
|
|
|
|
273
|
|
|
Parameters |
274
|
|
|
---------- |
275
|
|
|
ev_data_muns : pandas.DataFrame |
276
|
|
|
EV data for municipalities |
277
|
|
|
|
278
|
|
|
Returns |
279
|
|
|
------- |
280
|
|
|
pandas.DataFrame |
281
|
|
|
EV data for grid districts |
282
|
|
|
""" |
283
|
|
|
|
284
|
|
|
# Read MVGDs with intersecting muns and aggregate pop for each |
285
|
|
|
# municipality part |
286
|
|
|
with db.session_scope() as session: |
287
|
|
|
query_pop_per_mvgd = ( |
288
|
|
|
session.query( |
289
|
|
|
MvGridDistricts.bus_id, |
290
|
|
|
Vg250Gem.ags, |
291
|
|
|
func.sum( |
292
|
|
|
DestatisZensusPopulationPerHaInsideGermany.population |
293
|
|
|
).label("pop"), |
294
|
|
|
) |
295
|
|
|
.select_from(MapZensusGridDistricts) |
296
|
|
|
.join( |
297
|
|
|
MvGridDistricts, |
298
|
|
|
MapZensusGridDistricts.bus_id == MvGridDistricts.bus_id, |
299
|
|
|
) |
300
|
|
|
.join( |
301
|
|
|
DestatisZensusPopulationPerHaInsideGermany, |
302
|
|
|
MapZensusGridDistricts.zensus_population_id |
303
|
|
|
== DestatisZensusPopulationPerHaInsideGermany.id, |
304
|
|
|
) |
305
|
|
|
.join( |
306
|
|
|
MapZensusVg250, |
307
|
|
|
MapZensusGridDistricts.zensus_population_id |
308
|
|
|
== MapZensusVg250.zensus_population_id, |
309
|
|
|
) |
310
|
|
|
.join( |
311
|
|
|
Vg250Gem, MapZensusVg250.vg250_municipality_id == Vg250Gem.id |
312
|
|
|
) |
313
|
|
|
.group_by(MvGridDistricts.bus_id, Vg250Gem.ags) |
314
|
|
|
.order_by(Vg250Gem.ags) |
315
|
|
|
) |
316
|
|
|
|
317
|
|
|
mvgd_pop_per_mun = pd.read_sql( |
318
|
|
|
query_pop_per_mvgd.statement, |
319
|
|
|
query_pop_per_mvgd.session.bind, |
320
|
|
|
index_col=None, |
321
|
|
|
).astype({"bus_id": "int64", "pop": "int64", "ags": "int64"}) |
322
|
|
|
|
323
|
|
|
# Calc population share of each municipality in MVGD |
324
|
|
|
mvgd_pop_per_mun_in_mvgd = mvgd_pop_per_mun.groupby(["bus_id", "ags"]).agg( |
325
|
|
|
{"pop": "sum"} |
326
|
|
|
) |
327
|
|
|
|
328
|
|
|
# Calc relative and absolute population shares: |
329
|
|
|
# * pop_mun_in_mvgd: pop share of mun which intersects with MVGD |
330
|
|
|
# * pop_share_mun_in_mvgd: relative pop share of mun which |
331
|
|
|
# intersects with MVGD |
332
|
|
|
# * pop_mun_total: total pop of mun |
333
|
|
|
# * pop_mun_in_mvgd_of_mun_total: relative pop share of mun which |
334
|
|
|
# intersects with MVGD in relation to total pop of mun |
335
|
|
|
mvgd_pop_per_mun_in_mvgd = ( |
336
|
|
|
mvgd_pop_per_mun_in_mvgd.groupby(level=0) |
337
|
|
|
.apply(lambda x: x / float(x.sum())) |
338
|
|
|
.reset_index() |
339
|
|
|
.rename(columns={"pop": "pop_share_mun_in_mvgd"}) |
340
|
|
|
.merge( |
341
|
|
|
mvgd_pop_per_mun_in_mvgd.reset_index(), |
342
|
|
|
on=["bus_id", "ags"], |
343
|
|
|
how="left", |
344
|
|
|
) |
345
|
|
|
.rename(columns={"pop": "pop_mun_in_mvgd"}) |
346
|
|
|
.merge( |
347
|
|
|
mvgd_pop_per_mun[["ags", "pop"]] |
348
|
|
|
.groupby("ags") |
349
|
|
|
.agg({"pop": "sum"}), |
350
|
|
|
on="ags", |
351
|
|
|
how="left", |
352
|
|
|
) |
353
|
|
|
.rename(columns={"pop": "pop_mun_total"}) |
354
|
|
|
) |
355
|
|
|
mvgd_pop_per_mun_in_mvgd["pop_mun_in_mvgd_of_mun_total"] = ( |
356
|
|
|
mvgd_pop_per_mun_in_mvgd["pop_mun_in_mvgd"] |
357
|
|
|
/ mvgd_pop_per_mun_in_mvgd["pop_mun_total"] |
358
|
|
|
) |
359
|
|
|
|
360
|
|
|
# Merge EV data |
361
|
|
|
ev_data_mvgds = mvgd_pop_per_mun_in_mvgd.merge( |
362
|
|
|
ev_data_muns, on="ags", how="left" |
363
|
|
|
).sort_values(["bus_id", "ags"]) |
364
|
|
|
|
365
|
|
|
# Calc EVs per MVGD by using EV from mun and share of mun's pop |
366
|
|
|
# that is located within MVGD |
367
|
|
|
for tech in ev_data_mvgds[CONFIG_EV.keys()]: |
368
|
|
|
ev_data_mvgds[tech] = ( |
369
|
|
|
round( |
370
|
|
|
ev_data_mvgds[tech] |
371
|
|
|
* ev_data_mvgds["pop_mun_in_mvgd_of_mun_total"] |
372
|
|
|
) |
373
|
|
|
.fillna(0) |
374
|
|
|
.astype("int") |
375
|
|
|
) |
376
|
|
|
|
377
|
|
|
# Set RS7 id for MVGD by using the RS7 id from the mun with the |
378
|
|
|
# highest share in population |
379
|
|
|
rs7_data_mvgds = ( |
380
|
|
|
ev_data_mvgds[["bus_id", "pop_mun_in_mvgd", "rs7_id"]] |
381
|
|
|
.groupby(["bus_id", "rs7_id"]) |
382
|
|
|
.sum() |
383
|
|
|
.sort_values( |
384
|
|
|
["bus_id", "pop_mun_in_mvgd"], ascending=False, na_position="last" |
385
|
|
|
) |
386
|
|
|
.reset_index() |
387
|
|
|
.drop_duplicates("bus_id", keep="first")[["bus_id", "rs7_id"]] |
388
|
|
|
) |
389
|
|
|
|
390
|
|
|
# Join RS7 id and select columns |
391
|
|
|
columns = ["bus_id"] + [_ for _ in CONFIG_EV.keys()] |
392
|
|
|
ev_data_mvgds = ( |
393
|
|
|
ev_data_mvgds[columns] |
394
|
|
|
.groupby("bus_id") |
395
|
|
|
.agg("sum") |
396
|
|
|
.merge(rs7_data_mvgds, on="bus_id", how="left") |
397
|
|
|
) |
398
|
|
|
|
399
|
|
|
return ev_data_mvgds |
400
|
|
|
|
401
|
|
|
|
402
|
|
|
def allocate_evs_numbers(): |
403
|
|
|
"""Allocate electric vehicles to different spatial levels. |
404
|
|
|
|
405
|
|
|
Accocation uses today's vehicles registration data per registration |
406
|
|
|
district from KBA and scales scenario's EV targets (BEV and PHEV) |
407
|
|
|
linearly using population. Furthermore, a RegioStaR7 code (BMVI) is |
408
|
|
|
assigned. |
409
|
|
|
|
410
|
|
|
Levels: |
411
|
|
|
* districts of registration |
412
|
|
|
* municipalities |
413
|
|
|
* grid districts |
414
|
|
|
|
415
|
|
|
Parameters |
416
|
|
|
---------- |
417
|
|
|
|
418
|
|
|
Returns |
419
|
|
|
------- |
420
|
|
|
|
421
|
|
|
""" |
422
|
|
|
# Import |
423
|
|
|
kba_data = read_kba_data() |
424
|
|
|
rs7_data = read_rs7_data() |
425
|
|
|
|
426
|
|
|
for scenario_name in ["eGon2035", "eGon100RE"]: |
427
|
|
|
# Load scenario params |
428
|
|
|
scenario_parameters = get_sector_parameters( |
429
|
|
|
"mobility", scenario=scenario_name |
430
|
|
|
)["motorized_individual_travel"] |
431
|
|
|
|
432
|
|
|
print(f"SCENARIO: {scenario_name}") |
433
|
|
|
|
434
|
|
|
# Go through scenario variations |
435
|
|
|
for ( |
436
|
|
|
scenario_variation_name, |
437
|
|
|
scenario_variation_parameters, |
438
|
|
|
) in scenario_parameters.items(): |
439
|
|
|
|
440
|
|
|
print(f" SCENARIO VARIATION: {scenario_variation_name}") |
441
|
|
|
|
442
|
|
|
# Get EV target |
443
|
|
|
ev_target = scenario_variation_parameters["ev_count"] |
444
|
|
|
|
445
|
|
|
##################################### |
446
|
|
|
# EV data per registration district # |
447
|
|
|
##################################### |
448
|
|
|
print("Calculate EV numbers for registration districts...") |
449
|
|
|
ev_data = calc_evs_per_reg_district( |
450
|
|
|
scenario_variation_parameters, kba_data |
451
|
|
|
) |
452
|
|
|
# Check EV results if not in testmode |
453
|
|
|
if TESTMODE_OFF: |
454
|
|
|
validate_electric_vehicles_numbers( |
455
|
|
|
"EV count in registration districts", ev_data, ev_target |
456
|
|
|
) |
457
|
|
|
# Add scenario columns and write to DB |
458
|
|
|
ev_data["scenario"] = scenario_name |
459
|
|
|
ev_data["scenario_variation"] = scenario_variation_name |
460
|
|
|
ev_data.sort_values( |
461
|
|
|
["scenario", "scenario_variation", "ags_reg_district"], |
462
|
|
|
inplace=True, |
463
|
|
|
) |
464
|
|
|
ev_data.to_sql( |
465
|
|
|
name=EgonEvCountRegistrationDistrict.__table__.name, |
466
|
|
|
schema=EgonEvCountRegistrationDistrict.__table__.schema, |
467
|
|
|
con=db.engine(), |
468
|
|
|
if_exists="append", |
469
|
|
|
index=False, |
470
|
|
|
) |
471
|
|
|
|
472
|
|
|
##################################### |
473
|
|
|
# EV data per municipality # |
474
|
|
|
##################################### |
475
|
|
|
print("Calculate EV numbers for municipalities...") |
476
|
|
|
ev_data_muns = calc_evs_per_municipality(ev_data, rs7_data) |
477
|
|
|
# Check EV results if not in testmode |
478
|
|
|
if TESTMODE_OFF: |
479
|
|
|
validate_electric_vehicles_numbers( |
480
|
|
|
"EV count in municipalities", ev_data_muns, ev_target |
481
|
|
|
) |
482
|
|
|
# Add scenario columns and write to DB |
483
|
|
|
ev_data_muns["scenario"] = scenario_name |
484
|
|
|
ev_data_muns["scenario_variation"] = scenario_variation_name |
485
|
|
|
ev_data_muns.sort_values( |
486
|
|
|
["scenario", "scenario_variation", "ags"], inplace=True |
487
|
|
|
) |
488
|
|
|
ev_data_muns.to_sql( |
489
|
|
|
name=EgonEvCountMunicipality.__table__.name, |
490
|
|
|
schema=EgonEvCountMunicipality.__table__.schema, |
491
|
|
|
con=db.engine(), |
492
|
|
|
if_exists="append", |
493
|
|
|
index=False, |
494
|
|
|
) |
495
|
|
|
|
496
|
|
|
##################################### |
497
|
|
|
# EV data per grid district # |
498
|
|
|
##################################### |
499
|
|
|
print("Calculate EV numbers for grid districts...") |
500
|
|
|
ev_data_mvgds = calc_evs_per_grid_district(ev_data_muns) |
501
|
|
|
# Check EV results if not in testmode |
502
|
|
|
if TESTMODE_OFF: |
503
|
|
|
validate_electric_vehicles_numbers( |
504
|
|
|
"EV count in grid districts", ev_data_mvgds, ev_target |
505
|
|
|
) |
506
|
|
|
# Add scenario columns and write to DB |
507
|
|
|
ev_data_mvgds["scenario"] = scenario_name |
508
|
|
|
ev_data_mvgds["scenario_variation"] = scenario_variation_name |
509
|
|
|
ev_data_mvgds.sort_values( |
510
|
|
|
["scenario", "scenario_variation", "bus_id"], inplace=True |
511
|
|
|
) |
512
|
|
|
ev_data_mvgds.to_sql( |
513
|
|
|
name=EgonEvCountMvGridDistrict.__table__.name, |
514
|
|
|
schema=EgonEvCountMvGridDistrict.__table__.schema, |
515
|
|
|
con=db.engine(), |
516
|
|
|
if_exists="append", |
517
|
|
|
index=False, |
518
|
|
|
) |
519
|
|
|
|
520
|
|
|
|
521
|
|
|
def allocate_evs_to_grid_districts(): |
522
|
|
|
"""Allocate EVs to MV grid districts for all scenarios and scenario |
523
|
|
|
variations. |
524
|
|
|
|
525
|
|
|
Each grid district in |
526
|
|
|
:class:`egon.data.datasets.mv_grid_districts.MvGridDistricts` |
527
|
|
|
is assigned a list of electric vehicles from the EV pool in |
528
|
|
|
:class:`EgonEvPool` based on the RegioStar7 region and the |
529
|
|
|
counts per EV type in :class:`EgonEvCountMvGridDistrict`. |
530
|
|
|
Results are written to :class:`EgonEvMvGridDistrict`. |
531
|
|
|
""" |
532
|
|
|
|
533
|
|
|
def get_random_evs(row): |
534
|
|
|
"""Get random EV sample for EV type and RS7 region""" |
535
|
|
|
return ( |
536
|
|
|
ev_pool.loc[ |
|
|
|
|
537
|
|
|
(ev_pool.rs7_id == row.rs7_id) |
538
|
|
|
& (ev_pool["type"] == row["type"]) |
539
|
|
|
] |
540
|
|
|
.sample(row["count"], replace=True) |
541
|
|
|
.ev_id.to_list() |
542
|
|
|
) |
543
|
|
|
|
544
|
|
|
for scenario_name in ["eGon2035", "eGon100RE"]: |
545
|
|
|
print(f"SCENARIO: {scenario_name}") |
546
|
|
|
|
547
|
|
|
# Load EVs per grid district |
548
|
|
|
print("Loading EV counts for grid districts...") |
549
|
|
|
with db.session_scope() as session: |
550
|
|
|
query = session.query(EgonEvCountMvGridDistrict).filter( |
551
|
|
|
EgonEvCountMvGridDistrict.scenario == scenario_name |
552
|
|
|
) |
553
|
|
|
ev_per_mvgd = pd.read_sql( |
554
|
|
|
query.statement, query.session.bind, index_col=None |
555
|
|
|
) |
556
|
|
|
|
557
|
|
|
# Convert EV types' wide to long format |
558
|
|
|
ev_per_mvgd = pd.melt( |
559
|
|
|
ev_per_mvgd, |
560
|
|
|
id_vars=["scenario", "scenario_variation", "bus_id", "rs7_id"], |
561
|
|
|
value_vars=CONFIG_EV.keys(), |
562
|
|
|
var_name="type", |
563
|
|
|
value_name="count", |
564
|
|
|
) |
565
|
|
|
|
566
|
|
|
# Load EV pool |
567
|
|
|
print(" Loading EV pool...") |
568
|
|
|
with db.session_scope() as session: |
569
|
|
|
query = session.query(EgonEvPool).filter( |
570
|
|
|
EgonEvPool.scenario == scenario_name |
571
|
|
|
) |
572
|
|
|
ev_pool = pd.read_sql( |
573
|
|
|
query.statement, |
574
|
|
|
query.session.bind, |
575
|
|
|
index_col=None, |
576
|
|
|
) |
577
|
|
|
|
578
|
|
|
# Draw EVs randomly for each grid district from pool |
579
|
|
|
print(" Draw EVs from pool for grid districts...") |
580
|
|
|
np.random.seed(RANDOM_SEED) |
581
|
|
|
ev_per_mvgd["egon_ev_pool_ev_id"] = ev_per_mvgd.apply( |
582
|
|
|
get_random_evs, axis=1 |
583
|
|
|
) |
584
|
|
|
ev_per_mvgd.drop(columns=["rs7_id", "type", "count"], inplace=True) |
585
|
|
|
|
586
|
|
|
# EV lists to rows |
587
|
|
|
ev_per_mvgd = ev_per_mvgd.explode("egon_ev_pool_ev_id") |
588
|
|
|
|
589
|
|
|
# Check for empty entries |
590
|
|
|
empty_ev_entries = ev_per_mvgd.egon_ev_pool_ev_id.isna().sum() |
591
|
|
|
if empty_ev_entries > 0: |
592
|
|
|
print("====================================================") |
593
|
|
|
print( |
594
|
|
|
f"WARNING: Found {empty_ev_entries} empty entries " |
595
|
|
|
f"and will remove it:" |
596
|
|
|
) |
597
|
|
|
print(ev_per_mvgd[ev_per_mvgd.egon_ev_pool_ev_id.isna()]) |
598
|
|
|
ev_per_mvgd = ev_per_mvgd[~ev_per_mvgd.egon_ev_pool_ev_id.isna()] |
599
|
|
|
print("====================================================") |
600
|
|
|
|
601
|
|
|
# Write trips to DB |
602
|
|
|
print(" Writing allocated data to DB...") |
603
|
|
|
ev_per_mvgd.to_sql( |
604
|
|
|
name=EgonEvMvGridDistrict.__table__.name, |
605
|
|
|
schema=EgonEvMvGridDistrict.__table__.schema, |
606
|
|
|
con=db.engine(), |
607
|
|
|
if_exists="append", |
608
|
|
|
index=False, |
609
|
|
|
method="multi", |
610
|
|
|
chunksize=10000, |
611
|
|
|
) |
612
|
|
|
|
613
|
|
|
# Check EV result sums for all scenario variations if not in testmode |
614
|
|
|
if TESTMODE_OFF: |
615
|
|
|
print(" Validating results...") |
616
|
|
|
ev_per_mvgd_counts_per_scn = ( |
617
|
|
|
ev_per_mvgd.drop(columns=["bus_id"]) |
618
|
|
|
.groupby(["scenario", "scenario_variation"]) |
619
|
|
|
.count() |
620
|
|
|
) |
621
|
|
|
|
622
|
|
|
for ( |
623
|
|
|
scn, |
624
|
|
|
scn_var, |
625
|
|
|
), ev_actual in ev_per_mvgd_counts_per_scn.iterrows(): |
626
|
|
|
scenario_parameters = get_sector_parameters( |
627
|
|
|
"mobility", scenario=scn |
628
|
|
|
)["motorized_individual_travel"] |
629
|
|
|
|
630
|
|
|
# Get EV target |
631
|
|
|
ev_target = scenario_parameters[scn_var]["ev_count"] |
632
|
|
|
|
633
|
|
|
np.testing.assert_allclose( |
634
|
|
|
int(ev_actual), |
635
|
|
|
ev_target, |
636
|
|
|
rtol=0.0001, |
637
|
|
|
err_msg=f"Dataset on EV numbers allocated to MVGDs " |
638
|
|
|
f"seems to be flawed. " |
639
|
|
|
f"Scenario: [{scn}], " |
640
|
|
|
f"Scenario variation: [{scn_var}].", |
641
|
|
|
) |
642
|
|
|
|