1
|
|
|
""" |
2
|
|
|
Central module containing all code dealing with processing era5 weather data. |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
import datetime |
6
|
|
|
import json |
7
|
|
|
import time |
8
|
|
|
from sqlalchemy import Column, ForeignKey, Integer |
9
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
10
|
|
|
import geopandas as gpd |
11
|
|
|
import numpy as np |
12
|
|
|
import pandas as pd |
13
|
|
|
|
14
|
|
|
from egon.data import db |
15
|
|
|
from egon.data.datasets import Dataset |
16
|
|
|
from egon.data.datasets.era5 import EgonEra5Cells, EgonRenewableFeedIn, import_cutout |
17
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
18
|
|
|
from egon.data.metadata import ( |
19
|
|
|
context, |
20
|
|
|
license_ccby, |
21
|
|
|
meta_metadata, |
22
|
|
|
sources, |
23
|
|
|
) |
24
|
|
|
from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
25
|
|
|
import egon.data.config |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class RenewableFeedin(Dataset): |
29
|
|
|
def __init__(self, dependencies): |
30
|
|
|
super().__init__( |
31
|
|
|
name="RenewableFeedin", |
32
|
|
|
version="0.0.8", |
33
|
|
|
dependencies=dependencies, |
34
|
|
|
tasks={ |
35
|
|
|
wind, |
36
|
|
|
pv, |
37
|
|
|
solar_thermal, |
38
|
|
|
heat_pump_cop, |
39
|
|
|
wind_offshore, |
40
|
|
|
mapping_zensus_weather, |
41
|
|
|
}, |
42
|
|
|
) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
Base = declarative_base() |
46
|
|
|
engine = db.engine() |
47
|
|
|
|
48
|
|
|
|
49
|
|
|
class MapZensusWeatherCell(Base): |
50
|
|
|
__tablename__ = "egon_map_zensus_weather_cell" |
51
|
|
|
__table_args__ = {"schema": "boundaries"} |
52
|
|
|
|
53
|
|
|
zensus_population_id = Column( |
54
|
|
|
Integer, |
55
|
|
|
ForeignKey(DestatisZensusPopulationPerHa.id), |
56
|
|
|
primary_key=True, |
57
|
|
|
index=True, |
58
|
|
|
) |
59
|
|
|
w_id = Column(Integer, ForeignKey(EgonEra5Cells.w_id), index=True) |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def weather_cells_in_germany(geom_column="geom"): |
63
|
|
|
"""Get weather cells which intersect with Germany |
64
|
|
|
|
65
|
|
|
Returns |
66
|
|
|
------- |
67
|
|
|
GeoPandas.GeoDataFrame |
68
|
|
|
Index and points of weather cells inside Germany |
69
|
|
|
|
70
|
|
|
""" |
71
|
|
|
|
72
|
|
|
cfg = egon.data.config.datasets()["renewable_feedin"]["sources"] |
73
|
|
|
|
74
|
|
|
return db.select_geodataframe( |
75
|
|
|
f"""SELECT w_id, geom_point, geom |
76
|
|
|
FROM {cfg['weather_cells']['schema']}. |
77
|
|
|
{cfg['weather_cells']['table']} |
78
|
|
|
WHERE ST_Intersects('SRID=4326; |
79
|
|
|
POLYGON((5 56, 15.5 56, 15.5 47, 5 47, 5 56))', geom)""", |
80
|
|
|
geom_col=geom_column, |
81
|
|
|
index_col="w_id", |
82
|
|
|
) |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
def offshore_weather_cells(geom_column="geom"): |
86
|
|
|
"""Get weather cells which intersect with Germany |
87
|
|
|
|
88
|
|
|
Returns |
89
|
|
|
------- |
90
|
|
|
GeoPandas.GeoDataFrame |
91
|
|
|
Index and points of weather cells inside Germany |
92
|
|
|
|
93
|
|
|
""" |
94
|
|
|
|
95
|
|
|
cfg = egon.data.config.datasets()["renewable_feedin"]["sources"] |
96
|
|
|
|
97
|
|
|
return db.select_geodataframe( |
98
|
|
|
f"""SELECT w_id, geom_point, geom |
99
|
|
|
FROM {cfg['weather_cells']['schema']}. |
100
|
|
|
{cfg['weather_cells']['table']} |
101
|
|
|
WHERE ST_Intersects('SRID=4326; |
102
|
|
|
POLYGON((5.5 55.5, 14.5 55.5, 14.5 53.5, 5.5 53.5, 5.5 55.5))', |
103
|
|
|
geom)""", |
104
|
|
|
geom_col=geom_column, |
105
|
|
|
index_col="w_id", |
106
|
|
|
) |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
def federal_states_per_weather_cell(): |
110
|
|
|
"""Assings a federal state to each weather cell in Germany. |
111
|
|
|
|
112
|
|
|
Sets the federal state to the weather celss using the centroid. |
113
|
|
|
Weather cells at the borders whoes centroid is not inside Germany |
114
|
|
|
are assinged to the closest federal state. |
115
|
|
|
|
116
|
|
|
Returns |
117
|
|
|
------- |
118
|
|
|
GeoPandas.GeoDataFrame |
119
|
|
|
Index, points and federal state of weather cells inside Germany |
120
|
|
|
|
121
|
|
|
""" |
122
|
|
|
|
123
|
|
|
cfg = egon.data.config.datasets()["renewable_feedin"]["sources"] |
124
|
|
|
|
125
|
|
|
# Select weather cells and ferear states from database |
126
|
|
|
weather_cells = weather_cells_in_germany(geom_column="geom_point") |
127
|
|
|
|
128
|
|
|
federal_states = db.select_geodataframe( |
129
|
|
|
f"""SELECT gen, geometry |
130
|
|
|
FROM {cfg['vg250_lan_union']['schema']}. |
131
|
|
|
{cfg['vg250_lan_union']['table']}""", |
132
|
|
|
geom_col="geometry", |
133
|
|
|
index_col="gen", |
134
|
|
|
) |
135
|
|
|
|
136
|
|
|
# Map federal state and onshore wind turbine to weather cells |
137
|
|
|
weather_cells["federal_state"] = gpd.sjoin( |
138
|
|
|
weather_cells, federal_states |
139
|
|
|
).index_right |
140
|
|
|
|
141
|
|
|
# Assign a federal state to each cell inside Germany |
142
|
|
|
buffer = 1000 |
143
|
|
|
|
144
|
|
|
while (buffer < 30000) & ( |
145
|
|
|
len(weather_cells[weather_cells["federal_state"].isnull()]) > 0 |
146
|
|
|
): |
147
|
|
|
|
148
|
|
|
cells = weather_cells[weather_cells["federal_state"].isnull()] |
149
|
|
|
|
150
|
|
|
cells.loc[:, "geom_point"] = cells.geom_point.buffer(buffer) |
151
|
|
|
|
152
|
|
|
weather_cells.loc[cells.index, "federal_state"] = gpd.sjoin( |
153
|
|
|
cells, federal_states |
154
|
|
|
).index_right |
155
|
|
|
|
156
|
|
|
buffer += 200 |
157
|
|
|
|
158
|
|
|
weather_cells = ( |
159
|
|
|
weather_cells.reset_index() |
160
|
|
|
.drop_duplicates(subset="w_id", keep="first") |
161
|
|
|
.set_index("w_id") |
162
|
|
|
) |
163
|
|
|
|
164
|
|
|
weather_cells = weather_cells.dropna(axis=0, subset=["federal_state"]) |
165
|
|
|
|
166
|
|
|
return weather_cells.to_crs(4326) |
167
|
|
|
|
168
|
|
|
|
169
|
|
|
def turbine_per_weather_cell(): |
170
|
|
|
"""Assign wind onshore turbine types to weather cells |
171
|
|
|
|
172
|
|
|
Returns |
173
|
|
|
------- |
174
|
|
|
weather_cells : GeoPandas.GeoDataFrame |
175
|
|
|
Weather cells in Germany including turbine type |
176
|
|
|
|
177
|
|
|
""" |
178
|
|
|
|
179
|
|
|
# Select representative onshore wind turbines per federal state |
180
|
|
|
map_federal_states_turbines = { |
181
|
|
|
"Schleswig-Holstein": "E-126", |
182
|
|
|
"Bremen": "E-126", |
183
|
|
|
"Hamburg": "E-126", |
184
|
|
|
"Mecklenburg-Vorpommern": "E-126", |
185
|
|
|
"Niedersachsen": "E-126", |
186
|
|
|
"Berlin": "E-141", |
187
|
|
|
"Brandenburg": "E-141", |
188
|
|
|
"Hessen": "E-141", |
189
|
|
|
"Nordrhein-Westfalen": "E-141", |
190
|
|
|
"Sachsen": "E-141", |
191
|
|
|
"Sachsen-Anhalt": "E-141", |
192
|
|
|
"Thüringen": "E-141", |
193
|
|
|
"Baden-Württemberg": "E-141", |
194
|
|
|
"Bayern": "E-141", |
195
|
|
|
"Rheinland-Pfalz": "E-141", |
196
|
|
|
"Saarland": "E-141", |
197
|
|
|
} |
198
|
|
|
|
199
|
|
|
# Select weather cells and federal states |
200
|
|
|
weather_cells = federal_states_per_weather_cell() |
201
|
|
|
|
202
|
|
|
# Assign turbine type per federal state |
203
|
|
|
weather_cells["wind_turbine"] = weather_cells["federal_state"].map( |
204
|
|
|
map_federal_states_turbines |
205
|
|
|
) |
206
|
|
|
|
207
|
|
|
return weather_cells |
208
|
|
|
|
209
|
|
|
|
210
|
|
|
def feedin_per_turbine(): |
211
|
|
|
"""Calculate feedin timeseries per turbine type and weather cell |
212
|
|
|
|
213
|
|
|
Returns |
214
|
|
|
------- |
215
|
|
|
gdf : GeoPandas.GeoDataFrame |
216
|
|
|
Feed-in timeseries per turbine type and weather cell |
217
|
|
|
|
218
|
|
|
""" |
219
|
|
|
|
220
|
|
|
# Select weather data for Germany |
221
|
|
|
cutout = import_cutout(boundary="Germany") |
222
|
|
|
|
223
|
|
|
gdf = gpd.GeoDataFrame(geometry=cutout.grid_cells(), crs=4326) |
224
|
|
|
|
225
|
|
|
# Calculate feedin-timeseries for E-141 |
226
|
|
|
# source: |
227
|
|
|
# https://openenergy-platform.org/dataedit/view/supply/wind_turbine_library |
228
|
|
|
turbine_e141 = { |
229
|
|
|
"name": "E141 4200 kW", |
230
|
|
|
"hub_height": 129, |
231
|
|
|
"P": 4.200, |
232
|
|
|
"V": np.arange(1, 26, dtype=float), |
233
|
|
|
"POW": np.array( |
234
|
|
|
[ |
235
|
|
|
0.0, |
236
|
|
|
0.022, |
237
|
|
|
0.104, |
238
|
|
|
0.26, |
239
|
|
|
0.523, |
240
|
|
|
0.92, |
241
|
|
|
1.471, |
242
|
|
|
2.151, |
243
|
|
|
2.867, |
244
|
|
|
3.481, |
245
|
|
|
3.903, |
246
|
|
|
4.119, |
247
|
|
|
4.196, |
248
|
|
|
4.2, |
249
|
|
|
4.2, |
250
|
|
|
4.2, |
251
|
|
|
4.2, |
252
|
|
|
4.2, |
253
|
|
|
4.2, |
254
|
|
|
4.2, |
255
|
|
|
4.2, |
256
|
|
|
4.2, |
257
|
|
|
4.2, |
258
|
|
|
4.2, |
259
|
|
|
4.2, |
260
|
|
|
] |
261
|
|
|
), |
262
|
|
|
} |
263
|
|
|
ts_e141 = cutout.wind( |
264
|
|
|
turbine_e141, per_unit=True, shapes=cutout.grid_cells() |
265
|
|
|
) |
266
|
|
|
|
267
|
|
|
gdf["E-141"] = ts_e141.to_pandas().transpose().values.tolist() |
268
|
|
|
|
269
|
|
|
# Calculate feedin-timeseries for E-126 |
270
|
|
|
# source: |
271
|
|
|
# https://openenergy-platform.org/dataedit/view/supply/wind_turbine_library |
272
|
|
|
turbine_e126 = { |
273
|
|
|
"name": "E126 4200 kW", |
274
|
|
|
"hub_height": 159, |
275
|
|
|
"P": 4.200, |
276
|
|
|
"V": np.arange(1, 26, dtype=float), |
277
|
|
|
"POW": np.array( |
278
|
|
|
[ |
279
|
|
|
0.0, |
280
|
|
|
0.0, |
281
|
|
|
0.058, |
282
|
|
|
0.185, |
283
|
|
|
0.4, |
284
|
|
|
0.745, |
285
|
|
|
1.2, |
286
|
|
|
1.79, |
287
|
|
|
2.45, |
288
|
|
|
3.12, |
289
|
|
|
3.66, |
290
|
|
|
4.0, |
291
|
|
|
4.15, |
292
|
|
|
4.2, |
293
|
|
|
4.2, |
294
|
|
|
4.2, |
295
|
|
|
4.2, |
296
|
|
|
4.2, |
297
|
|
|
4.2, |
298
|
|
|
4.2, |
299
|
|
|
4.2, |
300
|
|
|
4.2, |
301
|
|
|
4.2, |
302
|
|
|
4.2, |
303
|
|
|
4.2, |
304
|
|
|
] |
305
|
|
|
), |
306
|
|
|
} |
307
|
|
|
ts_e126 = cutout.wind( |
308
|
|
|
turbine_e126, per_unit=True, shapes=cutout.grid_cells() |
309
|
|
|
) |
310
|
|
|
|
311
|
|
|
gdf["E-126"] = ts_e126.to_pandas().transpose().values.tolist() |
312
|
|
|
|
313
|
|
|
return gdf |
314
|
|
|
|
315
|
|
|
|
316
|
|
|
def wind(): |
317
|
|
|
"""Insert feed-in timeseries for wind onshore turbines to database |
318
|
|
|
|
319
|
|
|
Returns |
320
|
|
|
------- |
321
|
|
|
None. |
322
|
|
|
|
323
|
|
|
""" |
324
|
|
|
|
325
|
|
|
cfg = egon.data.config.datasets()["renewable_feedin"]["targets"] |
326
|
|
|
|
327
|
|
|
# Get weather cells with turbine type |
328
|
|
|
weather_cells = turbine_per_weather_cell() |
329
|
|
|
weather_cells = weather_cells[weather_cells.wind_turbine.notnull()] |
330
|
|
|
|
331
|
|
|
# Calculate feedin timeseries per turbine and weather cell |
332
|
|
|
timeseries_per_turbine = feedin_per_turbine() |
333
|
|
|
|
334
|
|
|
# Join weather cells and feedin-timeseries |
335
|
|
|
timeseries = gpd.sjoin(weather_cells, timeseries_per_turbine)[ |
336
|
|
|
["E-141", "E-126"] |
337
|
|
|
] |
338
|
|
|
|
339
|
|
|
weather_year = get_sector_parameters("global", "eGon2035")["weather_year"] |
340
|
|
|
|
341
|
|
|
df = pd.DataFrame( |
342
|
|
|
index=weather_cells.index, |
343
|
|
|
columns=["weather_year", "carrier", "feedin"], |
344
|
|
|
data={"weather_year": weather_year, "carrier": "wind_onshore"}, |
345
|
|
|
) |
346
|
|
|
|
347
|
|
|
# Insert feedin for selected turbine per weather cell |
348
|
|
|
for turbine in ["E-126", "E-141"]: |
349
|
|
|
idx = weather_cells.index[ |
350
|
|
|
(weather_cells.wind_turbine == turbine) |
351
|
|
|
& (weather_cells.index.isin(timeseries.index)) |
352
|
|
|
] |
353
|
|
|
df.loc[idx, "feedin"] = timeseries.loc[idx, turbine].values |
354
|
|
|
|
355
|
|
|
db.execute_sql( |
356
|
|
|
f""" |
357
|
|
|
DELETE FROM {cfg['feedin_table']['schema']}. |
358
|
|
|
{cfg['feedin_table']['table']} |
359
|
|
|
WHERE carrier = 'wind_onshore'""" |
360
|
|
|
) |
361
|
|
|
|
362
|
|
|
# Insert values into database |
363
|
|
|
df.to_sql( |
364
|
|
|
cfg["feedin_table"]["table"], |
365
|
|
|
schema=cfg["feedin_table"]["schema"], |
366
|
|
|
con=db.engine(), |
367
|
|
|
if_exists="append", |
368
|
|
|
) |
369
|
|
|
|
370
|
|
|
|
371
|
|
|
def wind_offshore(): |
372
|
|
|
"""Insert feed-in timeseries for wind offshore turbines to database |
373
|
|
|
|
374
|
|
|
Returns |
375
|
|
|
------- |
376
|
|
|
None. |
377
|
|
|
|
378
|
|
|
""" |
379
|
|
|
|
380
|
|
|
# Get offshore weather cells arround Germany |
381
|
|
|
weather_cells = offshore_weather_cells() |
382
|
|
|
|
383
|
|
|
# Select weather data for German coast |
384
|
|
|
cutout = import_cutout(boundary="Germany-offshore") |
385
|
|
|
|
386
|
|
|
# Select weather year from cutout |
387
|
|
|
weather_year = cutout.name.split("-")[2] |
388
|
|
|
|
389
|
|
|
# Calculate feedin timeseries |
390
|
|
|
ts_wind_offshore = cutout.wind( |
391
|
|
|
"Vestas_V164_7MW_offshore", |
392
|
|
|
per_unit=True, |
393
|
|
|
shapes=weather_cells.to_crs(4326).geom, |
394
|
|
|
) |
395
|
|
|
|
396
|
|
|
# Create dataframe and insert to database |
397
|
|
|
insert_feedin(ts_wind_offshore, "wind_offshore", weather_year) |
398
|
|
|
|
399
|
|
|
|
400
|
|
|
def pv(): |
401
|
|
|
"""Insert feed-in timeseries for pv plants to database |
402
|
|
|
|
403
|
|
|
Returns |
404
|
|
|
------- |
405
|
|
|
None. |
406
|
|
|
|
407
|
|
|
""" |
408
|
|
|
|
409
|
|
|
# Get weather cells in Germany |
410
|
|
|
weather_cells = weather_cells_in_germany() |
411
|
|
|
|
412
|
|
|
# Select weather data for Germany |
413
|
|
|
cutout = import_cutout(boundary="Germany") |
414
|
|
|
|
415
|
|
|
# Select weather year from cutout |
416
|
|
|
weather_year = cutout.name.split("-")[1] |
417
|
|
|
|
418
|
|
|
# Calculate feedin timeseries |
419
|
|
|
ts_pv = cutout.pv( |
420
|
|
|
"CSi", |
421
|
|
|
orientation={"slope": 35.0, "azimuth": 180.0}, |
422
|
|
|
per_unit=True, |
423
|
|
|
shapes=weather_cells.to_crs(4326).geom, |
424
|
|
|
) |
425
|
|
|
|
426
|
|
|
# Create dataframe and insert to database |
427
|
|
|
insert_feedin(ts_pv, "pv", weather_year) |
428
|
|
|
|
429
|
|
|
|
430
|
|
|
def solar_thermal(): |
431
|
|
|
"""Insert feed-in timeseries for pv plants to database |
432
|
|
|
|
433
|
|
|
Returns |
434
|
|
|
------- |
435
|
|
|
None. |
436
|
|
|
|
437
|
|
|
""" |
438
|
|
|
|
439
|
|
|
# Get weather cells in Germany |
440
|
|
|
weather_cells = weather_cells_in_germany() |
441
|
|
|
|
442
|
|
|
# Select weather data for Germany |
443
|
|
|
cutout = import_cutout(boundary="Germany") |
444
|
|
|
|
445
|
|
|
# Select weather year from cutout |
446
|
|
|
weather_year = cutout.name.split("-")[1] |
447
|
|
|
|
448
|
|
|
# Calculate feedin timeseries |
449
|
|
|
ts_solar_thermal = cutout.solar_thermal( |
450
|
|
|
clearsky_model="simple", |
451
|
|
|
orientation={"slope": 45.0, "azimuth": 180.0}, |
452
|
|
|
per_unit=True, |
453
|
|
|
shapes=weather_cells.to_crs(4326).geom, |
454
|
|
|
capacity_factor=False, |
455
|
|
|
) |
456
|
|
|
|
457
|
|
|
# Create dataframe and insert to database |
458
|
|
|
insert_feedin(ts_solar_thermal, "solar_thermal", weather_year) |
459
|
|
|
|
460
|
|
|
|
461
|
|
|
def heat_pump_cop(): |
462
|
|
|
""" |
463
|
|
|
Calculate coefficient of performance for heat pumps according to |
464
|
|
|
T. Brown et al: "Synergies of sector coupling and transmission |
465
|
|
|
reinforcement in a cost-optimised, highlyrenewable European energy system", |
466
|
|
|
2018, p. 8 |
467
|
|
|
|
468
|
|
|
Returns |
469
|
|
|
------- |
470
|
|
|
None. |
471
|
|
|
|
472
|
|
|
""" |
473
|
|
|
# Assume temperature of heating system to 55°C according to Brown et. al |
474
|
|
|
t_sink = 55 |
475
|
|
|
|
476
|
|
|
carrier = "heat_pump_cop" |
477
|
|
|
|
478
|
|
|
# Load configuration |
479
|
|
|
cfg = egon.data.config.datasets()["renewable_feedin"] |
480
|
|
|
|
481
|
|
|
# Get weather cells in Germany |
482
|
|
|
weather_cells = weather_cells_in_germany() |
483
|
|
|
|
484
|
|
|
# Select weather data for Germany |
485
|
|
|
cutout = import_cutout(boundary="Germany") |
486
|
|
|
|
487
|
|
|
# Select weather year from cutout |
488
|
|
|
weather_year = cutout.name.split("-")[1] |
489
|
|
|
|
490
|
|
|
# Calculate feedin timeseries |
491
|
|
|
temperature = cutout.temperature( |
492
|
|
|
shapes=weather_cells.to_crs(4326).geom |
493
|
|
|
).transpose() |
494
|
|
|
|
495
|
|
|
t_source = temperature.to_pandas() |
496
|
|
|
|
497
|
|
|
delta_t = t_sink - t_source |
498
|
|
|
|
499
|
|
|
# Calculate coefficient of performance for air sourced heat pumps |
500
|
|
|
# according to Brown et. al |
501
|
|
|
cop = 6.81 - 0.121 * delta_t + 0.00063 * delta_t**2 |
502
|
|
|
|
503
|
|
|
df = pd.DataFrame( |
504
|
|
|
index=temperature.to_pandas().index, |
505
|
|
|
columns=["weather_year", "carrier", "feedin"], |
506
|
|
|
data={"weather_year": weather_year, "carrier": carrier}, |
507
|
|
|
) |
508
|
|
|
|
509
|
|
|
df.feedin = cop.values.tolist() |
510
|
|
|
|
511
|
|
|
# Delete existing rows for carrier |
512
|
|
|
db.execute_sql( |
513
|
|
|
f""" |
514
|
|
|
DELETE FROM {cfg['targets']['feedin_table']['schema']}. |
515
|
|
|
{cfg['targets']['feedin_table']['table']} |
516
|
|
|
WHERE carrier = '{carrier}'""" |
517
|
|
|
) |
518
|
|
|
|
519
|
|
|
# Insert values into database |
520
|
|
|
df.to_sql( |
521
|
|
|
cfg["targets"]["feedin_table"]["table"], |
522
|
|
|
schema=cfg["targets"]["feedin_table"]["schema"], |
523
|
|
|
con=db.engine(), |
524
|
|
|
if_exists="append", |
525
|
|
|
) |
526
|
|
|
|
527
|
|
|
|
528
|
|
|
def insert_feedin(data, carrier, weather_year): |
529
|
|
|
"""Insert feedin data into database |
530
|
|
|
|
531
|
|
|
Parameters |
532
|
|
|
---------- |
533
|
|
|
data : xarray.core.dataarray.DataArray |
534
|
|
|
Feedin timeseries data |
535
|
|
|
carrier : str |
536
|
|
|
Name of energy carrier |
537
|
|
|
weather_year : int |
538
|
|
|
Selected weather year |
539
|
|
|
|
540
|
|
|
Returns |
541
|
|
|
------- |
542
|
|
|
None. |
543
|
|
|
|
544
|
|
|
""" |
545
|
|
|
# Transpose DataFrame |
546
|
|
|
data = data.transpose().to_pandas() |
547
|
|
|
|
548
|
|
|
# Load configuration |
549
|
|
|
cfg = egon.data.config.datasets()["renewable_feedin"] |
550
|
|
|
|
551
|
|
|
# Initialize DataFrame |
552
|
|
|
df = pd.DataFrame( |
553
|
|
|
index=data.index, |
554
|
|
|
columns=["weather_year", "carrier", "feedin"], |
555
|
|
|
data={"weather_year": weather_year, "carrier": carrier}, |
556
|
|
|
) |
557
|
|
|
|
558
|
|
|
# Convert solar thermal data from W/m^2 to MW/(1000m^2) = kW/m^2 |
559
|
|
|
if carrier == "solar_thermal": |
560
|
|
|
data *= 1e-3 |
561
|
|
|
|
562
|
|
|
# Insert feedin into DataFrame |
563
|
|
|
df.feedin = data.values.tolist() |
564
|
|
|
|
565
|
|
|
# Delete existing rows for carrier |
566
|
|
|
db.execute_sql( |
567
|
|
|
f""" |
568
|
|
|
DELETE FROM {cfg['targets']['feedin_table']['schema']}. |
569
|
|
|
{cfg['targets']['feedin_table']['table']} |
570
|
|
|
WHERE carrier = '{carrier}'""" |
571
|
|
|
) |
572
|
|
|
|
573
|
|
|
# Insert values into database |
574
|
|
|
df.to_sql( |
575
|
|
|
cfg["targets"]["feedin_table"]["table"], |
576
|
|
|
schema=cfg["targets"]["feedin_table"]["schema"], |
577
|
|
|
con=db.engine(), |
578
|
|
|
if_exists="append", |
579
|
|
|
) |
580
|
|
|
|
581
|
|
|
|
582
|
|
|
def mapping_zensus_weather(): |
583
|
|
|
"""Perform mapping between era5 weather cell and zensus grid""" |
584
|
|
|
|
585
|
|
|
with db.session_scope() as session: |
586
|
|
|
cells_query = session.query( |
587
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
588
|
|
|
DestatisZensusPopulationPerHa.geom_point, |
589
|
|
|
) |
590
|
|
|
|
591
|
|
|
gdf_zensus_population = gpd.read_postgis( |
592
|
|
|
cells_query.statement, |
593
|
|
|
cells_query.session.bind, |
594
|
|
|
index_col=None, |
595
|
|
|
geom_col="geom_point", |
596
|
|
|
) |
597
|
|
|
|
598
|
|
|
with db.session_scope() as session: |
599
|
|
|
cells_query = session.query(EgonEra5Cells.w_id, EgonEra5Cells.geom) |
600
|
|
|
|
601
|
|
|
gdf_weather_cell = gpd.read_postgis( |
602
|
|
|
cells_query.statement, |
603
|
|
|
cells_query.session.bind, |
604
|
|
|
index_col=None, |
605
|
|
|
geom_col="geom", |
606
|
|
|
) |
607
|
|
|
# CRS is 4326 |
608
|
|
|
gdf_weather_cell = gdf_weather_cell.to_crs(epsg=3035) |
609
|
|
|
|
610
|
|
|
gdf_zensus_weather = gdf_zensus_population.sjoin( |
611
|
|
|
gdf_weather_cell, how="left", predicate="within" |
612
|
|
|
) |
613
|
|
|
|
614
|
|
|
MapZensusWeatherCell.__table__.drop(bind=engine, checkfirst=True) |
615
|
|
|
MapZensusWeatherCell.__table__.create(bind=engine, checkfirst=True) |
616
|
|
|
|
617
|
|
|
# Write mapping into db |
618
|
|
|
with db.session_scope() as session: |
619
|
|
|
session.bulk_insert_mappings( |
620
|
|
|
MapZensusWeatherCell, |
621
|
|
|
gdf_zensus_weather[["zensus_population_id", "w_id"]].to_dict( |
622
|
|
|
orient="records" |
623
|
|
|
), |
624
|
|
|
) |
625
|
|
|
|
626
|
|
|
|
627
|
|
View Code Duplication |
def add_metadata(): |
|
|
|
|
628
|
|
|
"""Add metdata to supply.egon_era5_renewable_feedin |
629
|
|
|
|
630
|
|
|
Returns |
631
|
|
|
------- |
632
|
|
|
None. |
633
|
|
|
|
634
|
|
|
""" |
635
|
|
|
|
636
|
|
|
# Import column names and datatypes |
637
|
|
|
fields = [ |
638
|
|
|
{ |
639
|
|
|
"description": "Weather cell index", |
640
|
|
|
"name": "w_id", |
641
|
|
|
"type": "integer", |
642
|
|
|
"unit": "none", |
643
|
|
|
}, |
644
|
|
|
{ |
645
|
|
|
"description": "Weather year", |
646
|
|
|
"name": "weather_year", |
647
|
|
|
"type": "integer", |
648
|
|
|
"unit": "none", |
649
|
|
|
}, |
650
|
|
|
{ |
651
|
|
|
"description": "Energy carrier", |
652
|
|
|
"name": "carrier", |
653
|
|
|
"type": "string", |
654
|
|
|
"unit": "none", |
655
|
|
|
}, |
656
|
|
|
{ |
657
|
|
|
"description": "Weather-dependent feedin timeseries", |
658
|
|
|
"name": "feedin", |
659
|
|
|
"type": "array", |
660
|
|
|
"unit": "p.u.", |
661
|
|
|
}, |
662
|
|
|
] |
663
|
|
|
|
664
|
|
|
meta = { |
665
|
|
|
"name": "supply.egon_era5_renewable_feedin", |
666
|
|
|
"title": "eGon feedin timeseries for RES", |
667
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
668
|
|
|
"description": "Weather-dependent feedin timeseries for RES", |
669
|
|
|
"language": ["EN"], |
670
|
|
|
"publicationDate": datetime.date.today().isoformat(), |
671
|
|
|
"context": context(), |
672
|
|
|
"spatial": { |
673
|
|
|
"location": None, |
674
|
|
|
"extent": "Germany", |
675
|
|
|
"resolution": None, |
676
|
|
|
}, |
677
|
|
|
"sources": [ |
678
|
|
|
sources()["era5"], |
679
|
|
|
sources()["vg250"], |
680
|
|
|
sources()["egon-data"], |
681
|
|
|
], |
682
|
|
|
"licenses": [ |
683
|
|
|
license_ccby( |
684
|
|
|
"© Bundesamt für Kartographie und Geodäsie 2020 (Daten verändert); " |
685
|
|
|
"© Copernicus Climate Change Service (C3S) Climate Data Store " |
686
|
|
|
"© Jonathan Amme, Clara Büttner, Ilka Cußmann, Julian Endres, Carlos Epia, Stephan Günther, Ulf Müller, Amélia Nadal, Guido Pleßmann, Francesco Witte", |
687
|
|
|
) |
688
|
|
|
], |
689
|
|
|
"contributors": [ |
690
|
|
|
{ |
691
|
|
|
"title": "Clara Büttner", |
692
|
|
|
"email": "http://github.com/ClaraBuettner", |
693
|
|
|
"date": time.strftime("%Y-%m-%d"), |
694
|
|
|
"object": None, |
695
|
|
|
"comment": "Imported data", |
696
|
|
|
}, |
697
|
|
|
], |
698
|
|
|
"resources": [ |
699
|
|
|
{ |
700
|
|
|
"profile": "tabular-data-resource", |
701
|
|
|
"name": "supply.egon_scenario_capacities", |
702
|
|
|
"path": None, |
703
|
|
|
"format": "PostgreSQL", |
704
|
|
|
"encoding": "UTF-8", |
705
|
|
|
"schema": { |
706
|
|
|
"fields": fields, |
707
|
|
|
"primaryKey": ["index"], |
708
|
|
|
"foreignKeys": [], |
709
|
|
|
}, |
710
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."}, |
711
|
|
|
} |
712
|
|
|
], |
713
|
|
|
"metaMetadata": meta_metadata(), |
714
|
|
|
} |
715
|
|
|
|
716
|
|
|
# Create json dump |
717
|
|
|
meta_json = "'" + json.dumps(meta) + "'" |
718
|
|
|
|
719
|
|
|
# Add metadata as a comment to the table |
720
|
|
|
db.submit_comment( |
721
|
|
|
meta_json, |
722
|
|
|
EgonRenewableFeedIn.__table__.schema, |
723
|
|
|
EgonRenewableFeedIn.__table__.name, |
724
|
|
|
) |
725
|
|
|
|