1
|
|
|
from geoalchemy2 import Geometry |
2
|
|
|
from geoalchemy2.shape import to_shape |
3
|
|
|
from sqlalchemy import REAL, Column, Float, Integer, String, func |
4
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
5
|
|
|
import geopandas as gpd |
6
|
|
|
import pandas as pd |
7
|
|
|
import saio |
8
|
|
|
|
9
|
|
|
from egon.data import db |
10
|
|
|
from egon.data.datasets import Dataset |
11
|
|
|
from egon.data.datasets.electricity_demand import ( |
12
|
|
|
EgonDemandRegioZensusElectricity, |
13
|
|
|
) |
14
|
|
|
from egon.data.datasets.electricity_demand.temporal import calc_load_curves_cts |
15
|
|
|
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
16
|
|
|
BuildingPeakLoads, |
17
|
|
|
OsmBuildingsSynthetic, |
18
|
|
|
) |
19
|
|
|
from egon.data.datasets.electricity_demand_timeseries.tools import ( |
20
|
|
|
random_ints_until_sum, |
21
|
|
|
random_point_in_square, |
22
|
|
|
specific_int_until_sum, |
23
|
|
|
write_table_to_postgis, |
24
|
|
|
write_table_to_postgres, |
25
|
|
|
) |
26
|
|
|
from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
27
|
|
|
from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
28
|
|
|
import egon.data.config |
29
|
|
|
|
30
|
|
|
engine = db.engine() |
31
|
|
|
Base = declarative_base() |
32
|
|
|
|
33
|
|
|
# import db tables |
34
|
|
|
saio.register_schema("openstreetmap", engine=engine) |
35
|
|
|
saio.register_schema("society", engine=engine) |
36
|
|
|
saio.register_schema("demand", engine=engine) |
37
|
|
|
saio.register_schema("boundaries", engine=engine) |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
class EgonCtsElectricityDemandBuildingShare(Base): |
41
|
|
|
__tablename__ = "egon_cts_electricity_demand_building_share" |
42
|
|
|
__table_args__ = {"schema": "demand"} |
43
|
|
|
|
44
|
|
|
serial = Column(Integer, primary_key=True) |
45
|
|
|
id = Column(Integer, index=True) |
46
|
|
|
scenario = Column(String, index=True) |
47
|
|
|
# id = Column(Integer, primary_key=True) |
48
|
|
|
# scenario = Column(String, primary_key=True) |
49
|
|
|
bus_id = Column(Integer, index=True) |
50
|
|
|
profile_share = Column(Float) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
class CtsBuildings(Base): |
54
|
|
|
__tablename__ = "egon_cts_buildings" |
55
|
|
|
__table_args__ = {"schema": "openstreetmap"} |
56
|
|
|
|
57
|
|
|
serial = Column(Integer, primary_key=True) |
58
|
|
|
id = Column(Integer, index=True) |
59
|
|
|
zensus_population_id = Column(Integer, index=True) |
60
|
|
|
geom_building = Column(Geometry("Polygon", 3035)) |
61
|
|
|
n_amenities_inside = Column(Integer) |
62
|
|
|
source = Column(String) |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
def amenities_without_buildings(): |
66
|
|
|
""" |
67
|
|
|
Amenities which have no buildings assigned and are in |
68
|
|
|
a cell with cts demand are determined. |
69
|
|
|
|
70
|
|
|
Returns |
71
|
|
|
------- |
72
|
|
|
pd.DataFrame |
73
|
|
|
Table of amenities without buildings |
74
|
|
|
""" |
75
|
|
|
from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
76
|
|
|
|
77
|
|
|
with db.session_scope() as session: |
78
|
|
|
cells_query = ( |
79
|
|
|
session.query( |
80
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
81
|
|
|
# TODO can be used for square around amenity |
82
|
|
|
# (1 geom_amenity: 1 geom_building) |
83
|
|
|
# not unique amenity_ids yet |
84
|
|
|
osm_amenities_not_in_buildings_filtered.geom_amenity, |
85
|
|
|
osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
86
|
|
|
# EgonDemandRegioZensusElectricity.demand, |
87
|
|
|
# # TODO can be used to generate n random buildings |
88
|
|
|
# # (n amenities : 1 randombuilding) |
89
|
|
|
# func.count( |
90
|
|
|
# osm_amenities_not_in_buildings_filtered.egon_amenity_id |
91
|
|
|
# ).label("n_amenities_inside"), |
92
|
|
|
# DestatisZensusPopulationPerHa.geom, |
93
|
|
|
) |
94
|
|
|
.filter( |
95
|
|
|
func.st_within( |
96
|
|
|
osm_amenities_not_in_buildings_filtered.geom_amenity, |
97
|
|
|
DestatisZensusPopulationPerHa.geom, |
98
|
|
|
) |
99
|
|
|
) |
100
|
|
|
.filter( |
101
|
|
|
DestatisZensusPopulationPerHa.id |
102
|
|
|
== EgonDemandRegioZensusElectricity.zensus_population_id |
103
|
|
|
) |
104
|
|
|
.filter( |
105
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
106
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035" |
107
|
|
|
# ).group_by( |
108
|
|
|
# EgonDemandRegioZensusElectricity.zensus_population_id, |
109
|
|
|
# DestatisZensusPopulationPerHa.geom, |
110
|
|
|
) |
111
|
|
|
) |
112
|
|
|
# # TODO can be used to generate n random buildings |
113
|
|
|
# df_cells_with_amenities_not_in_buildings = gpd.read_postgis( |
114
|
|
|
# cells_query.statement, cells_query.session.bind, geom_col="geom" |
115
|
|
|
# ) |
116
|
|
|
# |
117
|
|
|
|
118
|
|
|
# # TODO can be used for square around amenity |
119
|
|
|
df_amenities_without_buildings = gpd.read_postgis( |
120
|
|
|
cells_query.statement, |
121
|
|
|
cells_query.session.bind, |
122
|
|
|
geom_col="geom_amenity", |
123
|
|
|
) |
124
|
|
|
return df_amenities_without_buildings |
125
|
|
|
|
126
|
|
|
|
127
|
|
|
def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
128
|
|
|
""" |
129
|
|
|
Building centroids are placed randomly within census cells. |
130
|
|
|
The Number of buildings is derived from n_amenity_inside, the selected |
131
|
|
|
method and number of amenities per building. |
132
|
|
|
|
133
|
|
|
Returns |
134
|
|
|
------- |
135
|
|
|
df: gpd.GeoDataFrame |
136
|
|
|
Table of buildings centroids |
137
|
|
|
""" |
138
|
|
|
if isinstance(max_amenities, int): |
139
|
|
|
# amount of amenities is randomly generated within bounds |
140
|
|
|
# (max_amenities, amenities per cell) |
141
|
|
|
df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
142
|
|
|
random_ints_until_sum, args=[max_amenities] |
143
|
|
|
) |
144
|
|
|
if isinstance(amenities, int): |
145
|
|
|
# Specific amount of amenities per building |
146
|
|
|
df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
147
|
|
|
specific_int_until_sum, args=[amenities] |
148
|
|
|
) |
149
|
|
|
|
150
|
|
|
# Unnest each building |
151
|
|
|
df = df.explode(column="n_amenities_inside") |
152
|
|
|
|
153
|
|
|
# building count per cell |
154
|
|
|
df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
155
|
|
|
|
156
|
|
|
# generate random synthetic buildings |
157
|
|
|
edge_length = 5 |
158
|
|
|
# create random points within census cells |
159
|
|
|
points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
160
|
|
|
|
161
|
|
|
df.reset_index(drop=True, inplace=True) |
162
|
|
|
# Store center of polygon |
163
|
|
|
df["geom_point"] = points |
164
|
|
|
# Drop geometry of census cell |
165
|
|
|
df = df.drop(columns=["geom"]) |
166
|
|
|
|
167
|
|
|
return df |
168
|
|
|
|
169
|
|
|
|
170
|
|
|
def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
171
|
|
|
""" |
172
|
|
|
Synthetic buildings are generated around points. |
173
|
|
|
|
174
|
|
|
Parameters |
175
|
|
|
---------- |
176
|
|
|
df: pd.DataFrame |
177
|
|
|
Table of census cells |
178
|
|
|
points: gpd.GeoSeries or str |
179
|
|
|
List of points to place buildings around or column name of df |
180
|
|
|
crs: str |
181
|
|
|
CRS of result table |
182
|
|
|
|
183
|
|
|
Returns |
184
|
|
|
------- |
185
|
|
|
df: gpd.GeoDataFrame |
186
|
|
|
Synthetic buildings |
187
|
|
|
""" |
188
|
|
|
|
189
|
|
|
if isinstance(points, str) and points in df.columns: |
190
|
|
|
points = df[points] |
191
|
|
|
elif isinstance(points, gpd.GeoSeries): |
192
|
|
|
pass |
193
|
|
|
else: |
194
|
|
|
raise ValueError("Points are of the wrong type") |
195
|
|
|
|
196
|
|
|
# Create building using a square around point |
197
|
|
|
edge_length = 5 |
198
|
|
|
df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
199
|
|
|
|
200
|
|
|
if "geom_point" not in df.columns: |
201
|
|
|
df["geom_point"] = df["geom_building"].centroid |
202
|
|
|
|
203
|
|
|
# TODO Check CRS |
204
|
|
|
df = gpd.GeoDataFrame( |
205
|
|
|
df, |
206
|
|
|
crs=crs, |
207
|
|
|
geometry="geom_building", |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
# TODO remove after implementation of egon_building_id |
211
|
|
|
df.rename(columns={"id": "egon_building_id"}, inplace=True) |
212
|
|
|
|
213
|
|
|
# get max number of building ids from synthetic residential table |
214
|
|
|
with db.session_scope() as session: |
215
|
|
|
max_synth_residential_id = session.execute( |
216
|
|
|
func.max(OsmBuildingsSynthetic.id) |
217
|
|
|
).scalar() |
218
|
|
|
max_synth_residential_id = int(max_synth_residential_id) |
219
|
|
|
|
220
|
|
|
# create sequential ids |
221
|
|
|
df["egon_building_id"] = range( |
222
|
|
|
max_synth_residential_id + 1, |
223
|
|
|
max_synth_residential_id + df.shape[0] + 1, |
224
|
|
|
) |
225
|
|
|
|
226
|
|
|
df["area"] = df["geom_building"].area |
227
|
|
|
# set building type of synthetic building |
228
|
|
|
df["building"] = "cts" |
229
|
|
|
# TODO remove in #772 |
230
|
|
|
df = df.rename( |
231
|
|
|
columns={ |
232
|
|
|
# "zensus_population_id": "cell_id", |
233
|
|
|
"egon_building_id": "id", |
234
|
|
|
} |
235
|
|
|
) |
236
|
|
|
return df |
237
|
|
|
|
238
|
|
|
|
239
|
|
|
def buildings_with_amenities(): |
240
|
|
|
""" |
241
|
|
|
Amenities which are assigned to buildings are determined |
242
|
|
|
and grouped per building and zensus cell. Buildings |
243
|
|
|
covering multiple cells therefore exists multiple times |
244
|
|
|
but in different zensus cells. This is necessary to cover |
245
|
|
|
all cells with a cts demand. If buildings exist in multiple |
246
|
|
|
substations, their amenities are summed and assigned and kept in |
247
|
|
|
one substation only. If as a result, a census cell is uncovered, |
248
|
|
|
a synthetic amenity is placed. The buildings are aggregated |
249
|
|
|
afterwards during the calculation of the profile_share. |
250
|
|
|
|
251
|
|
|
Returns |
252
|
|
|
------- |
253
|
|
|
df_buildings_with_amenities: gpd.GeoDataFrame |
254
|
|
|
Contains all buildings with amenities per zensus cell. |
255
|
|
|
df_lost_cells: gpd.GeoDataFrame |
256
|
|
|
Contains synthetic amenities in lost cells. Might be empty |
257
|
|
|
""" |
258
|
|
|
|
259
|
|
|
from saio.openstreetmap import osm_amenities_in_buildings_filtered |
260
|
|
|
|
261
|
|
|
with db.session_scope() as session: |
262
|
|
|
cells_query = ( |
263
|
|
|
session.query( |
264
|
|
|
osm_amenities_in_buildings_filtered, |
265
|
|
|
MapZensusGridDistricts.bus_id, |
266
|
|
|
) |
267
|
|
|
.filter( |
268
|
|
|
MapZensusGridDistricts.zensus_population_id |
269
|
|
|
== osm_amenities_in_buildings_filtered.zensus_population_id |
270
|
|
|
) |
271
|
|
|
.filter( |
272
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
273
|
|
|
== osm_amenities_in_buildings_filtered.zensus_population_id |
274
|
|
|
) |
275
|
|
|
.filter( |
276
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
277
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
278
|
|
|
) |
279
|
|
|
) |
280
|
|
|
df_amenities_in_buildings = pd.read_sql( |
281
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
282
|
|
|
) |
283
|
|
|
|
284
|
|
|
df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
285
|
|
|
"geom_building" |
286
|
|
|
].apply(to_shape) |
287
|
|
|
df_amenities_in_buildings["geom_amenity"] = df_amenities_in_buildings[ |
288
|
|
|
"geom_amenity" |
289
|
|
|
].apply(to_shape) |
290
|
|
|
|
291
|
|
|
df_amenities_in_buildings["n_amenities_inside"] = 1 |
292
|
|
|
|
293
|
|
|
# add identifier column for buildings in multiple substations |
294
|
|
|
df_amenities_in_buildings[ |
295
|
|
|
"duplicate_identifier" |
296
|
|
|
] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
297
|
|
|
"n_amenities_inside" |
298
|
|
|
].transform( |
299
|
|
|
"cumsum" |
300
|
|
|
) |
301
|
|
|
df_amenities_in_buildings = df_amenities_in_buildings.sort_values( |
302
|
|
|
["id", "duplicate_identifier"] |
303
|
|
|
) |
304
|
|
|
# sum amenities of buildings with multiple substations |
305
|
|
|
df_amenities_in_buildings[ |
306
|
|
|
"n_amenities_inside" |
307
|
|
|
] = df_amenities_in_buildings.groupby(["id", "duplicate_identifier"])[ |
308
|
|
|
"n_amenities_inside" |
309
|
|
|
].transform( |
310
|
|
|
"sum" |
311
|
|
|
) |
312
|
|
|
|
313
|
|
|
# create column to always go for bus_id with max amenities |
314
|
|
|
df_amenities_in_buildings[ |
315
|
|
|
"max_amenities" |
316
|
|
|
] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
317
|
|
|
"n_amenities_inside" |
318
|
|
|
].transform( |
319
|
|
|
"sum" |
320
|
|
|
) |
321
|
|
|
# sort to go for |
322
|
|
|
df_amenities_in_buildings.sort_values( |
323
|
|
|
["id", "max_amenities"], ascending=False, inplace=True |
324
|
|
|
) |
325
|
|
|
|
326
|
|
|
# identify lost zensus cells |
327
|
|
|
df_lost_cells = df_amenities_in_buildings.loc[ |
328
|
|
|
df_amenities_in_buildings.duplicated( |
329
|
|
|
subset=["id", "duplicate_identifier"], keep="first" |
330
|
|
|
) |
331
|
|
|
] |
332
|
|
|
df_lost_cells.drop_duplicates( |
333
|
|
|
subset=["zensus_population_id"], inplace=True |
334
|
|
|
) |
335
|
|
|
|
336
|
|
|
# drop buildings with multiple substation and lower max amenity |
337
|
|
|
df_amenities_in_buildings.drop_duplicates( |
338
|
|
|
subset=["id", "duplicate_identifier"], keep="first", inplace=True |
339
|
|
|
) |
340
|
|
|
|
341
|
|
|
# check if lost zensus cells are already covered |
342
|
|
|
if not df_lost_cells.empty: |
343
|
|
|
if not ( |
344
|
|
|
df_amenities_in_buildings["zensus_population_id"] |
345
|
|
|
.isin(df_lost_cells["zensus_population_id"]) |
346
|
|
|
.empty |
347
|
|
|
): |
348
|
|
|
# query geom data for cell if not |
349
|
|
|
with db.session_scope() as session: |
350
|
|
|
cells_query = session.query( |
351
|
|
|
DestatisZensusPopulationPerHa.id, |
352
|
|
|
DestatisZensusPopulationPerHa.geom, |
353
|
|
|
).filter( |
354
|
|
|
DestatisZensusPopulationPerHa.id.in_( |
355
|
|
|
df_lost_cells["zensus_population_id"] |
356
|
|
|
) |
357
|
|
|
) |
358
|
|
|
|
359
|
|
|
df_lost_cells = gpd.read_postgis( |
360
|
|
|
cells_query.statement, |
361
|
|
|
cells_query.session.bind, |
362
|
|
|
geom_col="geom", |
363
|
|
|
) |
364
|
|
|
# TODO maybe adapt method |
365
|
|
|
# place random amenity in cell |
366
|
|
|
df_lost_cells["n_amenities_inside"] = 1 |
367
|
|
|
df_lost_cells.rename( |
368
|
|
|
columns={ |
369
|
|
|
"id": "zensus_population_id", |
370
|
|
|
}, |
371
|
|
|
inplace=True, |
372
|
|
|
) |
373
|
|
|
df_lost_cells = place_buildings_with_amenities( |
374
|
|
|
df_lost_cells, amenities=1 |
375
|
|
|
) |
376
|
|
|
df_lost_cells.rename( |
377
|
|
|
columns={ |
378
|
|
|
# "id": "zensus_population_id", |
379
|
|
|
"geom_point": "geom_amenity", |
380
|
|
|
}, |
381
|
|
|
inplace=True, |
382
|
|
|
) |
383
|
|
|
df_lost_cells.drop( |
384
|
|
|
columns=["building_count", "n_amenities_inside"], inplace=True |
385
|
|
|
) |
386
|
|
|
else: |
387
|
|
|
df_lost_cells = None |
388
|
|
|
else: |
389
|
|
|
df_lost_cells = None |
390
|
|
|
|
391
|
|
|
# drop helper columns |
392
|
|
|
df_amenities_in_buildings.drop( |
393
|
|
|
columns=["duplicate_identifier"], inplace=True |
394
|
|
|
) |
395
|
|
|
|
396
|
|
|
# sum amenities per building and cell |
397
|
|
|
df_amenities_in_buildings[ |
398
|
|
|
"n_amenities_inside" |
399
|
|
|
] = df_amenities_in_buildings.groupby(["zensus_population_id", "id"])[ |
400
|
|
|
"n_amenities_inside" |
401
|
|
|
].transform( |
402
|
|
|
"sum" |
403
|
|
|
) |
404
|
|
|
# drop duplicated buildings |
405
|
|
|
df_buildings_with_amenities = df_amenities_in_buildings.drop_duplicates( |
406
|
|
|
["id", "zensus_population_id"] |
407
|
|
|
) |
408
|
|
|
df_buildings_with_amenities.reset_index(inplace=True, drop=True) |
409
|
|
|
|
410
|
|
|
df_buildings_with_amenities = df_buildings_with_amenities[ |
411
|
|
|
["id", "zensus_population_id", "geom_building", "n_amenities_inside"] |
412
|
|
|
] |
413
|
|
|
df_buildings_with_amenities.rename( |
414
|
|
|
columns={ |
415
|
|
|
# "zensus_population_id": "cell_id", |
416
|
|
|
"egon_building_id": "id" |
417
|
|
|
}, |
418
|
|
|
inplace=True, |
419
|
|
|
) |
420
|
|
|
|
421
|
|
|
return df_buildings_with_amenities, df_lost_cells |
422
|
|
|
|
423
|
|
|
|
424
|
|
|
def buildings_without_amenities(): |
425
|
|
|
""" |
426
|
|
|
Buildings (filtered and synthetic) in cells with |
427
|
|
|
cts demand but no amenities are determined. |
428
|
|
|
|
429
|
|
|
Returns |
430
|
|
|
------- |
431
|
|
|
df_buildings_without_amenities: gpd.GeoDataFrame |
432
|
|
|
Table of buildings without amenities in zensus cells |
433
|
|
|
with cts demand. |
434
|
|
|
""" |
435
|
|
|
from saio.boundaries import egon_map_zensus_buildings_filtered_all |
436
|
|
|
from saio.openstreetmap import ( |
437
|
|
|
osm_amenities_shops_filtered, |
438
|
|
|
osm_buildings_filtered, |
439
|
|
|
osm_buildings_synthetic, |
440
|
|
|
) |
441
|
|
|
|
442
|
|
|
# buildings_filtered in cts-demand-cells without amenities |
443
|
|
|
with db.session_scope() as session: |
444
|
|
|
|
445
|
|
|
# Synthetic Buildings |
446
|
|
|
q_synth_buildings = session.query( |
447
|
|
|
osm_buildings_synthetic.cell_id.cast(Integer).label( |
448
|
|
|
"zensus_population_id" |
449
|
|
|
), |
450
|
|
|
osm_buildings_synthetic.id.cast(Integer).label("id"), |
451
|
|
|
osm_buildings_synthetic.area.label("area"), |
452
|
|
|
osm_buildings_synthetic.geom_building.label("geom_building"), |
453
|
|
|
osm_buildings_synthetic.geom_point.label("geom_point"), |
454
|
|
|
) |
455
|
|
|
|
456
|
|
|
# Buildings filtered |
457
|
|
|
q_buildings_filtered = session.query( |
458
|
|
|
egon_map_zensus_buildings_filtered_all.zensus_population_id, |
459
|
|
|
osm_buildings_filtered.id, |
460
|
|
|
osm_buildings_filtered.area, |
461
|
|
|
osm_buildings_filtered.geom_building, |
462
|
|
|
osm_buildings_filtered.geom_point, |
463
|
|
|
).filter( |
464
|
|
|
osm_buildings_filtered.id |
465
|
|
|
== egon_map_zensus_buildings_filtered_all.id |
466
|
|
|
) |
467
|
|
|
|
468
|
|
|
# Amenities + zensus_population_id |
469
|
|
|
q_amenities = ( |
470
|
|
|
session.query( |
471
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
472
|
|
|
) |
473
|
|
|
.filter( |
474
|
|
|
func.st_within( |
475
|
|
|
osm_amenities_shops_filtered.geom_amenity, |
476
|
|
|
DestatisZensusPopulationPerHa.geom, |
477
|
|
|
) |
478
|
|
|
) |
479
|
|
|
.distinct(DestatisZensusPopulationPerHa.id) |
480
|
|
|
) |
481
|
|
|
|
482
|
|
|
# Cells with CTS demand but without amenities |
483
|
|
|
q_cts_without_amenities = ( |
484
|
|
|
session.query( |
485
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id, |
486
|
|
|
) |
487
|
|
|
.filter( |
488
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
489
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
490
|
|
|
) |
491
|
|
|
.filter( |
492
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
493
|
|
|
q_amenities |
494
|
|
|
) |
495
|
|
|
) |
496
|
|
|
.distinct() |
497
|
|
|
) |
498
|
|
|
|
499
|
|
|
# Buildings filtered + synthetic buildings residential in |
500
|
|
|
# cells with CTS demand but without amenities |
501
|
|
|
cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
502
|
|
|
egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
503
|
|
|
q_cts_without_amenities |
504
|
|
|
) |
505
|
|
|
) |
506
|
|
|
|
507
|
|
|
# df_buildings_without_amenities = pd.read_sql( |
508
|
|
|
# cells_query.statement, cells_query.session.bind, index_col=None) |
509
|
|
|
df_buildings_without_amenities = gpd.read_postgis( |
510
|
|
|
cells_query.statement, |
511
|
|
|
cells_query.session.bind, |
512
|
|
|
geom_col="geom_building", |
513
|
|
|
) |
514
|
|
|
|
515
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.rename( |
516
|
|
|
columns={ |
517
|
|
|
# "zensus_population_id": "cell_id", |
518
|
|
|
"egon_building_id": "id", |
519
|
|
|
} |
520
|
|
|
) |
521
|
|
|
|
522
|
|
|
return df_buildings_without_amenities |
523
|
|
|
|
524
|
|
|
|
525
|
|
|
def select_cts_buildings(df_buildings_wo_amenities, max_n): |
526
|
|
|
""" |
527
|
|
|
N Buildings (filtered and synthetic) in each cell with |
528
|
|
|
cts demand are selected. Only the first n buildings |
529
|
|
|
are taken for each cell. The buildings are sorted by surface |
530
|
|
|
area. |
531
|
|
|
|
532
|
|
|
Returns |
533
|
|
|
------- |
534
|
|
|
df_buildings_with_cts_demand: gpd.GeoDataFrame |
535
|
|
|
Table of buildings |
536
|
|
|
""" |
537
|
|
|
|
538
|
|
|
df_buildings_wo_amenities.sort_values( |
539
|
|
|
"area", ascending=False, inplace=True |
540
|
|
|
) |
541
|
|
|
# select first n ids each census cell if available |
542
|
|
|
df_buildings_with_cts_demand = ( |
543
|
|
|
df_buildings_wo_amenities.groupby("zensus_population_id") |
544
|
|
|
.nth(list(range(max_n))) |
545
|
|
|
.reset_index() |
546
|
|
|
) |
547
|
|
|
df_buildings_with_cts_demand.reset_index(drop=True, inplace=True) |
548
|
|
|
|
549
|
|
|
return df_buildings_with_cts_demand |
550
|
|
|
|
551
|
|
|
|
552
|
|
|
def cells_with_cts_demand_only(df_buildings_without_amenities): |
553
|
|
|
""" |
554
|
|
|
Cells with cts demand but no amenities or buildilngs |
555
|
|
|
are determined. |
556
|
|
|
|
557
|
|
|
Returns |
558
|
|
|
------- |
559
|
|
|
df_cells_only_cts_demand: gpd.GeoDataFrame |
560
|
|
|
Table of cells with cts demand but no amenities or buildings |
561
|
|
|
""" |
562
|
|
|
from saio.openstreetmap import osm_amenities_shops_filtered |
563
|
|
|
|
564
|
|
|
# cells mit amenities |
565
|
|
|
with db.session_scope() as session: |
566
|
|
|
sub_query = ( |
567
|
|
|
session.query( |
568
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
569
|
|
|
) |
570
|
|
|
.filter( |
571
|
|
|
func.st_within( |
572
|
|
|
osm_amenities_shops_filtered.geom_amenity, |
573
|
|
|
DestatisZensusPopulationPerHa.geom, |
574
|
|
|
) |
575
|
|
|
) |
576
|
|
|
.distinct(DestatisZensusPopulationPerHa.id) |
577
|
|
|
) |
578
|
|
|
|
579
|
|
|
cells_query = ( |
580
|
|
|
session.query( |
581
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id, |
582
|
|
|
EgonDemandRegioZensusElectricity.scenario, |
583
|
|
|
EgonDemandRegioZensusElectricity.sector, |
584
|
|
|
EgonDemandRegioZensusElectricity.demand, |
585
|
|
|
DestatisZensusPopulationPerHa.geom, |
586
|
|
|
) |
587
|
|
|
.filter( |
588
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
589
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
590
|
|
|
) |
591
|
|
|
.filter( |
592
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
593
|
|
|
sub_query |
594
|
|
|
) |
595
|
|
|
) |
596
|
|
|
.filter( |
597
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
598
|
|
|
== DestatisZensusPopulationPerHa.id |
599
|
|
|
) |
600
|
|
|
) |
601
|
|
|
|
602
|
|
|
df_cts_cell_without_amenities = gpd.read_postgis( |
603
|
|
|
cells_query.statement, |
604
|
|
|
cells_query.session.bind, |
605
|
|
|
geom_col="geom", |
606
|
|
|
index_col=None, |
607
|
|
|
) |
608
|
|
|
|
609
|
|
|
# TODO maybe remove |
610
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.rename( |
611
|
|
|
columns={"cell_id": "zensus_population_id"} |
612
|
|
|
) |
613
|
|
|
|
614
|
|
|
# Census cells with only cts demand |
615
|
|
|
df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
616
|
|
|
~df_cts_cell_without_amenities["zensus_population_id"].isin( |
617
|
|
|
df_buildings_without_amenities["zensus_population_id"].unique() |
618
|
|
|
) |
619
|
|
|
] |
620
|
|
|
|
621
|
|
|
df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
622
|
|
|
|
623
|
|
|
return df_cells_only_cts_demand |
624
|
|
|
|
625
|
|
|
|
626
|
|
|
def calc_census_cell_share(scenario="eGon2035"): |
627
|
|
|
""" |
628
|
|
|
The profile share for each census cell is calculated by it's |
629
|
|
|
share of annual demand per substation bus. The annual demand |
630
|
|
|
per cell is defined by DemandRegio. The share is for both |
631
|
|
|
scenarios identical as the annual demand is linearly scaled. |
632
|
|
|
|
633
|
|
|
Parameters |
634
|
|
|
---------- |
635
|
|
|
scenario: str |
636
|
|
|
Scenario for which the share is calculated. |
637
|
|
|
|
638
|
|
|
Returns |
639
|
|
|
------- |
640
|
|
|
df_census_share: pd.DataFrame |
641
|
|
|
""" |
642
|
|
|
|
643
|
|
|
with db.session_scope() as session: |
644
|
|
|
cells_query = ( |
645
|
|
|
session.query( |
646
|
|
|
EgonDemandRegioZensusElectricity, MapZensusGridDistricts.bus_id |
647
|
|
|
) |
648
|
|
|
.filter(EgonDemandRegioZensusElectricity.sector == "service") |
649
|
|
|
.filter(EgonDemandRegioZensusElectricity.scenario == scenario) |
650
|
|
|
.filter( |
651
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
652
|
|
|
== MapZensusGridDistricts.zensus_population_id |
653
|
|
|
) |
654
|
|
|
) |
655
|
|
|
|
656
|
|
|
df_demand_regio_electricity_demand = pd.read_sql( |
657
|
|
|
cells_query.statement, |
658
|
|
|
cells_query.session.bind, |
659
|
|
|
index_col="zensus_population_id", |
660
|
|
|
) |
661
|
|
|
|
662
|
|
|
# get demand share of cell per bus |
663
|
|
|
df_census_share = df_demand_regio_electricity_demand[ |
664
|
|
|
"demand" |
665
|
|
|
] / df_demand_regio_electricity_demand.groupby("bus_id")[ |
666
|
|
|
"demand" |
667
|
|
|
].transform( |
668
|
|
|
"sum" |
669
|
|
|
) |
670
|
|
|
df_census_share = df_census_share.rename("cell_share") |
671
|
|
|
|
672
|
|
|
df_census_share = pd.concat( |
673
|
|
|
[ |
674
|
|
|
df_census_share, |
675
|
|
|
df_demand_regio_electricity_demand[["bus_id", "scenario"]], |
676
|
|
|
], |
677
|
|
|
axis=1, |
678
|
|
|
) |
679
|
|
|
|
680
|
|
|
df_census_share.reset_index(inplace=True) |
681
|
|
|
return df_census_share |
682
|
|
|
|
683
|
|
|
|
684
|
|
|
def calc_building_demand_profile_share(df_cts_buildings, scenario="eGon2035"): |
685
|
|
|
""" |
686
|
|
|
Share of cts electricity demand profile per bus for every selected building |
687
|
|
|
is calculated. Building-amenity share is multiplied with census cell share |
688
|
|
|
to get the substation bus profile share for each building. The share is |
689
|
|
|
grouped and aggregated per building as some cover multiple cells. |
690
|
|
|
|
691
|
|
|
Parameters |
692
|
|
|
---------- |
693
|
|
|
df_cts_buildings: gpd.GeoDataFrame |
694
|
|
|
Table of all buildings with cts demand assigned |
695
|
|
|
scenario: str |
696
|
|
|
Scenario for which the share is calculated. |
697
|
|
|
|
698
|
|
|
Returns |
699
|
|
|
------- |
700
|
|
|
df_building_share: pd.DataFrame |
701
|
|
|
Table of bus profile share per building |
702
|
|
|
|
703
|
|
|
""" |
704
|
|
|
|
705
|
|
|
def calc_building_amenity_share(df_cts_buildings): |
706
|
|
|
""" |
707
|
|
|
Calculate the building share by the number amenities per building |
708
|
|
|
within a census cell. |
709
|
|
|
""" |
710
|
|
|
df_building_amenity_share = df_cts_buildings[ |
711
|
|
|
"n_amenities_inside" |
712
|
|
|
] / df_cts_buildings.groupby("zensus_population_id")[ |
713
|
|
|
"n_amenities_inside" |
714
|
|
|
].transform( |
715
|
|
|
"sum" |
716
|
|
|
) |
717
|
|
|
df_building_amenity_share = pd.concat( |
718
|
|
|
[ |
719
|
|
|
df_building_amenity_share.rename("building_amenity_share"), |
720
|
|
|
df_cts_buildings[["zensus_population_id", "id"]], |
721
|
|
|
], |
722
|
|
|
axis=1, |
723
|
|
|
) |
724
|
|
|
return df_building_amenity_share |
725
|
|
|
|
726
|
|
|
df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
727
|
|
|
|
728
|
|
|
df_census_cell_share = calc_census_cell_share(scenario) |
729
|
|
|
|
730
|
|
|
df_demand_share = pd.merge( |
731
|
|
|
left=df_building_amenity_share, |
732
|
|
|
right=df_census_cell_share, |
733
|
|
|
left_on="zensus_population_id", |
734
|
|
|
right_on="zensus_population_id", |
735
|
|
|
) |
736
|
|
|
df_demand_share["profile_share"] = df_demand_share[ |
737
|
|
|
"building_amenity_share" |
738
|
|
|
].multiply(df_demand_share["cell_share"]) |
739
|
|
|
|
740
|
|
|
df_demand_share = df_demand_share[ |
741
|
|
|
["id", "bus_id", "scenario", "profile_share"] |
742
|
|
|
] |
743
|
|
|
# TODO adapt groupby? |
744
|
|
|
# Group and aggregate per building for multi cell buildings |
745
|
|
|
df_demand_share = ( |
746
|
|
|
df_demand_share.groupby(["scenario", "id", "bus_id"]) |
747
|
|
|
.sum() |
748
|
|
|
.reset_index() |
749
|
|
|
) |
750
|
|
|
if df_demand_share.duplicated("id", keep=False).any(): |
751
|
|
|
print( |
752
|
|
|
df_demand_share.loc[df_demand_share.duplicated("id", keep=False)] |
753
|
|
|
) |
754
|
|
|
return df_demand_share |
755
|
|
|
|
756
|
|
|
|
757
|
|
|
def calc_building_profiles( |
758
|
|
|
df_demand_share=None, |
759
|
|
|
egon_building_id=None, |
760
|
|
|
bus_id=None, |
761
|
|
|
scenario="eGon2035", |
762
|
|
|
): |
763
|
|
|
""" |
764
|
|
|
Calculate the demand profile for each building. The profile is |
765
|
|
|
calculated by the demand share of the building per substation bus. |
766
|
|
|
|
767
|
|
|
Parameters |
768
|
|
|
---------- |
769
|
|
|
df_demand_share: pd.DataFrame |
770
|
|
|
Table of demand share per building. If not given, table is |
771
|
|
|
sourced from database. |
772
|
|
|
egon_building_id: int |
773
|
|
|
Id of the building for which the profile is calculated. If not |
774
|
|
|
given, the profiles are calculated for all buildings. |
775
|
|
|
|
776
|
|
|
Returns |
777
|
|
|
------- |
778
|
|
|
df_building_profiles: pd.DataFrame |
779
|
|
|
Table of demand profile per building |
780
|
|
|
""" |
781
|
|
|
|
782
|
|
|
if not isinstance(df_demand_share, pd.DataFrame): |
783
|
|
|
with db.session_scope() as session: |
784
|
|
|
cells_query = session.query( |
785
|
|
|
EgonCtsElectricityDemandBuildingShare, |
786
|
|
|
).filter( |
787
|
|
|
EgonCtsElectricityDemandBuildingShare.scenario == scenario |
788
|
|
|
) |
789
|
|
|
|
790
|
|
|
df_demand_share = pd.read_sql( |
791
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
792
|
|
|
) |
793
|
|
|
else: |
794
|
|
|
df_demand_share = df_demand_share.loc[ |
795
|
|
|
df_demand_share["scenario"] == scenario |
796
|
|
|
] |
797
|
|
|
|
798
|
|
|
# TODO workaround |
799
|
|
|
df_demand_share = df_demand_share.drop(columns="serial") |
800
|
|
|
|
801
|
|
|
df_cts_profiles = calc_load_curves_cts(scenario) |
802
|
|
|
|
803
|
|
|
# get demand share of selected building id |
804
|
|
|
if isinstance(egon_building_id, int): |
805
|
|
|
if egon_building_id in df_demand_share["id"]: |
806
|
|
|
df_demand_share = df_demand_share.loc[ |
807
|
|
|
df_demand_share["id"] == egon_building_id |
808
|
|
|
] |
809
|
|
|
else: |
810
|
|
|
raise KeyError(f"Building with id {egon_building_id} not found") |
811
|
|
|
|
812
|
|
|
# get demand share of all buildings for selected bus id |
813
|
|
|
if isinstance(bus_id, int): |
814
|
|
|
if bus_id in df_demand_share["bus_id"]: |
815
|
|
|
df_demand_share = df_demand_share.loc[ |
816
|
|
|
df_demand_share["bus_id"] == bus_id |
817
|
|
|
] |
818
|
|
|
else: |
819
|
|
|
raise KeyError(f"Bus with id {bus_id} not found") |
820
|
|
|
|
821
|
|
|
# get demand profile for all buildings for selected demand share |
822
|
|
|
df_building_profiles = pd.DataFrame() |
823
|
|
|
for bus_id, df in df_demand_share.groupby("bus_id"): |
824
|
|
|
shares = df.set_index("id", drop=True)["profile_share"] |
825
|
|
|
profile = df_cts_profiles.loc[:, bus_id] |
826
|
|
|
building_profiles = profile.apply(lambda x: x * shares) |
|
|
|
|
827
|
|
|
df_building_profiles = pd.concat( |
828
|
|
|
[df_building_profiles, building_profiles], axis=1 |
829
|
|
|
) |
830
|
|
|
|
831
|
|
|
return df_building_profiles |
832
|
|
|
|
833
|
|
|
|
834
|
|
|
def cts_to_buildings(): |
835
|
|
|
""" |
836
|
|
|
Assigns CTS demand to buildings and calculates the respective demand |
837
|
|
|
profiles. The demand profile per substation are disaggregated per |
838
|
|
|
annual demand share of each census cell and by the number of amenities |
839
|
|
|
per building within the cell. If no building data is available, |
840
|
|
|
synthetic buildings are generated around the amenities. If no amenities |
841
|
|
|
but cts demand is available, buildings are randomly selected. If no |
842
|
|
|
building nor amenity is available, random synthetic buildings are |
843
|
|
|
generated. The demand share is stored in the database. |
844
|
|
|
|
845
|
|
|
Note: |
846
|
|
|
----- |
847
|
|
|
Cells with CTS demand, amenities and buildings do not change within |
848
|
|
|
the scenarios, only the demand itself. Therefore scenario eGon2035 |
849
|
|
|
can be used universally to determine the cts buildings but not for |
850
|
|
|
he demand share. |
851
|
|
|
""" |
852
|
|
|
|
853
|
|
|
# Buildings with amenities |
854
|
|
|
df_buildings_with_amenities, df_lost_cells = buildings_with_amenities() |
855
|
|
|
|
856
|
|
|
# Median number of amenities per cell |
857
|
|
|
median_n_amenities = int( |
858
|
|
|
df_buildings_with_amenities.groupby("zensus_population_id")[ |
859
|
|
|
"n_amenities_inside" |
860
|
|
|
] |
861
|
|
|
.sum() |
862
|
|
|
.median() |
863
|
|
|
) |
864
|
|
|
|
865
|
|
|
# Remove synthetic CTS buildings if existing |
866
|
|
|
delete_synthetic_cts_buildings() |
867
|
|
|
|
868
|
|
|
# Amenities not assigned to buildings |
869
|
|
|
df_amenities_without_buildings = amenities_without_buildings() |
870
|
|
|
|
871
|
|
|
# Append lost cells due to duplicated ids, to cover all demand cells |
872
|
|
|
if df_lost_cells.empty: |
873
|
|
|
|
874
|
|
|
df_lost_cells["amenities"] = median_n_amenities |
875
|
|
|
# create row for every amenity |
876
|
|
|
df_lost_cells["amenities"] = ( |
877
|
|
|
df_lost_cells["amenities"].astype(int).apply(range) |
878
|
|
|
) |
879
|
|
|
df_lost_cells = df_lost_cells.explode("amenities") |
880
|
|
|
df_lost_cells.drop(columns="amenities", inplace=True) |
881
|
|
|
df_amenities_without_buildings = df_amenities_without_buildings.append( |
882
|
|
|
df_lost_cells, ignore_index=True |
883
|
|
|
) |
884
|
|
|
# One building per amenity |
885
|
|
|
df_amenities_without_buildings["n_amenities_inside"] = 1 |
886
|
|
|
# Create synthetic buildings for amenites without buildings |
887
|
|
|
df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
888
|
|
|
df_amenities_without_buildings, points="geom_amenity" |
889
|
|
|
) |
890
|
|
|
|
891
|
|
|
# TODO write to DB and remove renaming |
892
|
|
|
write_table_to_postgis( |
893
|
|
|
df_synthetic_buildings_with_amenities.rename( |
894
|
|
|
columns={ |
895
|
|
|
"zensus_population_id": "cell_id", |
896
|
|
|
"egon_building_id": "id", |
897
|
|
|
} |
898
|
|
|
), |
899
|
|
|
OsmBuildingsSynthetic, |
900
|
|
|
drop=False, |
901
|
|
|
) |
902
|
|
|
|
903
|
|
|
# Cells without amenities but CTS demand and buildings |
904
|
|
|
df_buildings_without_amenities = buildings_without_amenities() |
905
|
|
|
|
906
|
|
|
# TODO Fix Adhoc Bugfix duplicated buildings |
907
|
|
|
# drop building ids which have already been used |
908
|
|
|
mask = df_buildings_without_amenities.loc[ |
909
|
|
|
df_buildings_without_amenities["id"].isin( |
910
|
|
|
df_buildings_with_amenities["id"] |
911
|
|
|
) |
912
|
|
|
].index |
913
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.drop( |
914
|
|
|
index=mask |
915
|
|
|
).reset_index(drop=True) |
916
|
|
|
|
917
|
|
|
# select median n buildings per cell |
918
|
|
|
df_buildings_without_amenities = select_cts_buildings( |
919
|
|
|
df_buildings_without_amenities, max_n=median_n_amenities |
920
|
|
|
) |
921
|
|
|
df_buildings_without_amenities["n_amenities_inside"] = 1 |
922
|
|
|
|
923
|
|
|
# Create synthetic amenities and buildings in cells with only CTS demand |
924
|
|
|
df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
925
|
|
|
df_buildings_without_amenities |
926
|
|
|
) |
927
|
|
|
# Median n Amenities per cell |
928
|
|
|
df_cells_with_cts_demand_only["amenities"] = median_n_amenities |
929
|
|
|
# create row for every amenity |
930
|
|
|
df_cells_with_cts_demand_only["amenities"] = ( |
931
|
|
|
df_cells_with_cts_demand_only["amenities"].astype(int).apply(range) |
932
|
|
|
) |
933
|
|
|
df_cells_with_cts_demand_only = df_cells_with_cts_demand_only.explode( |
934
|
|
|
"amenities" |
935
|
|
|
) |
936
|
|
|
df_cells_with_cts_demand_only.drop(columns="amenities", inplace=True) |
937
|
|
|
|
938
|
|
|
# Only 1 Amenity per Building |
939
|
|
|
df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
940
|
|
|
df_cells_with_cts_demand_only = place_buildings_with_amenities( |
941
|
|
|
df_cells_with_cts_demand_only, amenities=1 |
942
|
|
|
) |
943
|
|
|
df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
944
|
|
|
df_cells_with_cts_demand_only, points="geom_point" |
945
|
|
|
) |
946
|
|
|
|
947
|
|
|
# TODO write to DB and remove (backup) renaming |
948
|
|
|
write_table_to_postgis( |
949
|
|
|
df_synthetic_buildings_without_amenities.rename( |
950
|
|
|
columns={ |
951
|
|
|
"zensus_population_id": "cell_id", |
952
|
|
|
"egon_building_id": "id", |
953
|
|
|
} |
954
|
|
|
), |
955
|
|
|
OsmBuildingsSynthetic, |
956
|
|
|
drop=False, |
957
|
|
|
) |
958
|
|
|
|
959
|
|
|
# Concat all buildings |
960
|
|
|
columns = [ |
961
|
|
|
"zensus_population_id", |
962
|
|
|
"id", |
963
|
|
|
"geom_building", |
964
|
|
|
"n_amenities_inside", |
965
|
|
|
"source", |
966
|
|
|
] |
967
|
|
|
|
968
|
|
|
df_buildings_with_amenities["source"] = "bwa" |
969
|
|
|
df_synthetic_buildings_with_amenities["source"] = "sbwa" |
970
|
|
|
df_buildings_without_amenities["source"] = "bwoa" |
971
|
|
|
df_synthetic_buildings_without_amenities["source"] = "sbwoa" |
972
|
|
|
|
973
|
|
|
df_cts_buildings = pd.concat( |
974
|
|
|
[ |
975
|
|
|
df_buildings_with_amenities[columns], |
976
|
|
|
df_synthetic_buildings_with_amenities[columns], |
977
|
|
|
df_buildings_without_amenities[columns], |
978
|
|
|
df_synthetic_buildings_without_amenities[columns], |
979
|
|
|
], |
980
|
|
|
axis=0, |
981
|
|
|
ignore_index=True, |
982
|
|
|
) |
983
|
|
|
# TODO maybe remove after #772 |
984
|
|
|
df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
985
|
|
|
|
986
|
|
|
# Write table to db for debugging |
987
|
|
|
# TODO remove later |
988
|
|
|
df_cts_buildings = gpd.GeoDataFrame( |
989
|
|
|
df_cts_buildings, geometry="geom_building", crs=3035 |
990
|
|
|
) |
991
|
|
|
df_cts_buildings = df_cts_buildings.reset_index().rename( |
992
|
|
|
columns={"index": "serial"} |
993
|
|
|
) |
994
|
|
|
write_table_to_postgis( |
995
|
|
|
df_cts_buildings, |
996
|
|
|
CtsBuildings, |
997
|
|
|
drop=True, |
998
|
|
|
) |
999
|
|
|
|
1000
|
|
|
df_demand_share_2035 = calc_building_demand_profile_share( |
1001
|
|
|
df_cts_buildings, scenario="eGon2035" |
1002
|
|
|
) |
1003
|
|
|
df_demand_share_100RE = calc_building_demand_profile_share( |
1004
|
|
|
df_cts_buildings, scenario="eGon100RE" |
1005
|
|
|
) |
1006
|
|
|
|
1007
|
|
|
df_demand_share = pd.concat( |
1008
|
|
|
[df_demand_share_2035, df_demand_share_100RE], |
1009
|
|
|
axis=0, |
1010
|
|
|
ignore_index=True, |
1011
|
|
|
) |
1012
|
|
|
# TODO workaround |
1013
|
|
|
df_demand_share = df_demand_share.reset_index().rename( |
1014
|
|
|
columns={"index": "serial"} |
1015
|
|
|
) |
1016
|
|
|
|
1017
|
|
|
write_table_to_postgres( |
1018
|
|
|
df_demand_share, EgonCtsElectricityDemandBuildingShare, drop=True |
1019
|
|
|
) |
1020
|
|
|
|
1021
|
|
|
return df_cts_buildings, df_demand_share |
1022
|
|
|
|
1023
|
|
|
|
1024
|
|
|
def get_peak_load_cts_buildings(): |
1025
|
|
|
""" |
1026
|
|
|
Get peak load of all CTS buildings for both scenarios and store in DB. |
1027
|
|
|
""" |
1028
|
|
|
|
1029
|
|
|
df_building_profiles = calc_building_profiles(scenario="eGon2035") |
1030
|
|
|
df_peak_load_2035 = df_building_profiles.max(axis=0).rename("eGon2035") |
1031
|
|
|
df_building_profiles = calc_building_profiles(scenario="eGon100RE") |
1032
|
|
|
df_peak_load_100RE = df_building_profiles.max(axis=0).rename("eGon100RE") |
1033
|
|
|
df_peak_load = pd.concat( |
1034
|
|
|
[df_peak_load_2035, df_peak_load_100RE], axis=1 |
1035
|
|
|
).reset_index() |
1036
|
|
|
|
1037
|
|
|
# TODO rename table column to egon_building_id |
1038
|
|
|
df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
1039
|
|
|
df_peak_load["type"] = "cts" |
1040
|
|
|
df_peak_load = df_peak_load.melt( |
1041
|
|
|
id_vars=["building_id", "type"], |
1042
|
|
|
var_name="scenario", |
1043
|
|
|
value_name="peak_load_in_w", |
1044
|
|
|
) |
1045
|
|
|
# TODO Check units, maybe MwH? |
1046
|
|
|
# Convert unit to W |
1047
|
|
|
df_peak_load["peak_load_in_w"] = df_peak_load["peak_load_in_w"] * 1e6 |
1048
|
|
|
# Delete rows with cts demand |
1049
|
|
|
with db.session_scope() as session: |
1050
|
|
|
session.query(BuildingPeakLoads).filter( |
1051
|
|
|
BuildingPeakLoads.type == "cts" |
1052
|
|
|
).delete() |
1053
|
|
|
|
1054
|
|
|
# Write peak loads into db |
1055
|
|
|
with db.session_scope() as session: |
1056
|
|
|
session.bulk_insert_mappings( |
1057
|
|
|
BuildingPeakLoads, |
1058
|
|
|
df_peak_load.to_dict(orient="records"), |
1059
|
|
|
) |
1060
|
|
|
|
1061
|
|
|
|
1062
|
|
|
def delete_synthetic_cts_buildings(): |
1063
|
|
|
""" |
1064
|
|
|
All synthetic cts buildings are deleted from the DB. This is necessary if |
1065
|
|
|
the task is run multiple times as the existing synthetic buildings |
1066
|
|
|
influence the results. |
1067
|
|
|
""" |
1068
|
|
|
# import db tables |
1069
|
|
|
from saio.openstreetmap import osm_buildings_synthetic |
1070
|
|
|
|
1071
|
|
|
# cells mit amenities |
1072
|
|
|
with db.session_scope() as session: |
1073
|
|
|
session.query(osm_buildings_synthetic).filter( |
1074
|
|
|
osm_buildings_synthetic.building == "cts" |
1075
|
|
|
).delete() |
1076
|
|
|
|
1077
|
|
|
|
1078
|
|
|
class CtsElectricityBuildings(Dataset): |
1079
|
|
|
def __init__(self, dependencies): |
1080
|
|
|
super().__init__( |
1081
|
|
|
name="CtsElectricityBuildings", |
1082
|
|
|
version="0.0.0", |
1083
|
|
|
dependencies=dependencies, |
1084
|
|
|
tasks=( |
1085
|
|
|
cts_to_buildings, |
1086
|
|
|
get_peak_load_cts_buildings, |
1087
|
|
|
# get_all_cts_building_profiles, |
1088
|
|
|
), |
1089
|
|
|
) |
1090
|
|
|
|