Total Complexity | 88 |
Total Lines | 1871 |
Duplicated Lines | 1.28 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with |
||
2 | individual heat supply. |
||
3 | |||
4 | """ |
||
5 | from pathlib import Path |
||
6 | import os |
||
7 | import random |
||
8 | import time |
||
9 | |||
10 | from airflow.operators.python_operator import PythonOperator |
||
11 | from psycopg2.extensions import AsIs, register_adapter |
||
12 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
13 | from sqlalchemy.ext.declarative import declarative_base |
||
14 | import geopandas as gpd |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import saio |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.district_heating_areas import ( |
||
22 | MapZensusDistrictHeatingAreas, |
||
23 | ) |
||
24 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
25 | calc_cts_building_profiles, |
||
26 | ) |
||
27 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
28 | EgonMapZensusMvgdBuildings, |
||
29 | ) |
||
30 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
31 | write_table_to_postgres, |
||
32 | ) |
||
33 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
34 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
35 | EgonDailyHeatDemandPerClimateZone, |
||
36 | EgonMapZensusClimateZones, |
||
37 | ) |
||
38 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
39 | EgonHeatTimeseries, |
||
40 | ) |
||
41 | |||
42 | # get zensus cells with district heating |
||
43 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
44 | |||
45 | engine = db.engine() |
||
46 | Base = declarative_base() |
||
47 | |||
48 | |||
49 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
50 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
51 | __table_args__ = {"schema": "demand"} |
||
52 | bus_id = Column(Integer, primary_key=True) |
||
53 | scenario = Column(String, primary_key=True) |
||
54 | carrier = Column(String, primary_key=True) |
||
55 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
56 | |||
57 | |||
58 | class EgonHpCapacityBuildings(Base): |
||
59 | __tablename__ = "egon_hp_capacity_buildings" |
||
60 | __table_args__ = {"schema": "demand"} |
||
61 | building_id = Column(Integer, primary_key=True) |
||
62 | scenario = Column(String, primary_key=True) |
||
63 | hp_capacity = Column(REAL) |
||
64 | |||
65 | |||
66 | class HeatPumpsPypsaEurSec(Dataset): |
||
67 | def __init__(self, dependencies): |
||
68 | def dyn_parallel_tasks_pypsa_eur_sec(): |
||
69 | """Dynamically generate tasks |
||
70 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
71 | |||
72 | The number of parallel tasks is defined via parameter |
||
73 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
74 | |||
75 | Returns |
||
76 | ------- |
||
77 | set of airflow.PythonOperators |
||
78 | The tasks. Each element is of |
||
79 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
80 | determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec` |
||
81 | """ |
||
82 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
83 | "parallel_tasks", 1 |
||
84 | ) |
||
85 | |||
86 | tasks = set() |
||
87 | for i in range(parallel_tasks): |
||
88 | tasks.add( |
||
89 | PythonOperator( |
||
90 | task_id=( |
||
91 | f"individual_heating." |
||
92 | f"determine-hp-capacity-pypsa-eur-sec-" |
||
93 | f"mvgd-bulk{i}" |
||
94 | ), |
||
95 | python_callable=split_mvgds_into_bulks, |
||
96 | op_kwargs={ |
||
97 | "n": i, |
||
98 | "max_n": parallel_tasks, |
||
99 | "func": determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec, # noqa: E501 |
||
100 | }, |
||
101 | ) |
||
102 | ) |
||
103 | return tasks |
||
104 | |||
105 | super().__init__( |
||
106 | name="HeatPumpsPypsaEurSec", |
||
107 | version="0.0.2", |
||
108 | dependencies=dependencies, |
||
109 | tasks=(delete_mvgd_ts_100RE, |
||
110 | delete_heat_peak_loads_100RE, |
||
111 | {*dyn_parallel_tasks_pypsa_eur_sec()},), |
||
112 | ) |
||
113 | |||
114 | |||
115 | class HeatPumps2035(Dataset): |
||
116 | def __init__(self, dependencies): |
||
117 | def dyn_parallel_tasks_2035(): |
||
118 | """Dynamically generate tasks |
||
119 | |||
120 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
121 | |||
122 | The number of parallel tasks is defined via parameter |
||
123 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
124 | |||
125 | Returns |
||
126 | ------- |
||
127 | set of airflow.PythonOperators |
||
128 | The tasks. Each element is of |
||
129 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
130 | determine_hp_cap_peak_load_mvgd_ts_2035` |
||
131 | """ |
||
132 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
133 | "parallel_tasks", 1 |
||
134 | ) |
||
135 | tasks = set() |
||
136 | for i in range(parallel_tasks): |
||
137 | tasks.add( |
||
138 | PythonOperator( |
||
139 | task_id=( |
||
140 | "individual_heating." |
||
141 | f"determine-hp-capacity-2035-" |
||
142 | f"mvgd-bulk{i}" |
||
143 | ), |
||
144 | python_callable=split_mvgds_into_bulks, |
||
145 | op_kwargs={ |
||
146 | "n": i, |
||
147 | "max_n": parallel_tasks, |
||
148 | "func": determine_hp_cap_peak_load_mvgd_ts_2035, |
||
149 | }, |
||
150 | ) |
||
151 | ) |
||
152 | return tasks |
||
153 | |||
154 | super().__init__( |
||
155 | name="HeatPumps2035", |
||
156 | version="0.0.2", |
||
157 | dependencies=dependencies, |
||
158 | tasks=( |
||
159 | delete_heat_peak_loads_2035, |
||
160 | delete_hp_capacity_2035, |
||
161 | delete_mvgd_ts_2035, |
||
162 | {*dyn_parallel_tasks_2035()}, |
||
163 | ), |
||
164 | ) |
||
165 | |||
166 | |||
167 | class HeatPumps2050(Dataset): |
||
168 | def __init__(self, dependencies): |
||
169 | super().__init__( |
||
170 | name="HeatPumps2050", |
||
171 | version="0.0.2", |
||
172 | dependencies=dependencies, |
||
173 | tasks=( |
||
174 | delete_hp_capacity_100RE, |
||
175 | determine_hp_cap_buildings_eGon100RE, |
||
176 | ), |
||
177 | ) |
||
178 | |||
179 | |||
180 | class BuildingHeatPeakLoads(Base): |
||
181 | __tablename__ = "egon_building_heat_peak_loads" |
||
182 | __table_args__ = {"schema": "demand"} |
||
183 | |||
184 | building_id = Column(Integer, primary_key=True) |
||
185 | scenario = Column(String, primary_key=True) |
||
186 | sector = Column(String, primary_key=True) |
||
187 | peak_load_in_w = Column(REAL) |
||
188 | |||
189 | |||
190 | def adapt_numpy_float64(numpy_float64): |
||
191 | return AsIs(numpy_float64) |
||
192 | |||
193 | |||
194 | def adapt_numpy_int64(numpy_int64): |
||
195 | return AsIs(numpy_int64) |
||
196 | |||
197 | |||
198 | def timeit(func): |
||
199 | """ |
||
200 | Decorator for measuring function's running time. |
||
201 | """ |
||
202 | |||
203 | def measure_time(*args, **kw): |
||
204 | start_time = time.time() |
||
205 | result = func(*args, **kw) |
||
206 | print( |
||
207 | "Processing time of %s(): %.2f seconds." |
||
208 | % (func.__qualname__, time.time() - start_time) |
||
209 | ) |
||
210 | return result |
||
211 | |||
212 | return measure_time |
||
213 | |||
214 | |||
215 | def cascade_per_technology( |
||
216 | heat_per_mv, |
||
217 | technologies, |
||
218 | scenario, |
||
219 | distribution_level, |
||
220 | max_size_individual_chp=0.05, |
||
221 | ): |
||
222 | |||
223 | """Add plants for individual heat. |
||
224 | Currently only on mv grid district level. |
||
225 | |||
226 | Parameters |
||
227 | ---------- |
||
228 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
229 | MV grid districts including the heat demand |
||
230 | technologies : pandas.DataFrame |
||
231 | List of supply technologies and their parameters |
||
232 | scenario : str |
||
233 | Name of the scenario |
||
234 | max_size_individual_chp : float |
||
235 | Maximum capacity of an individual chp in MW |
||
236 | Returns |
||
237 | ------- |
||
238 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
239 | MV grid district which need additional individual heat supply |
||
240 | technologies : pandas.DataFrame |
||
241 | List of supply technologies and their parameters |
||
242 | append_df : pandas.DataFrame |
||
243 | List of plants per mv grid for the selected technology |
||
244 | |||
245 | """ |
||
246 | sources = config.datasets()["heat_supply"]["sources"] |
||
247 | |||
248 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
249 | |||
250 | # Distribute heat pumps linear to remaining demand. |
||
251 | if tech.index == "heat_pump": |
||
252 | |||
253 | if distribution_level == "federal_state": |
||
254 | # Select target values per federal state |
||
255 | target = db.select_dataframe( |
||
256 | f""" |
||
257 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
258 | FROM {sources['scenario_capacities']['schema']}. |
||
259 | {sources['scenario_capacities']['table']} a |
||
260 | JOIN {sources['federal_states']['schema']}. |
||
261 | {sources['federal_states']['table']} b |
||
262 | ON a.nuts = b.nuts |
||
263 | WHERE scenario_name = '{scenario}' |
||
264 | AND carrier = 'residential_rural_heat_pump' |
||
265 | """, |
||
266 | index_col="state", |
||
267 | ) |
||
268 | |||
269 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
270 | "state" |
||
271 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
272 | |||
273 | append_df = ( |
||
274 | heat_per_mv["share"] |
||
275 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
276 | .reset_index() |
||
277 | ) |
||
278 | else: |
||
279 | # Select target value for Germany |
||
280 | target = db.select_dataframe( |
||
281 | f""" |
||
282 | SELECT SUM(capacity) AS capacity |
||
283 | FROM {sources['scenario_capacities']['schema']}. |
||
284 | {sources['scenario_capacities']['table']} a |
||
285 | WHERE scenario_name = '{scenario}' |
||
286 | AND carrier = 'residential_rural_heat_pump' |
||
287 | """ |
||
288 | ) |
||
289 | |||
290 | heat_per_mv["share"] = ( |
||
291 | heat_per_mv.remaining_demand |
||
292 | / heat_per_mv.remaining_demand.sum() |
||
293 | ) |
||
294 | |||
295 | append_df = ( |
||
296 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
297 | ) |
||
298 | |||
299 | append_df.rename( |
||
300 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
301 | ) |
||
302 | |||
303 | elif tech.index == "gas_boiler": |
||
304 | |||
305 | append_df = pd.DataFrame( |
||
306 | data={ |
||
307 | "capacity": heat_per_mv.remaining_demand.div( |
||
308 | tech.estimated_flh.values[0] |
||
309 | ), |
||
310 | "carrier": "residential_rural_gas_boiler", |
||
311 | "mv_grid_id": heat_per_mv.index, |
||
312 | "scenario": scenario, |
||
313 | } |
||
314 | ) |
||
315 | |||
316 | if append_df.size > 0: |
||
|
|||
317 | append_df["carrier"] = tech.index[0] |
||
318 | heat_per_mv.loc[ |
||
319 | append_df.mv_grid_id, "remaining_demand" |
||
320 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
321 | tech.estimated_flh.values[0] |
||
322 | ) |
||
323 | |||
324 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
325 | |||
326 | technologies = technologies.drop(tech.index) |
||
327 | |||
328 | return heat_per_mv, technologies, append_df |
||
329 | |||
330 | |||
331 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
332 | """Assigns supply strategy for individual heating in four steps. |
||
333 | |||
334 | 1.) all small scale CHP are connected. |
||
335 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
336 | are attached. This is not implemented yet, since individual |
||
337 | solar thermal plants are not considered in eGon2035 scenario. |
||
338 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
339 | 4.) The last option are individual gas boilers. |
||
340 | |||
341 | Parameters |
||
342 | ---------- |
||
343 | scenario : str |
||
344 | Name of scenario |
||
345 | plotting : bool, optional |
||
346 | Choose if individual heating supply is plotted. The default is True. |
||
347 | |||
348 | Returns |
||
349 | ------- |
||
350 | resulting_capacities : pandas.DataFrame |
||
351 | List of plants per mv grid |
||
352 | |||
353 | """ |
||
354 | |||
355 | sources = config.datasets()["heat_supply"]["sources"] |
||
356 | |||
357 | # Select residential heat demand per mv grid district and federal state |
||
358 | heat_per_mv = db.select_geodataframe( |
||
359 | f""" |
||
360 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
361 | c.vg250_lan as state, d.geom |
||
362 | FROM {sources['heat_demand']['schema']}. |
||
363 | {sources['heat_demand']['table']} a |
||
364 | JOIN {sources['map_zensus_grid']['schema']}. |
||
365 | {sources['map_zensus_grid']['table']} b |
||
366 | ON a.zensus_population_id = b.zensus_population_id |
||
367 | JOIN {sources['map_vg250_grid']['schema']}. |
||
368 | {sources['map_vg250_grid']['table']} c |
||
369 | ON b.bus_id = c.bus_id |
||
370 | JOIN {sources['mv_grids']['schema']}. |
||
371 | {sources['mv_grids']['table']} d |
||
372 | ON d.bus_id = c.bus_id |
||
373 | WHERE scenario = '{scenario}' |
||
374 | AND a.zensus_population_id NOT IN ( |
||
375 | SELECT zensus_population_id |
||
376 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
377 | WHERE scenario = '{scenario}') |
||
378 | GROUP BY d.bus_id, vg250_lan, geom |
||
379 | """, |
||
380 | index_col="bus_id", |
||
381 | ) |
||
382 | |||
383 | # Store geometry of mv grid |
||
384 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
385 | |||
386 | # Initalize Dataframe for results |
||
387 | resulting_capacities = pd.DataFrame( |
||
388 | columns=["mv_grid_id", "carrier", "capacity"] |
||
389 | ) |
||
390 | |||
391 | # Set technology data according to |
||
392 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
393 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
394 | technologies = pd.DataFrame( |
||
395 | index=["heat_pump", "gas_boiler"], |
||
396 | columns=["estimated_flh", "priority"], |
||
397 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
398 | ) |
||
399 | |||
400 | # In the beginning, the remaining demand equals demand |
||
401 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
402 | |||
403 | # Connect new technologies, if there is still heat demand left |
||
404 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
405 | # Attach new supply technology |
||
406 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
407 | heat_per_mv, technologies, scenario, distribution_level |
||
408 | ) |
||
409 | # Collect resulting capacities |
||
410 | resulting_capacities = resulting_capacities.append( |
||
411 | append_df, ignore_index=True |
||
412 | ) |
||
413 | |||
414 | if plotting: |
||
415 | plot_heat_supply(resulting_capacities) |
||
416 | |||
417 | return gpd.GeoDataFrame( |
||
418 | resulting_capacities, |
||
419 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
420 | ) |
||
421 | |||
422 | |||
423 | def get_peta_demand(mvgd, scenario): |
||
424 | """ |
||
425 | Retrieve annual peta heat demand for residential buildings for either |
||
426 | eGon2035 or eGon100RE scenario. |
||
427 | |||
428 | Parameters |
||
429 | ---------- |
||
430 | mvgd : int |
||
431 | MV grid ID. |
||
432 | scenario : str |
||
433 | Possible options are eGon2035 or eGon100RE |
||
434 | |||
435 | Returns |
||
436 | ------- |
||
437 | df_peta_demand : pd.DataFrame |
||
438 | Annual residential heat demand per building and scenario. Columns of |
||
439 | the dataframe are zensus_population_id and demand. |
||
440 | |||
441 | """ |
||
442 | |||
443 | with db.session_scope() as session: |
||
444 | query = ( |
||
445 | session.query( |
||
446 | MapZensusGridDistricts.zensus_population_id, |
||
447 | EgonPetaHeat.demand, |
||
448 | ) |
||
449 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
450 | .filter( |
||
451 | MapZensusGridDistricts.zensus_population_id |
||
452 | == EgonPetaHeat.zensus_population_id |
||
453 | ) |
||
454 | .filter( |
||
455 | EgonPetaHeat.sector == "residential", |
||
456 | EgonPetaHeat.scenario == scenario, |
||
457 | ) |
||
458 | ) |
||
459 | |||
460 | df_peta_demand = pd.read_sql( |
||
461 | query.statement, query.session.bind, index_col=None |
||
462 | ) |
||
463 | |||
464 | return df_peta_demand |
||
465 | |||
466 | |||
467 | def get_residential_heat_profile_ids(mvgd): |
||
468 | """ |
||
469 | Retrieve 365 daily heat profiles ids per residential building and selected |
||
470 | mvgd. |
||
471 | |||
472 | Parameters |
||
473 | ---------- |
||
474 | mvgd : int |
||
475 | ID of MVGD |
||
476 | |||
477 | Returns |
||
478 | ------- |
||
479 | df_profiles_ids : pd.DataFrame |
||
480 | Residential daily heat profile ID's per building. Columns of the |
||
481 | dataframe are zensus_population_id, building_id, |
||
482 | selected_idp_profiles, buildings and day_of_year. |
||
483 | |||
484 | """ |
||
485 | with db.session_scope() as session: |
||
486 | query = ( |
||
487 | session.query( |
||
488 | MapZensusGridDistricts.zensus_population_id, |
||
489 | EgonHeatTimeseries.building_id, |
||
490 | EgonHeatTimeseries.selected_idp_profiles, |
||
491 | ) |
||
492 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
493 | .filter( |
||
494 | MapZensusGridDistricts.zensus_population_id |
||
495 | == EgonHeatTimeseries.zensus_population_id |
||
496 | ) |
||
497 | ) |
||
498 | |||
499 | df_profiles_ids = pd.read_sql( |
||
500 | query.statement, query.session.bind, index_col=None |
||
501 | ) |
||
502 | # Add building count per cell |
||
503 | df_profiles_ids = pd.merge( |
||
504 | left=df_profiles_ids, |
||
505 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
506 | .count() |
||
507 | .rename("buildings"), |
||
508 | left_on="zensus_population_id", |
||
509 | right_index=True, |
||
510 | ) |
||
511 | |||
512 | # unnest array of ids per building |
||
513 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
514 | # add day of year column by order of list |
||
515 | df_profiles_ids["day_of_year"] = ( |
||
516 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
517 | ) |
||
518 | return df_profiles_ids |
||
519 | |||
520 | |||
521 | def get_daily_profiles(profile_ids): |
||
522 | """ |
||
523 | Parameters |
||
524 | ---------- |
||
525 | profile_ids : list(int) |
||
526 | daily heat profile ID's |
||
527 | |||
528 | Returns |
||
529 | ------- |
||
530 | df_profiles : pd.DataFrame |
||
531 | Residential daily heat profiles. Columns of the dataframe are idp, |
||
532 | house, temperature_class and hour. |
||
533 | |||
534 | """ |
||
535 | |||
536 | saio.register_schema("demand", db.engine()) |
||
537 | from saio.demand import egon_heat_idp_pool |
||
538 | |||
539 | with db.session_scope() as session: |
||
540 | query = session.query(egon_heat_idp_pool).filter( |
||
541 | egon_heat_idp_pool.index.in_(profile_ids) |
||
542 | ) |
||
543 | |||
544 | df_profiles = pd.read_sql( |
||
545 | query.statement, query.session.bind, index_col="index" |
||
546 | ) |
||
547 | |||
548 | # unnest array of profile values per id |
||
549 | df_profiles = df_profiles.explode("idp") |
||
550 | # Add column for hour of day |
||
551 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
552 | |||
553 | return df_profiles |
||
554 | |||
555 | |||
556 | def get_daily_demand_share(mvgd): |
||
557 | """per census cell |
||
558 | Parameters |
||
559 | ---------- |
||
560 | mvgd : int |
||
561 | MVGD id |
||
562 | |||
563 | Returns |
||
564 | ------- |
||
565 | df_daily_demand_share : pd.DataFrame |
||
566 | Daily annual demand share per cencus cell. Columns of the dataframe |
||
567 | are zensus_population_id, day_of_year and daily_demand_share. |
||
568 | |||
569 | """ |
||
570 | |||
571 | with db.session_scope() as session: |
||
572 | query = session.query( |
||
573 | MapZensusGridDistricts.zensus_population_id, |
||
574 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
575 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
576 | ).filter( |
||
577 | EgonMapZensusClimateZones.climate_zone |
||
578 | == EgonDailyHeatDemandPerClimateZone.climate_zone, |
||
579 | MapZensusGridDistricts.zensus_population_id |
||
580 | == EgonMapZensusClimateZones.zensus_population_id, |
||
581 | MapZensusGridDistricts.bus_id == mvgd, |
||
582 | ) |
||
583 | |||
584 | df_daily_demand_share = pd.read_sql( |
||
585 | query.statement, query.session.bind, index_col=None |
||
586 | ) |
||
587 | return df_daily_demand_share |
||
588 | |||
589 | |||
590 | def calc_residential_heat_profiles_per_mvgd(mvgd, scenario): |
||
591 | """ |
||
592 | Gets residential heat profiles per building in MV grid for either eGon2035 |
||
593 | or eGon100RE scenario. |
||
594 | |||
595 | Parameters |
||
596 | ---------- |
||
597 | mvgd : int |
||
598 | MV grid ID. |
||
599 | scenario : str |
||
600 | Possible options are eGon2035 or eGon100RE. |
||
601 | |||
602 | Returns |
||
603 | -------- |
||
604 | pd.DataFrame |
||
605 | Heat demand profiles of buildings. Columns are: |
||
606 | * zensus_population_id : int |
||
607 | Zensus cell ID building is in. |
||
608 | * building_id : int |
||
609 | ID of building. |
||
610 | * day_of_year : int |
||
611 | Day of the year (1 - 365). |
||
612 | * hour : int |
||
613 | Hour of the day (1 - 24). |
||
614 | * demand_ts : float |
||
615 | Building's residential heat demand in MW, for specified hour |
||
616 | of the year (specified through columns `day_of_year` and |
||
617 | `hour`). |
||
618 | """ |
||
619 | |||
620 | columns = [ |
||
621 | "zensus_population_id", |
||
622 | "building_id", |
||
623 | "day_of_year", |
||
624 | "hour", |
||
625 | "demand_ts", |
||
626 | ] |
||
627 | |||
628 | df_peta_demand = get_peta_demand(mvgd, scenario) |
||
629 | |||
630 | # TODO maybe return empty dataframe |
||
631 | if df_peta_demand.empty: |
||
632 | logger.info(f"No demand for MVGD: {mvgd}") |
||
633 | return pd.DataFrame(columns=columns) |
||
634 | |||
635 | df_profiles_ids = get_residential_heat_profile_ids(mvgd) |
||
636 | |||
637 | if df_profiles_ids.empty: |
||
638 | logger.info(f"No profiles for MVGD: {mvgd}") |
||
639 | return pd.DataFrame(columns=columns) |
||
640 | |||
641 | df_profiles = get_daily_profiles( |
||
642 | df_profiles_ids["selected_idp_profiles"].unique() |
||
643 | ) |
||
644 | |||
645 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
646 | |||
647 | # Merge profile ids to peta demand by zensus_population_id |
||
648 | df_profile_merge = pd.merge( |
||
649 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
650 | ) |
||
651 | |||
652 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
653 | df_profile_merge = pd.merge( |
||
654 | left=df_profile_merge, |
||
655 | right=df_daily_demand_share, |
||
656 | on=["zensus_population_id", "day_of_year"], |
||
657 | ) |
||
658 | |||
659 | # Merge daily profiles by profile id |
||
660 | df_profile_merge = pd.merge( |
||
661 | left=df_profile_merge, |
||
662 | right=df_profiles[["idp", "hour"]], |
||
663 | left_on="selected_idp_profiles", |
||
664 | right_index=True, |
||
665 | ) |
||
666 | |||
667 | # Scale profiles |
||
668 | df_profile_merge["demand_ts"] = ( |
||
669 | df_profile_merge["idp"] |
||
670 | .mul(df_profile_merge["daily_demand_share"]) |
||
671 | .mul(df_profile_merge["demand"]) |
||
672 | .div(df_profile_merge["buildings"]) |
||
673 | ) |
||
674 | |||
675 | return df_profile_merge.loc[:, columns] |
||
676 | |||
677 | |||
678 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
679 | |||
680 | from matplotlib import pyplot as plt |
||
681 | |||
682 | mv_grids = db.select_geodataframe( |
||
683 | """ |
||
684 | SELECT * FROM grid.egon_mv_grid_district |
||
685 | """, |
||
686 | index_col="bus_id", |
||
687 | ) |
||
688 | |||
689 | for c in ["CHP", "heat_pump"]: |
||
690 | mv_grids[c] = ( |
||
691 | resulting_capacities[resulting_capacities.carrier == c] |
||
692 | .set_index("mv_grid_id") |
||
693 | .capacity |
||
694 | ) |
||
695 | |||
696 | fig, ax = plt.subplots(1, 1) |
||
697 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
698 | mv_grids.plot( |
||
699 | ax=ax, |
||
700 | column=c, |
||
701 | cmap="magma_r", |
||
702 | legend=True, |
||
703 | legend_kwds={ |
||
704 | "label": f"Installed {c} in MW", |
||
705 | "orientation": "vertical", |
||
706 | }, |
||
707 | ) |
||
708 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
709 | |||
710 | |||
711 | def get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
712 | scenario, mv_grid_id |
||
713 | ): |
||
714 | """ |
||
715 | Returns zensus cell IDs with decentral heating systems in given MV grid. |
||
716 | |||
717 | As cells with district heating differ between scenarios, this is also |
||
718 | depending on the scenario. |
||
719 | |||
720 | Parameters |
||
721 | ----------- |
||
722 | scenario : str |
||
723 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
724 | mv_grid_id : int |
||
725 | ID of MV grid. |
||
726 | |||
727 | Returns |
||
728 | -------- |
||
729 | pd.Index(int) |
||
730 | Zensus cell IDs (as int) of buildings with decentral heating systems in |
||
731 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
732 | used in a query. |
||
733 | |||
734 | """ |
||
735 | |||
736 | # get zensus cells in grid |
||
737 | zensus_population_ids = db.select_dataframe( |
||
738 | f""" |
||
739 | SELECT zensus_population_id |
||
740 | FROM boundaries.egon_map_zensus_grid_districts |
||
741 | WHERE bus_id = {mv_grid_id} |
||
742 | """, |
||
743 | index_col=None, |
||
744 | ).zensus_population_id.values |
||
745 | |||
746 | # maybe use adapter |
||
747 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
748 | # reason throw an error when used in a query) |
||
749 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
750 | |||
751 | # get zensus cells with district heating |
||
752 | with db.session_scope() as session: |
||
753 | query = session.query( |
||
754 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
755 | ).filter( |
||
756 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
757 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
758 | zensus_population_ids |
||
759 | ), |
||
760 | ) |
||
761 | |||
762 | cells_with_dh = pd.read_sql( |
||
763 | query.statement, query.session.bind, index_col=None |
||
764 | ).zensus_population_id.values |
||
765 | |||
766 | # remove zensus cells with district heating |
||
767 | zensus_population_ids = zensus_population_ids.drop( |
||
768 | cells_with_dh, errors="ignore" |
||
769 | ) |
||
770 | return pd.Index(zensus_population_ids) |
||
771 | |||
772 | |||
773 | def get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
774 | scenario, mv_grid_id |
||
775 | ): |
||
776 | """ |
||
777 | Returns building IDs of buildings with decentral residential heat demand in |
||
778 | given MV grid. |
||
779 | |||
780 | As cells with district heating differ between scenarios, this is also |
||
781 | depending on the scenario. |
||
782 | |||
783 | Parameters |
||
784 | ----------- |
||
785 | scenario : str |
||
786 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
787 | mv_grid_id : int |
||
788 | ID of MV grid. |
||
789 | |||
790 | Returns |
||
791 | -------- |
||
792 | pd.Index(int) |
||
793 | Building IDs (as int) of buildings with decentral heating system in |
||
794 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
795 | used in a query. |
||
796 | |||
797 | """ |
||
798 | # get zensus cells with decentral heating |
||
799 | zensus_population_ids = ( |
||
800 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
801 | scenario, mv_grid_id |
||
802 | ) |
||
803 | ) |
||
804 | |||
805 | # get buildings with decentral heat demand |
||
806 | saio.register_schema("demand", engine) |
||
807 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
808 | |||
809 | with db.session_scope() as session: |
||
810 | query = session.query( |
||
811 | egon_heat_timeseries_selected_profiles.building_id, |
||
812 | ).filter( |
||
813 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
814 | zensus_population_ids |
||
815 | ) |
||
816 | ) |
||
817 | |||
818 | buildings_with_heat_demand = pd.read_sql( |
||
819 | query.statement, query.session.bind, index_col=None |
||
820 | ).building_id.values |
||
821 | |||
822 | return pd.Index(buildings_with_heat_demand) |
||
823 | |||
824 | |||
825 | def get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
826 | scenario, mv_grid_id |
||
827 | ): |
||
828 | """ |
||
829 | Returns building IDs of buildings with decentral CTS heat demand in |
||
830 | given MV grid. |
||
831 | |||
832 | As cells with district heating differ between scenarios, this is also |
||
833 | depending on the scenario. |
||
834 | |||
835 | Parameters |
||
836 | ----------- |
||
837 | scenario : str |
||
838 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
839 | mv_grid_id : int |
||
840 | ID of MV grid. |
||
841 | |||
842 | Returns |
||
843 | -------- |
||
844 | pd.Index(int) |
||
845 | Building IDs (as int) of buildings with decentral heating system in |
||
846 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
847 | used in a query. |
||
848 | |||
849 | """ |
||
850 | |||
851 | # get zensus cells with decentral heating |
||
852 | zensus_population_ids = ( |
||
853 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
854 | scenario, mv_grid_id |
||
855 | ) |
||
856 | ) |
||
857 | |||
858 | # get buildings with decentral heat demand |
||
859 | with db.session_scope() as session: |
||
860 | query = session.query(EgonMapZensusMvgdBuildings.building_id).filter( |
||
861 | EgonMapZensusMvgdBuildings.sector == "cts", |
||
862 | EgonMapZensusMvgdBuildings.zensus_population_id.in_( |
||
863 | zensus_population_ids |
||
864 | ), |
||
865 | ) |
||
866 | |||
867 | buildings_with_heat_demand = pd.read_sql( |
||
868 | query.statement, query.session.bind, index_col=None |
||
869 | ).building_id.values |
||
870 | |||
871 | return pd.Index(buildings_with_heat_demand) |
||
872 | |||
873 | |||
874 | def get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd, scenario): |
||
875 | """ |
||
876 | Returns building IDs of buildings with decentral heat demand in |
||
877 | given MV grid. |
||
878 | |||
879 | As cells with district heating differ between scenarios, this is also |
||
880 | depending on the scenario. CTS and residential have to be retrieved |
||
881 | seperatly as some residential buildings only have electricity but no |
||
882 | heat demand. This does not occure in CTS. |
||
883 | |||
884 | Parameters |
||
885 | ----------- |
||
886 | mvgd : int |
||
887 | ID of MV grid. |
||
888 | scenario : str |
||
889 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
890 | |||
891 | Returns |
||
892 | -------- |
||
893 | pd.Index(int) |
||
894 | Building IDs (as int) of buildings with decentral heating system in |
||
895 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
896 | used in a query. |
||
897 | |||
898 | """ |
||
899 | # get residential buildings with decentral heating systems |
||
900 | buildings_decentral_heating_res = ( |
||
901 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
902 | scenario, mvgd |
||
903 | ) |
||
904 | ) |
||
905 | |||
906 | # get CTS buildings with decentral heating systems |
||
907 | buildings_decentral_heating_cts = ( |
||
908 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mvgd) |
||
909 | ) |
||
910 | |||
911 | # merge residential and CTS buildings |
||
912 | buildings_decentral_heating = buildings_decentral_heating_res.append( |
||
913 | buildings_decentral_heating_cts |
||
914 | ).unique() |
||
915 | |||
916 | return buildings_decentral_heating |
||
917 | |||
918 | |||
919 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
920 | """ |
||
921 | Returns total heat pump capacity per grid that was previously defined |
||
922 | (by NEP or pypsa-eur-sec). |
||
923 | |||
924 | Parameters |
||
925 | ----------- |
||
926 | scenario : str |
||
927 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
928 | mv_grid_id : int |
||
929 | ID of MV grid. |
||
930 | |||
931 | Returns |
||
932 | -------- |
||
933 | float |
||
934 | Total heat pump capacity in MW in given MV grid. |
||
935 | |||
936 | """ |
||
937 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
938 | |||
939 | with db.session_scope() as session: |
||
940 | query = ( |
||
941 | session.query( |
||
942 | EgonIndividualHeatingSupply.mv_grid_id, |
||
943 | EgonIndividualHeatingSupply.capacity, |
||
944 | ) |
||
945 | .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
946 | .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
947 | .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
948 | ) |
||
949 | |||
950 | hp_cap_mv_grid = pd.read_sql( |
||
951 | query.statement, query.session.bind, index_col="mv_grid_id" |
||
952 | ) |
||
953 | if hp_cap_mv_grid.empty: |
||
954 | return 0.0 |
||
955 | else: |
||
956 | return hp_cap_mv_grid.capacity.values[0] |
||
957 | |||
958 | |||
959 | def get_heat_peak_demand_per_building(scenario, building_ids): |
||
960 | """""" |
||
961 | |||
962 | with db.session_scope() as session: |
||
963 | query = ( |
||
964 | session.query( |
||
965 | BuildingHeatPeakLoads.building_id, |
||
966 | BuildingHeatPeakLoads.peak_load_in_w, |
||
967 | ) |
||
968 | .filter(BuildingHeatPeakLoads.scenario == scenario) |
||
969 | .filter(BuildingHeatPeakLoads.building_id.in_(building_ids)) |
||
970 | ) |
||
971 | |||
972 | df_heat_peak_demand = pd.read_sql( |
||
973 | query.statement, query.session.bind, index_col=None |
||
974 | ) |
||
975 | |||
976 | # TODO remove check |
||
977 | if df_heat_peak_demand.duplicated("building_id").any(): |
||
978 | raise ValueError("Duplicate building_id") |
||
979 | |||
980 | # convert to series and from W to MW |
||
981 | df_heat_peak_demand = ( |
||
982 | df_heat_peak_demand.set_index("building_id").loc[:, "peak_load_in_w"] |
||
983 | * 1e6 |
||
984 | ) |
||
985 | return df_heat_peak_demand |
||
986 | |||
987 | |||
988 | def determine_minimum_hp_capacity_per_building( |
||
989 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
990 | ): |
||
991 | """ |
||
992 | Determines minimum required heat pump capacity. |
||
993 | |||
994 | Parameters |
||
995 | ---------- |
||
996 | peak_heat_demand : pd.Series |
||
997 | Series with peak heat demand per building in MW. Index contains the |
||
998 | building ID. |
||
999 | flexibility_factor : float |
||
1000 | Factor to overdimension the heat pump to allow for some flexible |
||
1001 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
1002 | is used, to take into account |
||
1003 | |||
1004 | Returns |
||
1005 | ------- |
||
1006 | pd.Series |
||
1007 | Pandas series with minimum required heat pump capacity per building in |
||
1008 | MW. |
||
1009 | |||
1010 | """ |
||
1011 | return peak_heat_demand * flexibility_factor / cop |
||
1012 | |||
1013 | |||
1014 | def determine_buildings_with_hp_in_mv_grid( |
||
1015 | hp_cap_mv_grid, min_hp_cap_per_building |
||
1016 | ): |
||
1017 | """ |
||
1018 | Distributes given total heat pump capacity to buildings based on their peak |
||
1019 | heat demand. |
||
1020 | |||
1021 | Parameters |
||
1022 | ----------- |
||
1023 | hp_cap_mv_grid : float |
||
1024 | Total heat pump capacity in MW in given MV grid. |
||
1025 | min_hp_cap_per_building : pd.Series |
||
1026 | Pandas series with minimum required heat pump capacity per building |
||
1027 | in MW. |
||
1028 | |||
1029 | Returns |
||
1030 | ------- |
||
1031 | pd.Index(int) |
||
1032 | Building IDs (as int) of buildings to get heat demand time series for. |
||
1033 | |||
1034 | """ |
||
1035 | building_ids = min_hp_cap_per_building.index |
||
1036 | |||
1037 | # get buildings with PV to give them a higher priority when selecting |
||
1038 | # buildings a heat pump will be allocated to |
||
1039 | saio.register_schema("supply", engine) |
||
1040 | from saio.supply import egon_power_plants_pv_roof_building |
||
1041 | |||
1042 | with db.session_scope() as session: |
||
1043 | query = session.query( |
||
1044 | egon_power_plants_pv_roof_building.building_id |
||
1045 | ).filter( |
||
1046 | egon_power_plants_pv_roof_building.building_id.in_(building_ids), |
||
1047 | egon_power_plants_pv_roof_building.scenario == "eGon2035", |
||
1048 | ) |
||
1049 | |||
1050 | buildings_with_pv = pd.read_sql( |
||
1051 | query.statement, query.session.bind, index_col=None |
||
1052 | ).building_id.values |
||
1053 | # set different weights for buildings with PV and without PV |
||
1054 | weight_with_pv = 1.5 |
||
1055 | weight_without_pv = 1.0 |
||
1056 | weights = pd.concat( |
||
1057 | [ |
||
1058 | pd.DataFrame( |
||
1059 | {"weight": weight_without_pv}, |
||
1060 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
1061 | ), |
||
1062 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
1063 | ] |
||
1064 | ) |
||
1065 | # normalise weights (probability needs to add up to 1) |
||
1066 | weights.weight = weights.weight / weights.weight.sum() |
||
1067 | |||
1068 | # get random order at which buildings are chosen |
||
1069 | np.random.seed(db.credentials()["--random-seed"]) |
||
1070 | buildings_with_hp_order = np.random.choice( |
||
1071 | weights.index, |
||
1072 | size=len(weights), |
||
1073 | replace=False, |
||
1074 | p=weights.weight.values, |
||
1075 | ) |
||
1076 | |||
1077 | # select buildings until HP capacity in MV grid is reached (some rest |
||
1078 | # capacity will remain) |
||
1079 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
1080 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
1081 | |||
1082 | # choose random heat pumps until remaining heat pumps are larger than |
||
1083 | # remaining heat pump capacity |
||
1084 | remaining_hp_cap = ( |
||
1085 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1086 | ) |
||
1087 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1088 | building_ids.drop(buildings_with_hp) |
||
1089 | ] |
||
1090 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1091 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1092 | ].index |
||
1093 | while len(possible_buildings) > 0: |
||
1094 | random.seed(db.credentials()["--random-seed"]) |
||
1095 | new_hp_building = random.choice(possible_buildings) |
||
1096 | # add new building to building with HP |
||
1097 | buildings_with_hp = buildings_with_hp.append( |
||
1098 | pd.Index([new_hp_building]) |
||
1099 | ) |
||
1100 | # determine if there are still possible buildings |
||
1101 | remaining_hp_cap = ( |
||
1102 | hp_cap_mv_grid |
||
1103 | - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1104 | ) |
||
1105 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1106 | building_ids.drop(buildings_with_hp) |
||
1107 | ] |
||
1108 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1109 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1110 | ].index |
||
1111 | |||
1112 | return buildings_with_hp |
||
1113 | |||
1114 | |||
1115 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
1116 | """ |
||
1117 | Desaggregates the required total heat pump capacity to buildings. |
||
1118 | |||
1119 | All buildings are previously assigned a minimum required heat pump |
||
1120 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
1121 | are assigned. |
||
1122 | |||
1123 | Parameters |
||
1124 | ------------ |
||
1125 | min_hp_cap_per_building : pd.Series |
||
1126 | Pandas series with minimum required heat pump capacity per building |
||
1127 | in MW. |
||
1128 | hp_cap_mv_grid : float |
||
1129 | Total heat pump capacity in MW in given MV grid. |
||
1130 | |||
1131 | Returns |
||
1132 | -------- |
||
1133 | pd.Series |
||
1134 | Pandas series with heat pump capacity per building in MW. |
||
1135 | |||
1136 | """ |
||
1137 | # distribute remaining capacity to all buildings with HP depending on |
||
1138 | # installed HP capacity |
||
1139 | |||
1140 | allocated_cap = min_hp_cap_per_building.sum() |
||
1141 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
1142 | |||
1143 | fac = remaining_cap / allocated_cap |
||
1144 | hp_cap_per_building = ( |
||
1145 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
1146 | ) |
||
1147 | hp_cap_per_building.index.name = "building_id" |
||
1148 | |||
1149 | return hp_cap_per_building |
||
1150 | |||
1151 | |||
1152 | def determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1153 | peak_heat_demand, building_ids |
||
1154 | ): |
||
1155 | """ |
||
1156 | Determines minimum required HP capacity in MV grid in MW as input for |
||
1157 | pypsa-eur-sec. |
||
1158 | |||
1159 | Parameters |
||
1160 | ---------- |
||
1161 | peak_heat_demand : pd.Series |
||
1162 | Series with peak heat demand per building in MW. Index contains the |
||
1163 | building ID. |
||
1164 | building_ids : pd.Index(int) |
||
1165 | Building IDs (as int) of buildings with decentral heating system in |
||
1166 | given MV grid. |
||
1167 | |||
1168 | Returns |
||
1169 | -------- |
||
1170 | float |
||
1171 | Minimum required HP capacity in MV grid in MW. |
||
1172 | |||
1173 | """ |
||
1174 | if len(building_ids) > 0: |
||
1175 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1176 | # determine minimum required heat pump capacity per building |
||
1177 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1178 | peak_heat_demand |
||
1179 | ) |
||
1180 | return min_hp_cap_buildings.sum() |
||
1181 | else: |
||
1182 | return 0.0 |
||
1183 | |||
1184 | |||
1185 | def determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1186 | mv_grid_id, peak_heat_demand, building_ids |
||
1187 | ): |
||
1188 | """ |
||
1189 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
1190 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well |
||
1191 | as their respective HP capacity in MW. |
||
1192 | |||
1193 | Parameters |
||
1194 | ----------- |
||
1195 | mv_grid_id : int |
||
1196 | ID of MV grid. |
||
1197 | peak_heat_demand : pd.Series |
||
1198 | Series with peak heat demand per building in MW. Index contains the |
||
1199 | building ID. |
||
1200 | building_ids : pd.Index(int) |
||
1201 | Building IDs (as int) of buildings with decentral heating system in |
||
1202 | given MV grid. |
||
1203 | |||
1204 | """ |
||
1205 | |||
1206 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1207 | "eGon2035", mv_grid_id |
||
1208 | ) |
||
1209 | |||
1210 | if len(building_ids) > 0 and hp_cap_grid > 0.0: |
||
1211 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1212 | |||
1213 | # determine minimum required heat pump capacity per building |
||
1214 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1215 | peak_heat_demand |
||
1216 | ) |
||
1217 | |||
1218 | # select buildings that will have a heat pump |
||
1219 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
1220 | hp_cap_grid, min_hp_cap_buildings |
||
1221 | ) |
||
1222 | |||
1223 | # distribute total heat pump capacity to all buildings with HP |
||
1224 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1225 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
1226 | ) |
||
1227 | |||
1228 | return hp_cap_per_building.rename("hp_capacity") |
||
1229 | |||
1230 | else: |
||
1231 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
1232 | |||
1233 | |||
1234 | def determine_hp_cap_buildings_eGon100RE_per_mvgd(mv_grid_id): |
||
1235 | """ |
||
1236 | Determines HP capacity per building in eGon100RE scenario. |
||
1237 | |||
1238 | In eGon100RE scenario all buildings without district heating get a heat |
||
1239 | pump. |
||
1240 | |||
1241 | Returns |
||
1242 | -------- |
||
1243 | pd.Series |
||
1244 | Pandas series with heat pump capacity per building in MW. |
||
1245 | |||
1246 | """ |
||
1247 | |||
1248 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1249 | "eGon100RE", mv_grid_id |
||
1250 | ) |
||
1251 | |||
1252 | if hp_cap_grid > 0.0: |
||
1253 | |||
1254 | # get buildings with decentral heating systems |
||
1255 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1256 | mv_grid_id, scenario="eGon100RE" |
||
1257 | ) |
||
1258 | |||
1259 | logger.info(f"MVGD={mv_grid_id} | Get peak loads from DB") |
||
1260 | df_peak_heat_demand = get_heat_peak_demand_per_building( |
||
1261 | "eGon100RE", building_ids |
||
1262 | ) |
||
1263 | |||
1264 | logger.info(f"MVGD={mv_grid_id} | Determine HP capacities.") |
||
1265 | # determine minimum required heat pump capacity per building |
||
1266 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1267 | df_peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
1268 | ) |
||
1269 | |||
1270 | logger.info(f"MVGD={mv_grid_id} | Desaggregate HP capacities.") |
||
1271 | # distribute total heat pump capacity to all buildings with HP |
||
1272 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1273 | min_hp_cap_buildings, hp_cap_grid |
||
1274 | ) |
||
1275 | |||
1276 | return hp_cap_per_building.rename("hp_capacity") |
||
1277 | else: |
||
1278 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
1279 | |||
1280 | |||
1281 | def determine_hp_cap_buildings_eGon100RE(): |
||
1282 | """ |
||
1283 | Main function to determine HP capacity per building in eGon100RE scenario. |
||
1284 | |||
1285 | """ |
||
1286 | |||
1287 | # ========== Register np datatypes with SQLA ========== |
||
1288 | register_adapter(np.float64, adapt_numpy_float64) |
||
1289 | register_adapter(np.int64, adapt_numpy_int64) |
||
1290 | # ===================================================== |
||
1291 | |||
1292 | with db.session_scope() as session: |
||
1293 | query = ( |
||
1294 | session.query( |
||
1295 | MapZensusGridDistricts.bus_id, |
||
1296 | ) |
||
1297 | .filter( |
||
1298 | MapZensusGridDistricts.zensus_population_id |
||
1299 | == EgonPetaHeat.zensus_population_id |
||
1300 | ) |
||
1301 | .distinct(MapZensusGridDistricts.bus_id) |
||
1302 | ) |
||
1303 | mvgd_ids = pd.read_sql( |
||
1304 | query.statement, query.session.bind, index_col=None |
||
1305 | ) |
||
1306 | mvgd_ids = mvgd_ids.sort_values("bus_id") |
||
1307 | mvgd_ids = mvgd_ids["bus_id"].values |
||
1308 | |||
1309 | df_hp_cap_per_building_100RE_db = pd.DataFrame( |
||
1310 | columns=["building_id", "hp_capacity"] |
||
1311 | ) |
||
1312 | |||
1313 | for mvgd_id in mvgd_ids: |
||
1314 | |||
1315 | logger.info(f"MVGD={mvgd_id} | Start") |
||
1316 | |||
1317 | hp_cap_per_building_100RE = ( |
||
1318 | determine_hp_cap_buildings_eGon100RE_per_mvgd(mvgd_id) |
||
1319 | ) |
||
1320 | |||
1321 | if not hp_cap_per_building_100RE.empty: |
||
1322 | df_hp_cap_per_building_100RE_db = pd.concat( |
||
1323 | [ |
||
1324 | df_hp_cap_per_building_100RE_db, |
||
1325 | hp_cap_per_building_100RE.reset_index(), |
||
1326 | ], |
||
1327 | axis=0, |
||
1328 | ) |
||
1329 | |||
1330 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
1331 | df_hp_cap_per_building_100RE_db["scenario"] = "eGon100RE" |
||
1332 | |||
1333 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1334 | |||
1335 | write_table_to_postgres( |
||
1336 | df_hp_cap_per_building_100RE_db, |
||
1337 | EgonHpCapacityBuildings, |
||
1338 | drop=False, |
||
1339 | ) |
||
1340 | |||
1341 | |||
1342 | def aggregate_residential_and_cts_profiles(mvgd, scenario): |
||
1343 | """ |
||
1344 | Gets residential and CTS heat demand profiles per building and aggregates |
||
1345 | them. |
||
1346 | |||
1347 | Parameters |
||
1348 | ---------- |
||
1349 | mvgd : int |
||
1350 | MV grid ID. |
||
1351 | scenario : str |
||
1352 | Possible options are eGon2035 or eGon100RE. |
||
1353 | |||
1354 | Returns |
||
1355 | -------- |
||
1356 | pd.DataFrame |
||
1357 | Table of demand profile per building. Column names are building IDs and |
||
1358 | index is hour of the year as int (0-8759). |
||
1359 | |||
1360 | """ |
||
1361 | # ############### get residential heat demand profiles ############### |
||
1362 | df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
||
1363 | mvgd=mvgd, scenario=scenario |
||
1364 | ) |
||
1365 | |||
1366 | # pivot to allow aggregation with CTS profiles |
||
1367 | df_heat_ts = df_heat_ts.pivot( |
||
1368 | index=["day_of_year", "hour"], |
||
1369 | columns="building_id", |
||
1370 | values="demand_ts", |
||
1371 | ) |
||
1372 | df_heat_ts = df_heat_ts.sort_index().reset_index(drop=True) |
||
1373 | |||
1374 | # ############### get CTS heat demand profiles ############### |
||
1375 | heat_demand_cts_ts = calc_cts_building_profiles( |
||
1376 | bus_ids=[mvgd], |
||
1377 | scenario=scenario, |
||
1378 | sector="heat", |
||
1379 | ) |
||
1380 | |||
1381 | # ############# aggregate residential and CTS demand profiles ############# |
||
1382 | df_heat_ts = pd.concat([df_heat_ts, heat_demand_cts_ts], axis=1) |
||
1383 | |||
1384 | df_heat_ts = df_heat_ts.groupby(axis=1, level=0).sum() |
||
1385 | |||
1386 | return df_heat_ts |
||
1387 | |||
1388 | |||
1389 | def export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False): |
||
1390 | """ |
||
1391 | Function to export the collected results of all MVGDs per bulk to DB. |
||
1392 | |||
1393 | Parameters |
||
1394 | ---------- |
||
1395 | df_peak_loads_db : pd.DataFrame |
||
1396 | Table of building peak loads of all MVGDs per bulk |
||
1397 | df_heat_mvgd_ts_db : pd.DataFrame |
||
1398 | Table of all aggregated MVGD profiles per bulk |
||
1399 | drop : boolean |
||
1400 | Drop and recreate table if True |
||
1401 | |||
1402 | """ |
||
1403 | |||
1404 | df_peak_loads_db = df_peak_loads_db.melt( |
||
1405 | id_vars="building_id", |
||
1406 | var_name="scenario", |
||
1407 | value_name="peak_load_in_w", |
||
1408 | ) |
||
1409 | df_peak_loads_db["building_id"] = df_peak_loads_db["building_id"].astype( |
||
1410 | int |
||
1411 | ) |
||
1412 | df_peak_loads_db["sector"] = "residential+cts" |
||
1413 | # From MW to W |
||
1414 | df_peak_loads_db["peak_load_in_w"] = ( |
||
1415 | df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
1416 | ) |
||
1417 | write_table_to_postgres(df_peak_loads_db, BuildingHeatPeakLoads, drop=drop) |
||
1418 | |||
1419 | dtypes = { |
||
1420 | column.key: column.type |
||
1421 | for column in EgonEtragoTimeseriesIndividualHeating.__table__.columns |
||
1422 | } |
||
1423 | df_heat_mvgd_ts_db = df_heat_mvgd_ts_db.loc[:, dtypes.keys()] |
||
1424 | |||
1425 | if drop: |
||
1426 | logger.info( |
||
1427 | f"Drop and recreate table " |
||
1428 | f"{EgonEtragoTimeseriesIndividualHeating.__table__.name}." |
||
1429 | ) |
||
1430 | EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
||
1431 | bind=engine, checkfirst=True |
||
1432 | ) |
||
1433 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
1434 | bind=engine, checkfirst=True |
||
1435 | ) |
||
1436 | |||
1437 | with db.session_scope() as session: |
||
1438 | df_heat_mvgd_ts_db.to_sql( |
||
1439 | name=EgonEtragoTimeseriesIndividualHeating.__table__.name, |
||
1440 | schema=EgonEtragoTimeseriesIndividualHeating.__table__.schema, |
||
1441 | con=session.connection(), |
||
1442 | if_exists="append", |
||
1443 | method="multi", |
||
1444 | index=False, |
||
1445 | dtype=dtypes, |
||
1446 | ) |
||
1447 | |||
1448 | |||
1449 | def export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec): |
||
1450 | """Export minimum capacity of heat pumps for pypsa eur sec to csv""" |
||
1451 | |||
1452 | df_hp_min_cap_mv_grid_pypsa_eur_sec.index.name = "mvgd_id" |
||
1453 | df_hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1454 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_frame( |
||
1455 | name="min_hp_capacity" |
||
1456 | ).reset_index() |
||
1457 | ) |
||
1458 | |||
1459 | folder = Path(".") / "input-pypsa-eur-sec" |
||
1460 | file = folder / "minimum_hp_capacity_mv_grid_100RE.csv" |
||
1461 | # Create the folder, if it does not exist already |
||
1462 | if not os.path.exists(folder): |
||
1463 | os.mkdir(folder) |
||
1464 | if not file.is_file(): |
||
1465 | logger.info(f"Create {file}") |
||
1466 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
1467 | file, mode="w", header=False |
||
1468 | ) |
||
1469 | else: |
||
1470 | logger.info(f"Remove {file}") |
||
1471 | os.remove(file) |
||
1472 | logger.info(f"Create {file}") |
||
1473 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
1474 | file, mode="a", header=False |
||
1475 | ) |
||
1476 | |||
1477 | |||
1478 | def catch_missing_buidings(buildings_decentral_heating, peak_load): |
||
1479 | """ |
||
1480 | Check for missing buildings and reduce the list of buildings with |
||
1481 | decentral heating if no peak loads available. This should only happen |
||
1482 | in case of cutout SH |
||
1483 | |||
1484 | Parameters |
||
1485 | ----------- |
||
1486 | buildings_decentral_heating : list(int) |
||
1487 | Array or list of buildings with decentral heating |
||
1488 | |||
1489 | peak_load : pd.Series |
||
1490 | Peak loads of all building within the mvgd |
||
1491 | |||
1492 | """ |
||
1493 | # Catch missing buildings key error |
||
1494 | # should only happen within cutout SH |
||
1495 | if ( |
||
1496 | not all(buildings_decentral_heating.isin(peak_load.index)) |
||
1497 | and config.settings()["egon-data"]["--dataset-boundary"] |
||
1498 | == "Schleswig-Holstein" |
||
1499 | ): |
||
1500 | diff = buildings_decentral_heating.difference(peak_load.index) |
||
1501 | logger.warning( |
||
1502 | f"Dropped {len(diff)} building ids due to missing peak " |
||
1503 | f"loads. {len(buildings_decentral_heating)} left." |
||
1504 | ) |
||
1505 | logger.info(f"Dropped buildings: {diff.values}") |
||
1506 | buildings_decentral_heating = buildings_decentral_heating.drop(diff) |
||
1507 | |||
1508 | return buildings_decentral_heating |
||
1509 | |||
1510 | |||
1511 | def determine_hp_cap_peak_load_mvgd_ts_2035(mvgd_ids): |
||
1512 | """ |
||
1513 | Main function to determine HP capacity per building in eGon2035 scenario. |
||
1514 | Further, creates heat demand time series for all buildings with heat pumps |
||
1515 | in MV grid, as well as for all buildings with gas boilers, used in eTraGo. |
||
1516 | |||
1517 | Parameters |
||
1518 | ----------- |
||
1519 | mvgd_ids : list(int) |
||
1520 | List of MV grid IDs to determine data for. |
||
1521 | |||
1522 | """ |
||
1523 | |||
1524 | # ========== Register np datatypes with SQLA ========== |
||
1525 | register_adapter(np.float64, adapt_numpy_float64) |
||
1526 | register_adapter(np.int64, adapt_numpy_int64) |
||
1527 | # ===================================================== |
||
1528 | |||
1529 | df_peak_loads_db = pd.DataFrame() |
||
1530 | df_hp_cap_per_building_2035_db = pd.DataFrame() |
||
1531 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1532 | |||
1533 | for mvgd in mvgd_ids: |
||
1534 | |||
1535 | logger.info(f"MVGD={mvgd} | Start") |
||
1536 | |||
1537 | # ############# aggregate residential and CTS demand profiles ##### |
||
1538 | |||
1539 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1540 | mvgd, scenario="eGon2035" |
||
1541 | ) |
||
1542 | |||
1543 | # ##################### determine peak loads ################### |
||
1544 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
1545 | |||
1546 | peak_load_2035 = df_heat_ts.max().rename("eGon2035") |
||
1547 | |||
1548 | # ######## determine HP capacity per building ######### |
||
1549 | logger.info(f"MVGD={mvgd} | Determine HP capacities.") |
||
1550 | |||
1551 | buildings_decentral_heating = ( |
||
1552 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1553 | mvgd, scenario="eGon2035" |
||
1554 | ) |
||
1555 | ) |
||
1556 | |||
1557 | # Reduce list of decentral heating if no Peak load available |
||
1558 | # TODO maybe remove after succesfull DE run |
||
1559 | # Might be fixed in #990 |
||
1560 | buildings_decentral_heating = catch_missing_buidings( |
||
1561 | buildings_decentral_heating, peak_load_2035 |
||
1562 | ) |
||
1563 | |||
1564 | hp_cap_per_building_2035 = ( |
||
1565 | determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1566 | mvgd, |
||
1567 | peak_load_2035, |
||
1568 | buildings_decentral_heating, |
||
1569 | ) |
||
1570 | ) |
||
1571 | buildings_gas_2035 = pd.Index(buildings_decentral_heating).drop( |
||
1572 | hp_cap_per_building_2035.index |
||
1573 | ) |
||
1574 | |||
1575 | # ################ aggregated heat profiles ################### |
||
1576 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1577 | |||
1578 | df_mvgd_ts_2035_hp = df_heat_ts.loc[ |
||
1579 | :, |
||
1580 | hp_cap_per_building_2035.index, |
||
1581 | ].sum(axis=1) |
||
1582 | |||
1583 | # heat demand time series for buildings with gas boiler |
||
1584 | df_mvgd_ts_2035_gas = df_heat_ts.loc[:, buildings_gas_2035].sum(axis=1) |
||
1585 | |||
1586 | df_heat_mvgd_ts = pd.DataFrame( |
||
1587 | data={ |
||
1588 | "carrier": ["heat_pump", "CH4"], |
||
1589 | "bus_id": mvgd, |
||
1590 | "scenario": ["eGon2035", "eGon2035"], |
||
1591 | "dist_aggregated_mw": [ |
||
1592 | df_mvgd_ts_2035_hp.to_list(), |
||
1593 | df_mvgd_ts_2035_gas.to_list(), |
||
1594 | ], |
||
1595 | } |
||
1596 | ) |
||
1597 | |||
1598 | # ################ collect results ################## |
||
1599 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
1600 | |||
1601 | df_peak_loads_db = pd.concat( |
||
1602 | [df_peak_loads_db, peak_load_2035.reset_index()], |
||
1603 | axis=0, |
||
1604 | ignore_index=True, |
||
1605 | ) |
||
1606 | |||
1607 | df_heat_mvgd_ts_db = pd.concat( |
||
1608 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1609 | ) |
||
1610 | |||
1611 | df_hp_cap_per_building_2035_db = pd.concat( |
||
1612 | [ |
||
1613 | df_hp_cap_per_building_2035_db, |
||
1614 | hp_cap_per_building_2035.reset_index(), |
||
1615 | ], |
||
1616 | axis=0, |
||
1617 | ) |
||
1618 | |||
1619 | # ################ export to db ####################### |
||
1620 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
1621 | |||
1622 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False) |
||
1623 | |||
1624 | df_hp_cap_per_building_2035_db["scenario"] = "eGon2035" |
||
1625 | |||
1626 | # TODO debug duplicated building_ids |
||
1627 | duplicates = df_hp_cap_per_building_2035_db.loc[ |
||
1628 | df_hp_cap_per_building_2035_db.duplicated("building_id", keep=False) |
||
1629 | ] |
||
1630 | |||
1631 | logger.info( |
||
1632 | f"Dropped duplicated buildings: " |
||
1633 | f"{duplicates.loc[:,['building_id', 'hp_capacity']]}" |
||
1634 | ) |
||
1635 | |||
1636 | df_hp_cap_per_building_2035_db.drop_duplicates("building_id", inplace=True) |
||
1637 | |||
1638 | write_table_to_postgres( |
||
1639 | df_hp_cap_per_building_2035_db, |
||
1640 | EgonHpCapacityBuildings, |
||
1641 | drop=False, |
||
1642 | ) |
||
1643 | |||
1644 | |||
1645 | def determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec(mvgd_ids): |
||
1646 | """ |
||
1647 | Main function to determine minimum required HP capacity in MV for |
||
1648 | pypsa-eur-sec. Further, creates heat demand time series for all buildings |
||
1649 | with heat pumps in MV grid in eGon100RE scenario, used in eTraGo. |
||
1650 | |||
1651 | Parameters |
||
1652 | ----------- |
||
1653 | mvgd_ids : list(int) |
||
1654 | List of MV grid IDs to determine data for. |
||
1655 | |||
1656 | """ |
||
1657 | |||
1658 | # ========== Register np datatypes with SQLA ========== |
||
1659 | register_adapter(np.float64, adapt_numpy_float64) |
||
1660 | register_adapter(np.int64, adapt_numpy_int64) |
||
1661 | # ===================================================== |
||
1662 | |||
1663 | df_peak_loads_db = pd.DataFrame() |
||
1664 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1665 | df_hp_min_cap_mv_grid_pypsa_eur_sec = pd.Series(dtype="float64") |
||
1666 | |||
1667 | for mvgd in mvgd_ids: |
||
1668 | |||
1669 | logger.info(f"MVGD={mvgd} | Start") |
||
1670 | |||
1671 | # ############# aggregate residential and CTS demand profiles ##### |
||
1672 | |||
1673 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1674 | mvgd, scenario="eGon100RE" |
||
1675 | ) |
||
1676 | |||
1677 | # ##################### determine peak loads ################### |
||
1678 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
1679 | |||
1680 | peak_load_100RE = df_heat_ts.max().rename("eGon100RE") |
||
1681 | |||
1682 | # ######## determine minimum HP capacity pypsa-eur-sec ########### |
||
1683 | logger.info(f"MVGD={mvgd} | Determine minimum HP capacity.") |
||
1684 | |||
1685 | buildings_decentral_heating = ( |
||
1686 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1687 | mvgd, scenario="eGon100RE" |
||
1688 | ) |
||
1689 | ) |
||
1690 | |||
1691 | # Reduce list of decentral heating if no Peak load available |
||
1692 | # TODO maybe remove after succesfull DE run |
||
1693 | buildings_decentral_heating = catch_missing_buidings( |
||
1694 | buildings_decentral_heating, peak_load_100RE |
||
1695 | ) |
||
1696 | |||
1697 | hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1698 | determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1699 | peak_load_100RE, |
||
1700 | buildings_decentral_heating, |
||
1701 | ) |
||
1702 | ) |
||
1703 | |||
1704 | # ################ aggregated heat profiles ################### |
||
1705 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1706 | |||
1707 | df_mvgd_ts_hp = df_heat_ts.loc[ |
||
1708 | :, |
||
1709 | buildings_decentral_heating, |
||
1710 | ].sum(axis=1) |
||
1711 | |||
1712 | df_heat_mvgd_ts = pd.DataFrame( |
||
1713 | data={ |
||
1714 | "carrier": "heat_pump", |
||
1715 | "bus_id": mvgd, |
||
1716 | "scenario": "eGon100RE", |
||
1717 | "dist_aggregated_mw": [df_mvgd_ts_hp.to_list()], |
||
1718 | } |
||
1719 | ) |
||
1720 | |||
1721 | # ################ collect results ################## |
||
1722 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
1723 | |||
1724 | df_peak_loads_db = pd.concat( |
||
1725 | [df_peak_loads_db, peak_load_100RE.reset_index()], |
||
1726 | axis=0, |
||
1727 | ignore_index=True, |
||
1728 | ) |
||
1729 | |||
1730 | df_heat_mvgd_ts_db = pd.concat( |
||
1731 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1732 | ) |
||
1733 | |||
1734 | df_hp_min_cap_mv_grid_pypsa_eur_sec.loc[ |
||
1735 | mvgd |
||
1736 | ] = hp_min_cap_mv_grid_pypsa_eur_sec |
||
1737 | |||
1738 | # ################ export to db and csv ###################### |
||
1739 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
1740 | |||
1741 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False) |
||
1742 | |||
1743 | logger.info( |
||
1744 | f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write " |
||
1745 | f"pypsa-eur-sec min " |
||
1746 | f"HP capacities to csv." |
||
1747 | ) |
||
1748 | export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec) |
||
1749 | |||
1750 | |||
1751 | def split_mvgds_into_bulks(n, max_n, func): |
||
1752 | """ |
||
1753 | Generic function to split task into multiple parallel tasks, |
||
1754 | dividing the number of MVGDs into even bulks. |
||
1755 | |||
1756 | Parameters |
||
1757 | ----------- |
||
1758 | n : int |
||
1759 | Number of bulk |
||
1760 | max_n: int |
||
1761 | Maximum number of bulks |
||
1762 | func : function |
||
1763 | The funnction which is then called with the list of MVGD as |
||
1764 | parameter. |
||
1765 | """ |
||
1766 | |||
1767 | with db.session_scope() as session: |
||
1768 | query = ( |
||
1769 | session.query( |
||
1770 | MapZensusGridDistricts.bus_id, |
||
1771 | ) |
||
1772 | .filter( |
||
1773 | MapZensusGridDistricts.zensus_population_id |
||
1774 | == EgonPetaHeat.zensus_population_id |
||
1775 | ) |
||
1776 | .distinct(MapZensusGridDistricts.bus_id) |
||
1777 | ) |
||
1778 | mvgd_ids = pd.read_sql( |
||
1779 | query.statement, query.session.bind, index_col=None |
||
1780 | ) |
||
1781 | |||
1782 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
1783 | |||
1784 | mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
||
1785 | # Only take split n |
||
1786 | mvgd_ids = mvgd_ids[n] |
||
1787 | |||
1788 | logger.info(f"Bulk takes care of MVGD: {min(mvgd_ids)} : {max(mvgd_ids)}") |
||
1789 | func(mvgd_ids) |
||
1790 | |||
1791 | |||
1792 | def delete_hp_capacity(scenario): |
||
1793 | """Remove all hp capacities for the selected scenario |
||
1794 | |||
1795 | Parameters |
||
1796 | ----------- |
||
1797 | scenario : string |
||
1798 | Either eGon2035 or eGon100RE |
||
1799 | |||
1800 | """ |
||
1801 | |||
1802 | with db.session_scope() as session: |
||
1803 | # Buses |
||
1804 | session.query(EgonHpCapacityBuildings).filter( |
||
1805 | EgonHpCapacityBuildings.scenario == scenario |
||
1806 | ).delete(synchronize_session=False) |
||
1807 | |||
1808 | |||
1809 | def delete_mvgd_ts(scenario): |
||
1810 | """Remove all hp capacities for the selected scenario |
||
1811 | |||
1812 | Parameters |
||
1813 | ----------- |
||
1814 | scenario : string |
||
1815 | Either eGon2035 or eGon100RE |
||
1816 | |||
1817 | """ |
||
1818 | |||
1819 | with db.session_scope() as session: |
||
1820 | # Buses |
||
1821 | session.query(EgonEtragoTimeseriesIndividualHeating).filter( |
||
1822 | EgonEtragoTimeseriesIndividualHeating.scenario == scenario |
||
1823 | ).delete(synchronize_session=False) |
||
1824 | |||
1825 | |||
1826 | def delete_hp_capacity_100RE(): |
||
1827 | """Remove all hp capacities for the selected eGon100RE""" |
||
1828 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1829 | delete_hp_capacity(scenario="eGon100RE") |
||
1830 | |||
1831 | |||
1832 | def delete_hp_capacity_2035(): |
||
1833 | """Remove all hp capacities for the selected eGon2035""" |
||
1834 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1835 | delete_hp_capacity(scenario="eGon2035") |
||
1836 | |||
1837 | |||
1838 | def delete_mvgd_ts_2035(): |
||
1839 | """Remove all mvgd ts for the selected eGon2035""" |
||
1840 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
1841 | bind=engine, checkfirst=True |
||
1842 | ) |
||
1843 | delete_mvgd_ts(scenario="eGon2035") |
||
1844 | |||
1845 | |||
1846 | def delete_mvgd_ts_100RE(): |
||
1847 | """Remove all mvgd ts for the selected eGon100RE""" |
||
1848 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
1849 | bind=engine, checkfirst=True |
||
1850 | ) |
||
1851 | delete_mvgd_ts(scenario="eGon100RE") |
||
1852 | |||
1853 | |||
1854 | def delete_heat_peak_loads_2035(): |
||
1855 | """Remove all heat peak loads for eGon2035.""" |
||
1856 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1857 | with db.session_scope() as session: |
||
1858 | # Buses |
||
1859 | session.query(BuildingHeatPeakLoads).filter( |
||
1860 | BuildingHeatPeakLoads.scenario == "eGon2035" |
||
1861 | ).delete(synchronize_session=False) |
||
1862 | |||
1863 | def delete_heat_peak_loads_100RE(): |
||
1864 | """Remove all heat peak loads for eGon100RE.""" |
||
1865 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1866 | with db.session_scope() as session: |
||
1867 | # Buses |
||
1868 | session.query(BuildingHeatPeakLoads).filter( |
||
1869 | BuildingHeatPeakLoads.scenario == "eGon100RE" |
||
1870 | ).delete(synchronize_session=False) |
||
1871 |