| Total Complexity | 121 |
| Total Lines | 2830 |
| Duplicated Lines | 1.55 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.power_plants.pv_rooftop_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 2 | Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate |
||
| 3 | new PV rooftop generators for scenarios eGon2035 and eGon100RE. |
||
| 4 | |||
| 5 | Data cleaning and inference: |
||
| 6 | * Drop duplicates and entries with missing critical data. |
||
| 7 | * Determine most plausible capacity from multiple values given in MaStR data. |
||
| 8 | * Drop generators which don't have any plausible capacity data |
||
| 9 | (23.5MW > P > 0.1). |
||
| 10 | * Randomly and weighted add a start-up date if it is missing. |
||
| 11 | * Extract zip and municipality from 'Standort' given in MaStR data. |
||
| 12 | * Geocode unique zip and municipality combinations with Nominatim (1 sec |
||
| 13 | delay). Drop generators for which geocoding failed or which are located |
||
| 14 | outside the municipalities of Germany. |
||
| 15 | * Add some visual sanity checks for cleaned data. |
||
| 16 | |||
| 17 | Allocation of MaStR data: |
||
| 18 | * Allocate each generator to an existing building from OSM. |
||
| 19 | * Determine the quantile each generator and building is in depending on the |
||
| 20 | capacity of the generator and the area of the polygon of the building. |
||
| 21 | * Randomly distribute generators within each municipality preferably within |
||
| 22 | the same building area quantile as the generators are capacity wise. |
||
| 23 | * If not enough buildings exists within a municipality and quantile additional |
||
| 24 | buildings from other quantiles are chosen randomly. |
||
| 25 | |||
| 26 | Desegregation of pv rooftop scenarios: |
||
| 27 | * The scenario data per federal state is linearly distributed to the mv grid |
||
| 28 | districts according to the pv rooftop potential per mv grid district. |
||
| 29 | * The rooftop potential is estimated from the building area given from the OSM |
||
| 30 | buildings. |
||
| 31 | * Grid districts, which are located in several federal states, are allocated |
||
| 32 | PV capacity according to their respective roof potential in the individual |
||
| 33 | federal states. |
||
| 34 | * The desegregation of PV plants within a grid districts respects existing |
||
| 35 | plants from MaStR, which did not reach their end of life. |
||
| 36 | * New PV plants are randomly and weighted generated using a breakdown of MaStR |
||
| 37 | data as generator basis. |
||
| 38 | * Plant metadata (e.g. plant orientation) is also added random and weighted |
||
| 39 | from MaStR data as basis. |
||
| 40 | """ |
||
| 41 | from __future__ import annotations |
||
| 42 | |||
| 43 | from collections import Counter |
||
| 44 | from functools import wraps |
||
| 45 | from pathlib import Path |
||
| 46 | from time import perf_counter |
||
| 47 | from typing import Any |
||
| 48 | |||
| 49 | from geoalchemy2 import Geometry |
||
| 50 | from geopy.extra.rate_limiter import RateLimiter |
||
| 51 | from geopy.geocoders import Nominatim |
||
| 52 | from loguru import logger |
||
| 53 | from numpy.random import RandomState, default_rng |
||
| 54 | from pyproj.crs.crs import CRS |
||
| 55 | from sqlalchemy import BigInteger, Column, Float, Integer, String |
||
| 56 | from sqlalchemy.dialects.postgresql import HSTORE |
||
| 57 | from sqlalchemy.ext.declarative import declarative_base |
||
| 58 | import geopandas as gpd |
||
| 59 | import numpy as np |
||
| 60 | import pandas as pd |
||
| 61 | |||
| 62 | from egon.data import config, db |
||
| 63 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
| 64 | OsmBuildingsSynthetic, |
||
| 65 | ) |
||
| 66 | from egon.data.datasets.mastr import WORKING_DIR_MASTR_NEW |
||
| 67 | from egon.data.datasets.power_plants.mastr import EgonPowerPlantsPv |
||
| 68 | from egon.data.datasets.scenario_capacities import EgonScenarioCapacities |
||
| 69 | from egon.data.datasets.zensus_vg250 import Vg250Gem |
||
| 70 | |||
| 71 | engine = db.engine() |
||
| 72 | Base = declarative_base() |
||
| 73 | SEED = int(config.settings()["egon-data"]["--random-seed"]) |
||
| 74 | |||
| 75 | # TODO: move to yml |
||
| 76 | # mastr data |
||
| 77 | MASTR_RELEVANT_COLS = [ |
||
| 78 | "EinheitMastrNummer", |
||
| 79 | "Bruttoleistung", |
||
| 80 | "Bruttoleistung_extended", |
||
| 81 | "Nettonennleistung", |
||
| 82 | "InstallierteLeistung", |
||
| 83 | "zugeordneteWirkleistungWechselrichter", |
||
| 84 | "EinheitBetriebsstatus", |
||
| 85 | "Standort", |
||
| 86 | "Bundesland", |
||
| 87 | "Land", |
||
| 88 | "Landkreis", |
||
| 89 | "Gemeinde", |
||
| 90 | "Postleitzahl", |
||
| 91 | "Ort", |
||
| 92 | "GeplantesInbetriebnahmedatum", |
||
| 93 | "Inbetriebnahmedatum", |
||
| 94 | "GemeinsamerWechselrichterMitSpeicher", |
||
| 95 | "Lage", |
||
| 96 | "Leistungsbegrenzung", |
||
| 97 | "EinheitlicheAusrichtungUndNeigungswinkel", |
||
| 98 | "Hauptausrichtung", |
||
| 99 | "HauptausrichtungNeigungswinkel", |
||
| 100 | "Nebenausrichtung", |
||
| 101 | ] |
||
| 102 | |||
| 103 | MASTR_DTYPES = { |
||
| 104 | "EinheitMastrNummer": str, |
||
| 105 | "Bruttoleistung": float, |
||
| 106 | "Bruttoleistung_extended": float, |
||
| 107 | "Nettonennleistung": float, |
||
| 108 | "InstallierteLeistung": float, |
||
| 109 | "zugeordneteWirkleistungWechselrichter": float, |
||
| 110 | "EinheitBetriebsstatus": str, |
||
| 111 | "Standort": str, |
||
| 112 | "Bundesland": str, |
||
| 113 | "Land": str, |
||
| 114 | "Landkreis": str, |
||
| 115 | "Gemeinde": str, |
||
| 116 | # "Postleitzahl": int, # fails because of nan values |
||
| 117 | "Ort": str, |
||
| 118 | "GemeinsamerWechselrichterMitSpeicher": str, |
||
| 119 | "Lage": str, |
||
| 120 | "Leistungsbegrenzung": str, |
||
| 121 | # this will parse nan values as false wich is not always correct |
||
| 122 | # "EinheitlicheAusrichtungUndNeigungswinkel": bool, |
||
| 123 | "Hauptausrichtung": str, |
||
| 124 | "HauptausrichtungNeigungswinkel": str, |
||
| 125 | "Nebenausrichtung": str, |
||
| 126 | "NebenausrichtungNeigungswinkel": str, |
||
| 127 | } |
||
| 128 | |||
| 129 | MASTR_PARSE_DATES = [ |
||
| 130 | "GeplantesInbetriebnahmedatum", |
||
| 131 | "Inbetriebnahmedatum", |
||
| 132 | ] |
||
| 133 | |||
| 134 | MASTR_INDEX_COL = "EinheitMastrNummer" |
||
| 135 | |||
| 136 | EPSG = 4326 |
||
| 137 | SRID = 3035 |
||
| 138 | |||
| 139 | # data cleaning |
||
| 140 | MAX_REALISTIC_PV_CAP = 23500 |
||
| 141 | MIN_REALISTIC_PV_CAP = 0.1 |
||
| 142 | ROUNDING = 1 |
||
| 143 | |||
| 144 | # geopy |
||
| 145 | MIN_DELAY_SECONDS = 1 |
||
| 146 | USER_AGENT = "rli_kh_geocoder" |
||
| 147 | |||
| 148 | # show additional logging information |
||
| 149 | VERBOSE = False |
||
| 150 | |||
| 151 | EXPORT_DIR = Path(__name__).resolve().parent / "data" |
||
| 152 | EXPORT_FILE = "mastr_geocoded.gpkg" |
||
| 153 | EXPORT_PATH = EXPORT_DIR / EXPORT_FILE |
||
| 154 | DRIVER = "GPKG" |
||
| 155 | |||
| 156 | # Number of quantiles |
||
| 157 | Q = 5 |
||
| 158 | |||
| 159 | # Scenario Data |
||
| 160 | CARRIER = "solar_rooftop" |
||
| 161 | SCENARIOS = ["eGon2035", "eGon100RE"] |
||
| 162 | SCENARIO_TIMESTAMP = { |
||
| 163 | "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"), |
||
| 164 | "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"), |
||
| 165 | } |
||
| 166 | PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D") |
||
| 167 | |||
| 168 | # Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp |
||
| 169 | # https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf |
||
| 170 | MODUL_CAP = 0.4 # kWp |
||
| 171 | MODUL_SIZE = 1.096 * 1.754 # m² |
||
| 172 | PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE |
||
| 173 | |||
| 174 | # Estimation of usable roof area |
||
| 175 | # Factor for the conversion of building area to roof area |
||
| 176 | # estimation mean roof pitch: 35° |
||
| 177 | # estimation usable roof share: 80% |
||
| 178 | # estimation that only the south side of the building is used for pv |
||
| 179 | # see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf |
||
| 180 | # AREA_FACTOR = 1.221 |
||
| 181 | # USABLE_ROOF_SHARE = 0.8 |
||
| 182 | # SOUTH_SHARE = 0.5 |
||
| 183 | # ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE |
||
| 184 | ROOF_FACTOR = 0.5 |
||
| 185 | |||
| 186 | CAP_RANGES = [ |
||
| 187 | (0, 30), |
||
| 188 | (30, 100), |
||
| 189 | (100, float("inf")), |
||
| 190 | ] |
||
| 191 | |||
| 192 | MIN_BUILDING_SIZE = 10.0 |
||
| 193 | UPPER_QUNATILE = 0.95 |
||
| 194 | LOWER_QUANTILE = 0.05 |
||
| 195 | |||
| 196 | COLS_TO_RENAME = { |
||
| 197 | "EinheitlicheAusrichtungUndNeigungswinkel": ( |
||
| 198 | "einheitliche_ausrichtung_und_neigungswinkel" |
||
| 199 | ), |
||
| 200 | "Hauptausrichtung": "hauptausrichtung", |
||
| 201 | "HauptausrichtungNeigungswinkel": "hauptausrichtung_neigungswinkel", |
||
| 202 | } |
||
| 203 | |||
| 204 | COLS_TO_EXPORT = [ |
||
| 205 | "scenario", |
||
| 206 | "bus_id", |
||
| 207 | "building_id", |
||
| 208 | "gens_id", |
||
| 209 | "capacity", |
||
| 210 | "einheitliche_ausrichtung_und_neigungswinkel", |
||
| 211 | "hauptausrichtung", |
||
| 212 | "hauptausrichtung_neigungswinkel", |
||
| 213 | "voltage_level", |
||
| 214 | "weather_cell_id", |
||
| 215 | ] |
||
| 216 | |||
| 217 | # TODO |
||
| 218 | INCLUDE_SYNTHETIC_BUILDINGS = True |
||
| 219 | ONLY_BUILDINGS_WITH_DEMAND = True |
||
| 220 | TEST_RUN = False |
||
| 221 | |||
| 222 | |||
| 223 | def timer_func(func): |
||
| 224 | @wraps(func) |
||
| 225 | def timeit_wrapper(*args, **kwargs): |
||
| 226 | start_time = perf_counter() |
||
| 227 | result = func(*args, **kwargs) |
||
| 228 | end_time = perf_counter() |
||
| 229 | total_time = end_time - start_time |
||
| 230 | logger.debug( |
||
| 231 | f"Function {func.__name__} took {total_time:.4f} seconds." |
||
| 232 | ) |
||
| 233 | return result |
||
| 234 | |||
| 235 | return timeit_wrapper |
||
| 236 | |||
| 237 | |||
| 238 | @timer_func |
||
| 239 | def mastr_data( |
||
| 240 | index_col: str | int | list[str] | list[int], |
||
| 241 | usecols: list[str], |
||
| 242 | dtype: dict[str, Any] | None, |
||
| 243 | parse_dates: list[str] | None, |
||
| 244 | ) -> pd.DataFrame: |
||
| 245 | """ |
||
| 246 | Read MaStR data from csv. |
||
| 247 | |||
| 248 | Parameters |
||
| 249 | ----------- |
||
| 250 | index_col : str, int or list of str or int |
||
| 251 | Column(s) to use as the row labels of the DataFrame. |
||
| 252 | usecols : list of str |
||
| 253 | Return a subset of the columns. |
||
| 254 | dtype : dict of column (str) -> type (any), optional |
||
| 255 | Data type for data or columns. |
||
| 256 | parse_dates : list of names (str), optional |
||
| 257 | Try to parse given columns to datetime. |
||
| 258 | Returns |
||
| 259 | ------- |
||
| 260 | pandas.DataFrame |
||
| 261 | DataFrame containing MaStR data. |
||
| 262 | """ |
||
| 263 | mastr_path = Path( |
||
| 264 | WORKING_DIR_MASTR_NEW |
||
| 265 | / config.datasets()["power_plants"]["sources"]["mastr_pv"] |
||
| 266 | ).resolve() |
||
| 267 | |||
| 268 | mastr_df = pd.read_csv( |
||
| 269 | mastr_path, |
||
| 270 | index_col=index_col, |
||
| 271 | usecols=usecols, |
||
| 272 | dtype=dtype, |
||
| 273 | parse_dates=parse_dates, |
||
| 274 | ) |
||
| 275 | |||
| 276 | mastr_df = mastr_df.loc[ |
||
| 277 | (mastr_df.EinheitBetriebsstatus == "InBetrieb") |
||
| 278 | & (mastr_df.Land == "Deutschland") |
||
| 279 | & (mastr_df.Lage == "Bauliche Anlagen (Hausdach, Gebäude und Fassade)") |
||
| 280 | ] |
||
| 281 | |||
| 282 | if ( |
||
| 283 | config.settings()["egon-data"]["--dataset-boundary"] |
||
| 284 | == "Schleswig-Holstein" |
||
| 285 | ): |
||
| 286 | init_len = len(mastr_df) |
||
| 287 | |||
| 288 | mastr_df = mastr_df.loc[mastr_df.Bundesland == "SchleswigHolstein"] |
||
| 289 | |||
| 290 | logger.info( |
||
| 291 | f"Using only MaStR data within Schleswig-Holstein. " |
||
| 292 | f"{init_len - len(mastr_df)} of {init_len} generators are dropped." |
||
| 293 | ) |
||
| 294 | |||
| 295 | logger.debug("MaStR data loaded.") |
||
| 296 | |||
| 297 | return mastr_df |
||
| 298 | |||
| 299 | |||
| 300 | @timer_func |
||
| 301 | def clean_mastr_data( |
||
| 302 | mastr_df: pd.DataFrame, |
||
| 303 | max_realistic_pv_cap: int | float, |
||
| 304 | min_realistic_pv_cap: int | float, |
||
| 305 | rounding: int, |
||
| 306 | seed: int, |
||
| 307 | ) -> pd.DataFrame: |
||
| 308 | """ |
||
| 309 | Clean the MaStR data from implausible data. |
||
| 310 | |||
| 311 | * Drop MaStR ID duplicates. |
||
| 312 | * Drop generators with implausible capacities. |
||
| 313 | * Drop generators without any kind of start-up date. |
||
| 314 | * Clean up Standort column and capacity. |
||
| 315 | |||
| 316 | Parameters |
||
| 317 | ----------- |
||
| 318 | mastr_df : pandas.DataFrame |
||
| 319 | DataFrame containing MaStR data. |
||
| 320 | max_realistic_pv_cap : int or float |
||
| 321 | Maximum capacity, which is considered to be realistic. |
||
| 322 | min_realistic_pv_cap : int or float |
||
| 323 | Minimum capacity, which is considered to be realistic. |
||
| 324 | rounding : int |
||
| 325 | Rounding to use when cleaning up capacity. E.g. when |
||
| 326 | rounding is 1 a capacity of 9.93 will be rounded to 9.9. |
||
| 327 | seed : int |
||
| 328 | Seed to use for random operations with NumPy and pandas. |
||
| 329 | Returns |
||
| 330 | ------- |
||
| 331 | pandas.DataFrame |
||
| 332 | DataFrame containing cleaned MaStR data. |
||
| 333 | """ |
||
| 334 | init_len = len(mastr_df) |
||
| 335 | |||
| 336 | # drop duplicates |
||
| 337 | mastr_df = mastr_df.loc[~mastr_df.index.duplicated()] |
||
| 338 | |||
| 339 | # drop invalid entries in standort |
||
| 340 | index_to_drop = mastr_df.loc[ |
||
| 341 | (mastr_df.Standort.isna()) | (mastr_df.Standort.isnull()) |
||
| 342 | ].index |
||
| 343 | |||
| 344 | mastr_df = mastr_df.loc[~mastr_df.index.isin(index_to_drop)] |
||
| 345 | |||
| 346 | df = mastr_df[ |
||
| 347 | [ |
||
| 348 | "Bruttoleistung", |
||
| 349 | "Bruttoleistung_extended", |
||
| 350 | "Nettonennleistung", |
||
| 351 | "zugeordneteWirkleistungWechselrichter", |
||
| 352 | "InstallierteLeistung", |
||
| 353 | ] |
||
| 354 | ].round(rounding) |
||
| 355 | |||
| 356 | # use only the smallest capacity rating if multiple are given |
||
| 357 | mastr_df = mastr_df.assign( |
||
| 358 | capacity=[ |
||
| 359 | most_plausible(p_tub, min_realistic_pv_cap) |
||
| 360 | for p_tub in df.itertuples(index=False) |
||
| 361 | ] |
||
| 362 | ) |
||
| 363 | |||
| 364 | # drop generators without any capacity info |
||
| 365 | # and capacity of zero |
||
| 366 | # and if the capacity is > 23.5 MW, because |
||
| 367 | # Germanies largest rooftop PV is 23 MW |
||
| 368 | # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379 |
||
| 369 | mastr_df = mastr_df.loc[ |
||
| 370 | (~mastr_df.capacity.isna()) |
||
| 371 | & (mastr_df.capacity <= max_realistic_pv_cap) |
||
| 372 | & (mastr_df.capacity > min_realistic_pv_cap) |
||
| 373 | ] |
||
| 374 | |||
| 375 | # get zip and municipality |
||
| 376 | mastr_df[["zip_and_municipality", "drop_this"]] = pd.DataFrame( |
||
| 377 | mastr_df.Standort.astype(str) |
||
| 378 | .apply( |
||
| 379 | zip_and_municipality_from_standort, |
||
| 380 | args=(VERBOSE,), |
||
| 381 | ) |
||
| 382 | .tolist(), |
||
| 383 | index=mastr_df.index, |
||
| 384 | ) |
||
| 385 | |||
| 386 | # drop invalid entries |
||
| 387 | mastr_df = mastr_df.loc[mastr_df.drop_this].drop(columns="drop_this") |
||
| 388 | |||
| 389 | # add ", Deutschland" just in case |
||
| 390 | mastr_df = mastr_df.assign( |
||
| 391 | zip_and_municipality=(mastr_df.zip_and_municipality + ", Deutschland") |
||
| 392 | ) |
||
| 393 | |||
| 394 | # get consistent start-up date |
||
| 395 | mastr_df = mastr_df.assign( |
||
| 396 | start_up_date=mastr_df.Inbetriebnahmedatum, |
||
| 397 | ) |
||
| 398 | |||
| 399 | mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[ |
||
| 400 | mastr_df.start_up_date.isna() |
||
| 401 | ].assign( |
||
| 402 | start_up_date=mastr_df.GeplantesInbetriebnahmedatum.loc[ |
||
| 403 | mastr_df.start_up_date.isna() |
||
| 404 | ] |
||
| 405 | ) |
||
| 406 | |||
| 407 | # randomly and weighted fill missing start-up dates |
||
| 408 | pool = mastr_df.loc[ |
||
| 409 | ~mastr_df.start_up_date.isna() |
||
| 410 | ].start_up_date.to_numpy() |
||
| 411 | |||
| 412 | size = len(mastr_df) - len(pool) |
||
| 413 | |||
| 414 | if size > 0: |
||
| 415 | np.random.seed(seed) |
||
| 416 | |||
| 417 | choice = np.random.choice( |
||
| 418 | pool, |
||
| 419 | size=size, |
||
| 420 | replace=False, |
||
| 421 | ) |
||
| 422 | |||
| 423 | mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[ |
||
| 424 | mastr_df.start_up_date.isna() |
||
| 425 | ].assign(start_up_date=choice) |
||
| 426 | |||
| 427 | logger.info( |
||
| 428 | f"Randomly and weigthed added start-up date to {size} generators." |
||
| 429 | ) |
||
| 430 | |||
| 431 | mastr_df = mastr_df.assign( |
||
| 432 | start_up_date=pd.to_datetime(mastr_df.start_up_date, utc=True) |
||
| 433 | ) |
||
| 434 | |||
| 435 | end_len = len(mastr_df) |
||
| 436 | logger.debug( |
||
| 437 | f"Dropped {init_len - end_len} " |
||
| 438 | f"({((init_len - end_len) / init_len) * 100:g}%)" |
||
| 439 | f" of {init_len} rows from MaStR DataFrame." |
||
| 440 | ) |
||
| 441 | |||
| 442 | return mastr_df |
||
| 443 | |||
| 444 | |||
| 445 | def zip_and_municipality_from_standort( |
||
| 446 | standort: str, |
||
| 447 | verbose: bool = False, |
||
| 448 | ) -> tuple[str, bool]: |
||
| 449 | """ |
||
| 450 | Get zip code and municipality from Standort string split into a list. |
||
| 451 | Parameters |
||
| 452 | ----------- |
||
| 453 | standort : str |
||
| 454 | Standort as given from MaStR data. |
||
| 455 | verbose : bool |
||
| 456 | Logs additional info if True. |
||
| 457 | Returns |
||
| 458 | ------- |
||
| 459 | str |
||
| 460 | Standort with only the zip code and municipality |
||
| 461 | as well a ', Germany' added. |
||
| 462 | """ |
||
| 463 | if verbose: |
||
| 464 | logger.debug(f"Uncleaned String: {standort}") |
||
| 465 | |||
| 466 | standort_list = standort.split() |
||
| 467 | |||
| 468 | found = False |
||
| 469 | count = 0 |
||
| 470 | |||
| 471 | for count, elem in enumerate(standort_list): |
||
| 472 | if len(elem) != 5: |
||
| 473 | continue |
||
| 474 | if not elem.isnumeric(): |
||
| 475 | continue |
||
| 476 | |||
| 477 | found = True |
||
| 478 | |||
| 479 | break |
||
| 480 | |||
| 481 | if found: |
||
| 482 | cleaned_str = " ".join(standort_list[count:]) |
||
| 483 | |||
| 484 | if verbose: |
||
| 485 | logger.debug(f"Cleaned String: {cleaned_str}") |
||
| 486 | |||
| 487 | return cleaned_str, found |
||
| 488 | |||
| 489 | logger.warning( |
||
| 490 | "Couldn't identify zip code. This entry will be dropped." |
||
| 491 | f" Original standort: {standort}." |
||
| 492 | ) |
||
| 493 | |||
| 494 | return standort, found |
||
| 495 | |||
| 496 | |||
| 497 | def most_plausible( |
||
| 498 | p_tub: tuple, |
||
| 499 | min_realistic_pv_cap: int | float, |
||
| 500 | ) -> float: |
||
| 501 | """ |
||
| 502 | Try to determine the most plausible capacity. |
||
| 503 | Try to determine the most plausible capacity from a given |
||
| 504 | generator from MaStR data. |
||
| 505 | Parameters |
||
| 506 | ----------- |
||
| 507 | p_tub : tuple |
||
| 508 | Tuple containing the different capacities given in |
||
| 509 | the MaStR data. |
||
| 510 | min_realistic_pv_cap : int or float |
||
| 511 | Minimum capacity, which is considered to be realistic. |
||
| 512 | Returns |
||
| 513 | ------- |
||
| 514 | float |
||
| 515 | Capacity of the generator estimated as the most realistic. |
||
| 516 | """ |
||
| 517 | count = Counter(p_tub).most_common(3) |
||
| 518 | |||
| 519 | if len(count) == 1: |
||
| 520 | return count[0][0] |
||
| 521 | |||
| 522 | val1 = count[0][0] |
||
| 523 | val2 = count[1][0] |
||
| 524 | |||
| 525 | if len(count) == 2: |
||
| 526 | min_val = min(val1, val2) |
||
| 527 | max_val = max(val1, val2) |
||
| 528 | else: |
||
| 529 | val3 = count[2][0] |
||
| 530 | |||
| 531 | min_val = min(val1, val2, val3) |
||
| 532 | max_val = max(val1, val2, val3) |
||
| 533 | |||
| 534 | if min_val < min_realistic_pv_cap: |
||
| 535 | return max_val |
||
| 536 | |||
| 537 | return min_val |
||
| 538 | |||
| 539 | |||
| 540 | def geocoder( |
||
| 541 | user_agent: str, |
||
| 542 | min_delay_seconds: int, |
||
| 543 | ) -> RateLimiter: |
||
| 544 | """ |
||
| 545 | Setup Nominatim geocoding class. |
||
| 546 | Parameters |
||
| 547 | ----------- |
||
| 548 | user_agent : str |
||
| 549 | The app name. |
||
| 550 | min_delay_seconds : int |
||
| 551 | Delay in seconds to use between requests to Nominatim. |
||
| 552 | A minimum of 1 is advised. |
||
| 553 | Returns |
||
| 554 | ------- |
||
| 555 | geopy.extra.rate_limiter.RateLimiter |
||
| 556 | Nominatim RateLimiter geocoding class to use for geocoding. |
||
| 557 | """ |
||
| 558 | locator = Nominatim(user_agent=user_agent) |
||
| 559 | return RateLimiter( |
||
| 560 | locator.geocode, |
||
| 561 | min_delay_seconds=min_delay_seconds, |
||
| 562 | ) |
||
| 563 | |||
| 564 | |||
| 565 | def geocoding_data( |
||
| 566 | clean_mastr_df: pd.DataFrame, |
||
| 567 | ) -> pd.DataFrame: |
||
| 568 | """ |
||
| 569 | Setup DataFrame to geocode. |
||
| 570 | Parameters |
||
| 571 | ----------- |
||
| 572 | clean_mastr_df : pandas.DataFrame |
||
| 573 | DataFrame containing cleaned MaStR data. |
||
| 574 | Returns |
||
| 575 | ------- |
||
| 576 | pandas.DataFrame |
||
| 577 | DataFrame containing all unique combinations of |
||
| 578 | zip codes with municipalities for geocoding. |
||
| 579 | """ |
||
| 580 | return pd.DataFrame( |
||
| 581 | data=clean_mastr_df.zip_and_municipality.unique(), |
||
| 582 | columns=["zip_and_municipality"], |
||
| 583 | ) |
||
| 584 | |||
| 585 | |||
| 586 | @timer_func |
||
| 587 | def geocode_data( |
||
| 588 | geocoding_df: pd.DataFrame, |
||
| 589 | ratelimiter: RateLimiter, |
||
| 590 | epsg: int, |
||
| 591 | ) -> gpd.GeoDataFrame: |
||
| 592 | """ |
||
| 593 | Geocode zip code and municipality. |
||
| 594 | Extract latitude, longitude and altitude. |
||
| 595 | Transfrom latitude and longitude to shapely |
||
| 596 | Point and return a geopandas GeoDataFrame. |
||
| 597 | Parameters |
||
| 598 | ----------- |
||
| 599 | geocoding_df : pandas.DataFrame |
||
| 600 | DataFrame containing all unique combinations of |
||
| 601 | zip codes with municipalities for geocoding. |
||
| 602 | ratelimiter : geopy.extra.rate_limiter.RateLimiter |
||
| 603 | Nominatim RateLimiter geocoding class to use for geocoding. |
||
| 604 | epsg : int |
||
| 605 | EPSG ID to use as CRS. |
||
| 606 | Returns |
||
| 607 | ------- |
||
| 608 | geopandas.GeoDataFrame |
||
| 609 | GeoDataFrame containing all unique combinations of |
||
| 610 | zip codes with municipalities with matching geolocation. |
||
| 611 | """ |
||
| 612 | logger.info(f"Geocoding {len(geocoding_df)} locations.") |
||
| 613 | |||
| 614 | geocode_df = geocoding_df.assign( |
||
| 615 | location=geocoding_df.zip_and_municipality.apply(ratelimiter) |
||
| 616 | ) |
||
| 617 | |||
| 618 | geocode_df = geocode_df.assign( |
||
| 619 | point=geocode_df.location.apply( |
||
| 620 | lambda loc: tuple(loc.point) if loc else None |
||
| 621 | ) |
||
| 622 | ) |
||
| 623 | |||
| 624 | geocode_df[["latitude", "longitude", "altitude"]] = pd.DataFrame( |
||
| 625 | geocode_df.point.tolist(), index=geocode_df.index |
||
| 626 | ) |
||
| 627 | |||
| 628 | return gpd.GeoDataFrame( |
||
| 629 | geocode_df, |
||
| 630 | geometry=gpd.points_from_xy(geocode_df.longitude, geocode_df.latitude), |
||
| 631 | crs=f"EPSG:{epsg}", |
||
| 632 | ) |
||
| 633 | |||
| 634 | |||
| 635 | def merge_geocode_with_mastr( |
||
| 636 | clean_mastr_df: pd.DataFrame, geocode_gdf: gpd.GeoDataFrame |
||
| 637 | ) -> gpd.GeoDataFrame: |
||
| 638 | """ |
||
| 639 | Merge geometry to original mastr data. |
||
| 640 | Parameters |
||
| 641 | ----------- |
||
| 642 | clean_mastr_df : pandas.DataFrame |
||
| 643 | DataFrame containing cleaned MaStR data. |
||
| 644 | geocode_gdf : geopandas.GeoDataFrame |
||
| 645 | GeoDataFrame containing all unique combinations of |
||
| 646 | zip codes with municipalities with matching geolocation. |
||
| 647 | Returns |
||
| 648 | ------- |
||
| 649 | gepandas.GeoDataFrame |
||
| 650 | GeoDataFrame containing cleaned MaStR data with |
||
| 651 | matching geolocation from geocoding. |
||
| 652 | """ |
||
| 653 | return gpd.GeoDataFrame( |
||
| 654 | clean_mastr_df.merge( |
||
| 655 | geocode_gdf[["zip_and_municipality", "geometry"]], |
||
| 656 | how="left", |
||
| 657 | left_on="zip_and_municipality", |
||
| 658 | right_on="zip_and_municipality", |
||
| 659 | ), |
||
| 660 | crs=geocode_gdf.crs, |
||
| 661 | ).set_index(clean_mastr_df.index) |
||
| 662 | |||
| 663 | |||
| 664 | def drop_invalid_entries_from_gdf( |
||
| 665 | gdf: gpd.GeoDataFrame, |
||
| 666 | ) -> gpd.GeoDataFrame: |
||
| 667 | """ |
||
| 668 | Drop invalid entries from geopandas GeoDataFrame. |
||
| 669 | TODO: how to omit the logging from geos here??? |
||
| 670 | Parameters |
||
| 671 | ----------- |
||
| 672 | gdf : geopandas.GeoDataFrame |
||
| 673 | GeoDataFrame to be checked for validity. |
||
| 674 | Returns |
||
| 675 | ------- |
||
| 676 | gepandas.GeoDataFrame |
||
| 677 | GeoDataFrame with rows with invalid geometries |
||
| 678 | dropped. |
||
| 679 | """ |
||
| 680 | valid_gdf = gdf.loc[gdf.is_valid] |
||
| 681 | |||
| 682 | logger.debug( |
||
| 683 | f"{len(gdf) - len(valid_gdf)} " |
||
| 684 | f"({(len(gdf) - len(valid_gdf)) / len(gdf) * 100:g}%) " |
||
| 685 | f"of {len(gdf)} values were invalid and are dropped." |
||
| 686 | ) |
||
| 687 | |||
| 688 | return valid_gdf |
||
| 689 | |||
| 690 | |||
| 691 | @timer_func |
||
| 692 | def municipality_data() -> gpd.GeoDataFrame: |
||
| 693 | """ |
||
| 694 | Get municipality data from eGo^n Database. |
||
| 695 | Returns |
||
| 696 | ------- |
||
| 697 | gepandas.GeoDataFrame |
||
| 698 | GeoDataFrame with municipality data. |
||
| 699 | """ |
||
| 700 | with db.session_scope() as session: |
||
| 701 | query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom")) |
||
| 702 | |||
| 703 | return gpd.read_postgis( |
||
| 704 | query.statement, query.session.bind, index_col="ags" |
||
| 705 | ) |
||
| 706 | |||
| 707 | |||
| 708 | @timer_func |
||
| 709 | def add_ags_to_gens( |
||
| 710 | valid_mastr_gdf: gpd.GeoDataFrame, |
||
| 711 | municipalities_gdf: gpd.GeoDataFrame, |
||
| 712 | ) -> gpd.GeoDataFrame: |
||
| 713 | """ |
||
| 714 | Add information about AGS ID to generators. |
||
| 715 | Parameters |
||
| 716 | ----------- |
||
| 717 | valid_mastr_gdf : geopandas.GeoDataFrame |
||
| 718 | GeoDataFrame with valid and cleaned MaStR data. |
||
| 719 | municipalities_gdf : geopandas.GeoDataFrame |
||
| 720 | GeoDataFrame with municipality data. |
||
| 721 | Returns |
||
| 722 | ------- |
||
| 723 | gepandas.GeoDataFrame |
||
| 724 | GeoDataFrame with valid and cleaned MaStR data |
||
| 725 | with AGS ID added. |
||
| 726 | """ |
||
| 727 | return valid_mastr_gdf.sjoin( |
||
| 728 | municipalities_gdf, |
||
| 729 | how="left", |
||
| 730 | predicate="intersects", |
||
| 731 | ).rename(columns={"index_right": "ags"}) |
||
| 732 | |||
| 733 | |||
| 734 | def drop_gens_outside_muns( |
||
| 735 | valid_mastr_gdf: gpd.GeoDataFrame, |
||
| 736 | ) -> gpd.GeoDataFrame: |
||
| 737 | """ |
||
| 738 | Drop all generators outside of municipalities. |
||
| 739 | Parameters |
||
| 740 | ----------- |
||
| 741 | valid_mastr_gdf : geopandas.GeoDataFrame |
||
| 742 | GeoDataFrame with valid and cleaned MaStR data. |
||
| 743 | Returns |
||
| 744 | ------- |
||
| 745 | gepandas.GeoDataFrame |
||
| 746 | GeoDataFrame with valid and cleaned MaStR data |
||
| 747 | with generatos without an AGS ID dropped. |
||
| 748 | """ |
||
| 749 | gdf = valid_mastr_gdf.loc[~valid_mastr_gdf.ags.isna()] |
||
| 750 | |||
| 751 | logger.debug( |
||
| 752 | f"{len(valid_mastr_gdf) - len(gdf)} " |
||
| 753 | f"({(len(valid_mastr_gdf) - len(gdf)) / len(valid_mastr_gdf) * 100:g}%) " |
||
| 754 | f"of {len(valid_mastr_gdf)} values are outside of the municipalities" |
||
| 755 | " and are therefore dropped." |
||
| 756 | ) |
||
| 757 | |||
| 758 | return gdf |
||
| 759 | |||
| 760 | |||
| 761 | class EgonMastrPvRoofGeocoded(Base): |
||
| 762 | __tablename__ = "egon_mastr_pv_roof_geocoded" |
||
| 763 | __table_args__ = {"schema": "supply"} |
||
| 764 | |||
| 765 | zip_and_municipality = Column(String, primary_key=True, index=True) |
||
| 766 | location = Column(String) |
||
| 767 | point = Column(String) |
||
| 768 | latitude = Column(Float) |
||
| 769 | longitude = Column(Float) |
||
| 770 | altitude = Column(Float) |
||
| 771 | geometry = Column(Geometry(srid=EPSG)) |
||
| 772 | |||
| 773 | |||
| 774 | def create_geocoded_table(geocode_gdf): |
||
| 775 | """ |
||
| 776 | Create geocoded table mastr pv rooftop |
||
| 777 | Parameters |
||
| 778 | ----------- |
||
| 779 | geocode_gdf : geopandas.GeoDataFrame |
||
| 780 | GeoDataFrame containing geocoding information on pv rooftop locations. |
||
| 781 | """ |
||
| 782 | EgonMastrPvRoofGeocoded.__table__.drop(bind=engine, checkfirst=True) |
||
| 783 | EgonMastrPvRoofGeocoded.__table__.create(bind=engine, checkfirst=True) |
||
| 784 | |||
| 785 | geocode_gdf.to_postgis( |
||
| 786 | name=EgonMastrPvRoofGeocoded.__table__.name, |
||
| 787 | schema=EgonMastrPvRoofGeocoded.__table__.schema, |
||
| 788 | con=db.engine(), |
||
| 789 | if_exists="append", |
||
| 790 | index=False, |
||
| 791 | # dtype={} |
||
| 792 | ) |
||
| 793 | |||
| 794 | |||
| 795 | def geocoded_data_from_db( |
||
| 796 | epsg: str | int, |
||
| 797 | ) -> gpd.GeoDataFrame: |
||
| 798 | """ |
||
| 799 | Read OSM buildings data from eGo^n Database. |
||
| 800 | Parameters |
||
| 801 | ----------- |
||
| 802 | to_crs : pyproj.crs.crs.CRS |
||
| 803 | CRS to transform geometries to. |
||
| 804 | Returns |
||
| 805 | ------- |
||
| 806 | geopandas.GeoDataFrame |
||
| 807 | GeoDataFrame containing OSM buildings data. |
||
| 808 | """ |
||
| 809 | with db.session_scope() as session: |
||
| 810 | query = session.query( |
||
| 811 | EgonMastrPvRoofGeocoded.zip_and_municipality, |
||
| 812 | EgonMastrPvRoofGeocoded.geometry, |
||
| 813 | ) |
||
| 814 | |||
| 815 | return gpd.read_postgis( |
||
| 816 | query.statement, query.session.bind, geom_col="geometry" |
||
| 817 | ).to_crs(f"EPSG:{epsg}") |
||
| 818 | |||
| 819 | |||
| 820 | def load_mastr_data(): |
||
| 821 | """Read PV rooftop data from MaStR CSV |
||
| 822 | Note: the source will be replaced as soon as the MaStR data is available |
||
| 823 | in DB. |
||
| 824 | Returns |
||
| 825 | ------- |
||
| 826 | geopandas.GeoDataFrame |
||
| 827 | GeoDataFrame containing MaStR data with geocoded locations. |
||
| 828 | """ |
||
| 829 | mastr_df = mastr_data( |
||
| 830 | MASTR_INDEX_COL, |
||
| 831 | MASTR_RELEVANT_COLS, |
||
| 832 | MASTR_DTYPES, |
||
| 833 | MASTR_PARSE_DATES, |
||
| 834 | ) |
||
| 835 | |||
| 836 | clean_mastr_df = clean_mastr_data( |
||
| 837 | mastr_df, |
||
| 838 | max_realistic_pv_cap=MAX_REALISTIC_PV_CAP, |
||
| 839 | min_realistic_pv_cap=MIN_REALISTIC_PV_CAP, |
||
| 840 | seed=SEED, |
||
| 841 | rounding=ROUNDING, |
||
| 842 | ) |
||
| 843 | |||
| 844 | geocode_gdf = geocoded_data_from_db(EPSG) |
||
| 845 | |||
| 846 | mastr_gdf = merge_geocode_with_mastr(clean_mastr_df, geocode_gdf) |
||
| 847 | |||
| 848 | valid_mastr_gdf = drop_invalid_entries_from_gdf(mastr_gdf) |
||
| 849 | |||
| 850 | municipalities_gdf = municipality_data() |
||
| 851 | |||
| 852 | valid_mastr_gdf = add_ags_to_gens(valid_mastr_gdf, municipalities_gdf) |
||
| 853 | |||
| 854 | return drop_gens_outside_muns(valid_mastr_gdf) |
||
| 855 | |||
| 856 | |||
| 857 | class OsmBuildingsFiltered(Base): |
||
| 858 | __tablename__ = "osm_buildings_filtered" |
||
| 859 | __table_args__ = {"schema": "openstreetmap"} |
||
| 860 | |||
| 861 | osm_id = Column(BigInteger) |
||
| 862 | amenity = Column(String) |
||
| 863 | building = Column(String) |
||
| 864 | name = Column(String) |
||
| 865 | geom = Column(Geometry(srid=SRID), index=True) |
||
| 866 | area = Column(Float) |
||
| 867 | geom_point = Column(Geometry(srid=SRID), index=True) |
||
| 868 | tags = Column(HSTORE) |
||
| 869 | id = Column(BigInteger, primary_key=True, index=True) |
||
| 870 | |||
| 871 | |||
| 872 | @timer_func |
||
| 873 | def osm_buildings( |
||
| 874 | to_crs: CRS, |
||
| 875 | ) -> gpd.GeoDataFrame: |
||
| 876 | """ |
||
| 877 | Read OSM buildings data from eGo^n Database. |
||
| 878 | Parameters |
||
| 879 | ----------- |
||
| 880 | to_crs : pyproj.crs.crs.CRS |
||
| 881 | CRS to transform geometries to. |
||
| 882 | Returns |
||
| 883 | ------- |
||
| 884 | geopandas.GeoDataFrame |
||
| 885 | GeoDataFrame containing OSM buildings data. |
||
| 886 | """ |
||
| 887 | with db.session_scope() as session: |
||
| 888 | query = session.query( |
||
| 889 | OsmBuildingsFiltered.id, |
||
| 890 | OsmBuildingsFiltered.area, |
||
| 891 | OsmBuildingsFiltered.geom_point.label("geom"), |
||
| 892 | ) |
||
| 893 | |||
| 894 | return gpd.read_postgis( |
||
| 895 | query.statement, query.session.bind, index_col="id" |
||
| 896 | ).to_crs(to_crs) |
||
| 897 | |||
| 898 | |||
| 899 | @timer_func |
||
| 900 | def synthetic_buildings( |
||
| 901 | to_crs: CRS, |
||
| 902 | ) -> gpd.GeoDataFrame: |
||
| 903 | """ |
||
| 904 | Read synthetic buildings data from eGo^n Database. |
||
| 905 | Parameters |
||
| 906 | ----------- |
||
| 907 | to_crs : pyproj.crs.crs.CRS |
||
| 908 | CRS to transform geometries to. |
||
| 909 | Returns |
||
| 910 | ------- |
||
| 911 | geopandas.GeoDataFrame |
||
| 912 | GeoDataFrame containing OSM buildings data. |
||
| 913 | """ |
||
| 914 | with db.session_scope() as session: |
||
| 915 | query = session.query( |
||
| 916 | OsmBuildingsSynthetic.id, |
||
| 917 | OsmBuildingsSynthetic.area, |
||
| 918 | OsmBuildingsSynthetic.geom_point.label("geom"), |
||
| 919 | ) |
||
| 920 | |||
| 921 | return gpd.read_postgis( |
||
| 922 | query.statement, query.session.bind, index_col="id" |
||
| 923 | ).to_crs(to_crs) |
||
| 924 | |||
| 925 | |||
| 926 | @timer_func |
||
| 927 | def add_ags_to_buildings( |
||
| 928 | buildings_gdf: gpd.GeoDataFrame, |
||
| 929 | municipalities_gdf: gpd.GeoDataFrame, |
||
| 930 | ) -> gpd.GeoDataFrame: |
||
| 931 | """ |
||
| 932 | Add information about AGS ID to buildings. |
||
| 933 | Parameters |
||
| 934 | ----------- |
||
| 935 | buildings_gdf : geopandas.GeoDataFrame |
||
| 936 | GeoDataFrame containing OSM buildings data. |
||
| 937 | municipalities_gdf : geopandas.GeoDataFrame |
||
| 938 | GeoDataFrame with municipality data. |
||
| 939 | Returns |
||
| 940 | ------- |
||
| 941 | gepandas.GeoDataFrame |
||
| 942 | GeoDataFrame containing OSM buildings data |
||
| 943 | with AGS ID added. |
||
| 944 | """ |
||
| 945 | return buildings_gdf.sjoin( |
||
| 946 | municipalities_gdf, |
||
| 947 | how="left", |
||
| 948 | predicate="intersects", |
||
| 949 | ).rename(columns={"index_right": "ags"}) |
||
| 950 | |||
| 951 | |||
| 952 | def drop_buildings_outside_muns( |
||
| 953 | buildings_gdf: gpd.GeoDataFrame, |
||
| 954 | ) -> gpd.GeoDataFrame: |
||
| 955 | """ |
||
| 956 | Drop all buildings outside of municipalities. |
||
| 957 | Parameters |
||
| 958 | ----------- |
||
| 959 | buildings_gdf : geopandas.GeoDataFrame |
||
| 960 | GeoDataFrame containing OSM buildings data. |
||
| 961 | Returns |
||
| 962 | ------- |
||
| 963 | gepandas.GeoDataFrame |
||
| 964 | GeoDataFrame containing OSM buildings data |
||
| 965 | with buildings without an AGS ID dropped. |
||
| 966 | """ |
||
| 967 | gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()] |
||
| 968 | |||
| 969 | logger.debug( |
||
| 970 | f"{len(buildings_gdf) - len(gdf)} " |
||
| 971 | f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
||
| 972 | f"of {len(buildings_gdf)} values are outside of the municipalities " |
||
| 973 | "and are therefore dropped." |
||
| 974 | ) |
||
| 975 | |||
| 976 | return gdf |
||
| 977 | |||
| 978 | |||
| 979 | def egon_building_peak_loads(): |
||
| 980 | sql = """ |
||
| 981 | SELECT building_id |
||
| 982 | FROM demand.egon_building_electricity_peak_loads |
||
| 983 | WHERE scenario = 'eGon2035' |
||
| 984 | """ |
||
| 985 | |||
| 986 | return ( |
||
| 987 | db.select_dataframe(sql).building_id.astype(int).sort_values().unique() |
||
| 988 | ) |
||
| 989 | |||
| 990 | |||
| 991 | @timer_func |
||
| 992 | def load_building_data(): |
||
| 993 | """ |
||
| 994 | Read buildings from DB |
||
| 995 | Tables: |
||
| 996 | |||
| 997 | * `openstreetmap.osm_buildings_filtered` (from OSM) |
||
| 998 | * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us) |
||
| 999 | |||
| 1000 | Use column `id` for both as it is unique hence you concat both datasets. |
||
| 1001 | If INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be |
||
| 1002 | loaded. |
||
| 1003 | |||
| 1004 | Returns |
||
| 1005 | ------- |
||
| 1006 | gepandas.GeoDataFrame |
||
| 1007 | GeoDataFrame containing OSM buildings data with buildings without an |
||
| 1008 | AGS ID dropped. |
||
| 1009 | """ |
||
| 1010 | |||
| 1011 | municipalities_gdf = municipality_data() |
||
| 1012 | |||
| 1013 | osm_buildings_gdf = osm_buildings(municipalities_gdf.crs) |
||
| 1014 | |||
| 1015 | if INCLUDE_SYNTHETIC_BUILDINGS: |
||
| 1016 | synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs) |
||
| 1017 | |||
| 1018 | buildings_gdf = gpd.GeoDataFrame( |
||
| 1019 | pd.concat( |
||
| 1020 | [ |
||
| 1021 | osm_buildings_gdf, |
||
| 1022 | synthetic_buildings_gdf, |
||
| 1023 | ] |
||
| 1024 | ), |
||
| 1025 | geometry="geom", |
||
| 1026 | crs=osm_buildings_gdf.crs, |
||
| 1027 | ).rename(columns={"area": "building_area"}) |
||
| 1028 | |||
| 1029 | buildings_gdf.index = buildings_gdf.index.astype(int) |
||
| 1030 | |||
| 1031 | else: |
||
| 1032 | buildings_gdf = osm_buildings_gdf.rename( |
||
| 1033 | columns={"area": "building_area"} |
||
| 1034 | ) |
||
| 1035 | |||
| 1036 | if ONLY_BUILDINGS_WITH_DEMAND: |
||
| 1037 | building_ids = egon_building_peak_loads() |
||
| 1038 | |||
| 1039 | init_len = len(building_ids) |
||
| 1040 | |||
| 1041 | building_ids = np.intersect1d( |
||
| 1042 | list(map(int, building_ids)), |
||
| 1043 | list(map(int, buildings_gdf.index.to_numpy())), |
||
| 1044 | ) |
||
| 1045 | |||
| 1046 | end_len = len(building_ids) |
||
| 1047 | |||
| 1048 | logger.debug( |
||
| 1049 | f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) " |
||
| 1050 | f"of buildings have peak load." |
||
| 1051 | ) |
||
| 1052 | |||
| 1053 | buildings_gdf = buildings_gdf.loc[building_ids] |
||
| 1054 | |||
| 1055 | buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf) |
||
| 1056 | |||
| 1057 | buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf) |
||
| 1058 | |||
| 1059 | grid_districts_gdf = grid_districts(EPSG) |
||
| 1060 | |||
| 1061 | federal_state_gdf = federal_state_data(grid_districts_gdf.crs) |
||
| 1062 | |||
| 1063 | grid_federal_state_gdf = overlay_grid_districts_with_counties( |
||
| 1064 | grid_districts_gdf, |
||
| 1065 | federal_state_gdf, |
||
| 1066 | ) |
||
| 1067 | |||
| 1068 | buildings_overlay_gdf = add_overlay_id_to_buildings( |
||
| 1069 | buildings_ags_gdf, |
||
| 1070 | grid_federal_state_gdf, |
||
| 1071 | ) |
||
| 1072 | |||
| 1073 | logger.debug("Loaded buildings.") |
||
| 1074 | |||
| 1075 | buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf) |
||
| 1076 | |||
| 1077 | # overwrite bus_id with data from new table |
||
| 1078 | sql = ( |
||
| 1079 | "SELECT building_id, bus_id FROM " |
||
| 1080 | "boundaries.egon_map_zensus_mvgd_buildings" |
||
| 1081 | ) |
||
| 1082 | map_building_bus_df = db.select_dataframe(sql) |
||
| 1083 | |||
| 1084 | building_ids = np.intersect1d( |
||
| 1085 | list(map(int, map_building_bus_df.building_id.unique())), |
||
| 1086 | list(map(int, buildings_overlay_gdf.index.to_numpy())), |
||
| 1087 | ) |
||
| 1088 | |||
| 1089 | buildings_within_gdf = buildings_overlay_gdf.loc[building_ids] |
||
| 1090 | |||
| 1091 | gdf = ( |
||
| 1092 | buildings_within_gdf.reset_index() |
||
| 1093 | .drop(columns=["bus_id"]) |
||
| 1094 | .merge( |
||
| 1095 | how="left", |
||
| 1096 | right=map_building_bus_df, |
||
| 1097 | left_on="id", |
||
| 1098 | right_on="building_id", |
||
| 1099 | ) |
||
| 1100 | .drop(columns=["building_id"]) |
||
| 1101 | .set_index("id") |
||
| 1102 | .sort_index() |
||
| 1103 | ) |
||
| 1104 | |||
| 1105 | return gdf[~gdf.index.duplicated(keep="first")] |
||
| 1106 | |||
| 1107 | |||
| 1108 | @timer_func |
||
| 1109 | def sort_and_qcut_df( |
||
| 1110 | df: pd.DataFrame | gpd.GeoDataFrame, |
||
| 1111 | col: str, |
||
| 1112 | q: int, |
||
| 1113 | ) -> pd.DataFrame | gpd.GeoDataFrame: |
||
| 1114 | """ |
||
| 1115 | Determine the quantile of a given attribute in a (Geo)DataFrame. |
||
| 1116 | Sort the (Geo)DataFrame in ascending order for the given attribute. |
||
| 1117 | Parameters |
||
| 1118 | ----------- |
||
| 1119 | df : pandas.DataFrame or geopandas.GeoDataFrame |
||
| 1120 | (Geo)DataFrame to sort and qcut. |
||
| 1121 | col : str |
||
| 1122 | Name of the attribute to sort and qcut the (Geo)DataFrame on. |
||
| 1123 | q : int |
||
| 1124 | Number of quantiles. |
||
| 1125 | Returns |
||
| 1126 | ------- |
||
| 1127 | pandas.DataFrame or gepandas.GeoDataFrame |
||
| 1128 | Sorted and qcut (Geo)DataFrame. |
||
| 1129 | """ |
||
| 1130 | df = df.sort_values(col, ascending=True) |
||
| 1131 | |||
| 1132 | return df.assign( |
||
| 1133 | quant=pd.qcut( |
||
| 1134 | df[col], |
||
| 1135 | q=q, |
||
| 1136 | labels=range(q), |
||
| 1137 | ) |
||
| 1138 | ) |
||
| 1139 | |||
| 1140 | |||
| 1141 | @timer_func |
||
| 1142 | def allocate_pv( |
||
| 1143 | q_mastr_gdf: gpd.GeoDataFrame, |
||
| 1144 | q_buildings_gdf: gpd.GeoDataFrame, |
||
| 1145 | seed: int, |
||
| 1146 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
||
| 1147 | """ |
||
| 1148 | Allocate the MaStR pv generators to the OSM buildings. |
||
| 1149 | This will determine a building for each pv generator if there are more |
||
| 1150 | buildings than generators within a given AGS. Primarily generators are |
||
| 1151 | distributed with the same qunatile as the buildings. Multiple assignment |
||
| 1152 | is excluded. |
||
| 1153 | Parameters |
||
| 1154 | ----------- |
||
| 1155 | q_mastr_gdf : geopandas.GeoDataFrame |
||
| 1156 | GeoDataFrame containing geocoded and qcut MaStR data. |
||
| 1157 | q_buildings_gdf : geopandas.GeoDataFrame |
||
| 1158 | GeoDataFrame containing qcut OSM buildings data. |
||
| 1159 | seed : int |
||
| 1160 | Seed to use for random operations with NumPy and pandas. |
||
| 1161 | Returns |
||
| 1162 | ------- |
||
| 1163 | tuple with two geopandas.GeoDataFrame s |
||
| 1164 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 1165 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
| 1166 | """ |
||
| 1167 | rng = default_rng(seed=seed) |
||
| 1168 | |||
| 1169 | q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan).sort_values( |
||
| 1170 | by=["ags", "quant"] |
||
| 1171 | ) |
||
| 1172 | q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan).sort_values( |
||
| 1173 | by=["ags", "quant"] |
||
| 1174 | ) |
||
| 1175 | |||
| 1176 | ags_list = q_buildings_gdf.ags.unique() |
||
| 1177 | |||
| 1178 | if TEST_RUN: |
||
| 1179 | ags_list = ags_list[:250] |
||
| 1180 | |||
| 1181 | num_ags = len(ags_list) |
||
| 1182 | |||
| 1183 | t0 = perf_counter() |
||
| 1184 | |||
| 1185 | for count, ags in enumerate(ags_list): |
||
| 1186 | |||
| 1187 | buildings = q_buildings_gdf.loc[q_buildings_gdf.ags == ags] |
||
| 1188 | gens = q_mastr_gdf.loc[q_mastr_gdf.ags == ags] |
||
| 1189 | |||
| 1190 | len_build = len(buildings) |
||
| 1191 | len_gens = len(gens) |
||
| 1192 | |||
| 1193 | if len_build < len_gens: |
||
| 1194 | gens = gens.sample(len_build, random_state=RandomState(seed=seed)) |
||
| 1195 | logger.error( |
||
| 1196 | f"There are {len_gens} generators and only {len_build}" |
||
| 1197 | f" buildings in AGS {ags}. {len_gens - len(gens)} " |
||
| 1198 | "generators were truncated to match the amount of buildings." |
||
| 1199 | ) |
||
| 1200 | |||
| 1201 | assert len_build == len(gens) |
||
| 1202 | |||
| 1203 | for quant in gens.quant.unique(): |
||
| 1204 | q_buildings = buildings.loc[buildings.quant == quant] |
||
| 1205 | q_gens = gens.loc[gens.quant == quant] |
||
| 1206 | |||
| 1207 | len_build = len(q_buildings) |
||
| 1208 | len_gens = len(q_gens) |
||
| 1209 | |||
| 1210 | if len_build < len_gens: |
||
| 1211 | delta = len_gens - len_build |
||
| 1212 | |||
| 1213 | logger.warning( |
||
| 1214 | f"There are {len_gens} generators and only {len_build} " |
||
| 1215 | f"buildings in AGS {ags} and quantile {quant}. {delta} " |
||
| 1216 | f"buildings from AGS {ags} will be added randomly." |
||
| 1217 | ) |
||
| 1218 | |||
| 1219 | add_buildings = pd.Index( |
||
| 1220 | rng.choice( |
||
| 1221 | list(set(buildings.index) - set(q_buildings.index)), |
||
| 1222 | size=delta, |
||
| 1223 | replace=False, |
||
| 1224 | ) |
||
| 1225 | ) |
||
| 1226 | |||
| 1227 | chosen_buildings = q_buildings.index.append(add_buildings) |
||
| 1228 | |||
| 1229 | else: |
||
| 1230 | chosen_buildings = rng.choice( |
||
| 1231 | q_buildings.index, |
||
| 1232 | size=len_gens, |
||
| 1233 | replace=False, |
||
| 1234 | ) |
||
| 1235 | |||
| 1236 | q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index |
||
| 1237 | buildings = buildings.drop(chosen_buildings) |
||
| 1238 | |||
| 1239 | if count % 500 == 0: |
||
| 1240 | logger.debug( |
||
| 1241 | f"Allocation of {count / num_ags * 100:g} % of AGS done. " |
||
| 1242 | f"It took {perf_counter() - t0:g} seconds." |
||
| 1243 | ) |
||
| 1244 | |||
| 1245 | t0 = perf_counter() |
||
| 1246 | |||
| 1247 | assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()] |
||
| 1248 | |||
| 1249 | assert len(assigned_buildings) == len(assigned_buildings.gens_id.unique()) |
||
| 1250 | |||
| 1251 | q_mastr_gdf.loc[ |
||
| 1252 | assigned_buildings.gens_id, "building_id" |
||
| 1253 | ] = assigned_buildings.index |
||
| 1254 | |||
| 1255 | assigned_gens = q_mastr_gdf.loc[~q_mastr_gdf.building_id.isna()] |
||
| 1256 | |||
| 1257 | assert len(assigned_buildings) == len(assigned_gens) |
||
| 1258 | |||
| 1259 | logger.debug("Allocated status quo generators to buildings.") |
||
| 1260 | |||
| 1261 | return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf) |
||
| 1262 | |||
| 1263 | |||
| 1264 | def frame_to_numeric( |
||
| 1265 | df: pd.DataFrame | gpd.GeoDataFrame, |
||
| 1266 | ) -> pd.DataFrame | gpd.GeoDataFrame: |
||
| 1267 | """ |
||
| 1268 | Try to convert all columns of a DataFrame to numeric ignoring errors. |
||
| 1269 | Parameters |
||
| 1270 | ---------- |
||
| 1271 | df : pandas.DataFrame or geopandas.GeoDataFrame |
||
| 1272 | Returns |
||
| 1273 | ------- |
||
| 1274 | pandas.DataFrame or geopandas.GeoDataFrame |
||
| 1275 | """ |
||
| 1276 | if str(df.index.dtype) == "object": |
||
| 1277 | df.index = pd.to_numeric(df.index, errors="ignore") |
||
| 1278 | |||
| 1279 | for col in df.columns: |
||
| 1280 | if str(df[col].dtype) == "object": |
||
| 1281 | df[col] = pd.to_numeric(df[col], errors="ignore") |
||
| 1282 | |||
| 1283 | return df |
||
| 1284 | |||
| 1285 | |||
| 1286 | def validate_output( |
||
| 1287 | desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame, |
||
| 1288 | desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame, |
||
| 1289 | ) -> None: |
||
| 1290 | """ |
||
| 1291 | Validate output. |
||
| 1292 | |||
| 1293 | * Validate that there are exactly as many buildings with a pv system as |
||
| 1294 | there are pv systems with a building |
||
| 1295 | * Validate that the building IDs with a pv system are the same building |
||
| 1296 | IDs as assigned to the pv systems |
||
| 1297 | * Validate that the pv system IDs with a building are the same pv system |
||
| 1298 | IDs as assigned to the buildings |
||
| 1299 | |||
| 1300 | Parameters |
||
| 1301 | ----------- |
||
| 1302 | desagg_mastr_gdf : geopandas.GeoDataFrame |
||
| 1303 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 1304 | desagg_buildings_gdf : geopandas.GeoDataFrame |
||
| 1305 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
| 1306 | """ |
||
| 1307 | assert len( |
||
| 1308 | desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()] |
||
| 1309 | ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()]) |
||
| 1310 | assert ( |
||
| 1311 | np.sort( |
||
| 1312 | desagg_mastr_gdf.loc[ |
||
| 1313 | ~desagg_mastr_gdf.building_id.isna() |
||
| 1314 | ].building_id.unique() |
||
| 1315 | ) |
||
| 1316 | == np.sort( |
||
| 1317 | desagg_buildings_gdf.loc[ |
||
| 1318 | ~desagg_buildings_gdf.gens_id.isna() |
||
| 1319 | ].index.unique() |
||
| 1320 | ) |
||
| 1321 | ).all() |
||
| 1322 | assert ( |
||
| 1323 | np.sort( |
||
| 1324 | desagg_mastr_gdf.loc[ |
||
| 1325 | ~desagg_mastr_gdf.building_id.isna() |
||
| 1326 | ].index.unique() |
||
| 1327 | ) |
||
| 1328 | == np.sort( |
||
| 1329 | desagg_buildings_gdf.loc[ |
||
| 1330 | ~desagg_buildings_gdf.gens_id.isna() |
||
| 1331 | ].gens_id.unique() |
||
| 1332 | ) |
||
| 1333 | ).all() |
||
| 1334 | |||
| 1335 | logger.debug("Validated output.") |
||
| 1336 | |||
| 1337 | |||
| 1338 | def drop_unallocated_gens( |
||
| 1339 | gdf: gpd.GeoDataFrame, |
||
| 1340 | ) -> gpd.GeoDataFrame: |
||
| 1341 | """ |
||
| 1342 | Drop generators which did not get allocated. |
||
| 1343 | |||
| 1344 | Parameters |
||
| 1345 | ----------- |
||
| 1346 | gdf : geopandas.GeoDataFrame |
||
| 1347 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 1348 | Returns |
||
| 1349 | ------- |
||
| 1350 | geopandas.GeoDataFrame |
||
| 1351 | GeoDataFrame containing MaStR data with generators dropped which did |
||
| 1352 | not get allocated. |
||
| 1353 | """ |
||
| 1354 | init_len = len(gdf) |
||
| 1355 | gdf = gdf.loc[~gdf.building_id.isna()] |
||
| 1356 | end_len = len(gdf) |
||
| 1357 | |||
| 1358 | logger.debug( |
||
| 1359 | f"Dropped {init_len - end_len} " |
||
| 1360 | f"({((init_len - end_len) / init_len) * 100:g}%)" |
||
| 1361 | f" of {init_len} unallocated rows from MaStR DataFrame." |
||
| 1362 | ) |
||
| 1363 | |||
| 1364 | return gdf |
||
| 1365 | |||
| 1366 | |||
| 1367 | @timer_func |
||
| 1368 | def allocate_to_buildings( |
||
| 1369 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1370 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1371 | ) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
||
| 1372 | """ |
||
| 1373 | Allocate status quo pv rooftop generators to buildings. |
||
| 1374 | Parameters |
||
| 1375 | ----------- |
||
| 1376 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1377 | GeoDataFrame containing MaStR data with geocoded locations. |
||
| 1378 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1379 | GeoDataFrame containing OSM buildings data with buildings without an |
||
| 1380 | AGS ID dropped. |
||
| 1381 | Returns |
||
| 1382 | ------- |
||
| 1383 | tuple with two geopandas.GeoDataFrame s |
||
| 1384 | GeoDataFrame containing MaStR data allocated to building IDs. |
||
| 1385 | GeoDataFrame containing building data allocated to MaStR IDs. |
||
| 1386 | """ |
||
| 1387 | logger.debug("Starting allocation of status quo.") |
||
| 1388 | |||
| 1389 | q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q) |
||
| 1390 | q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q) |
||
| 1391 | |||
| 1392 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv( |
||
| 1393 | q_mastr_gdf, q_buildings_gdf, SEED |
||
| 1394 | ) |
||
| 1395 | |||
| 1396 | validate_output(desagg_mastr_gdf, desagg_buildings_gdf) |
||
| 1397 | |||
| 1398 | return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf |
||
| 1399 | |||
| 1400 | |||
| 1401 | @timer_func |
||
| 1402 | def grid_districts( |
||
| 1403 | epsg: int, |
||
| 1404 | ) -> gpd.GeoDataFrame: |
||
| 1405 | """ |
||
| 1406 | Load mv grid district geo data from eGo^n Database as |
||
| 1407 | geopandas.GeoDataFrame. |
||
| 1408 | Parameters |
||
| 1409 | ----------- |
||
| 1410 | epsg : int |
||
| 1411 | EPSG ID to use as CRS. |
||
| 1412 | Returns |
||
| 1413 | ------- |
||
| 1414 | geopandas.GeoDataFrame |
||
| 1415 | GeoDataFrame containing mv grid district ID and geo shapes data. |
||
| 1416 | """ |
||
| 1417 | gdf = db.select_geodataframe( |
||
| 1418 | """ |
||
| 1419 | SELECT bus_id, geom |
||
| 1420 | FROM grid.egon_mv_grid_district |
||
| 1421 | ORDER BY bus_id |
||
| 1422 | """, |
||
| 1423 | index_col="bus_id", |
||
| 1424 | geom_col="geom", |
||
| 1425 | epsg=epsg, |
||
| 1426 | ) |
||
| 1427 | |||
| 1428 | gdf.index = gdf.index.astype(int) |
||
| 1429 | |||
| 1430 | logger.debug("Grid districts loaded.") |
||
| 1431 | |||
| 1432 | return gdf |
||
| 1433 | |||
| 1434 | |||
| 1435 | def scenario_data( |
||
| 1436 | carrier: str = "solar_rooftop", |
||
| 1437 | scenario: str = "eGon2035", |
||
| 1438 | ) -> pd.DataFrame: |
||
| 1439 | """ |
||
| 1440 | Get scenario capacity data from eGo^n Database. |
||
| 1441 | Parameters |
||
| 1442 | ----------- |
||
| 1443 | carrier : str |
||
| 1444 | Carrier type to filter table by. |
||
| 1445 | scenario : str |
||
| 1446 | Scenario to filter table by. |
||
| 1447 | Returns |
||
| 1448 | ------- |
||
| 1449 | geopandas.GeoDataFrame |
||
| 1450 | GeoDataFrame with scenario capacity data in GW. |
||
| 1451 | """ |
||
| 1452 | with db.session_scope() as session: |
||
| 1453 | query = session.query(EgonScenarioCapacities).filter( |
||
| 1454 | EgonScenarioCapacities.carrier == carrier, |
||
| 1455 | EgonScenarioCapacities.scenario_name == scenario, |
||
| 1456 | ) |
||
| 1457 | |||
| 1458 | df = pd.read_sql( |
||
| 1459 | query.statement, query.session.bind, index_col="index" |
||
| 1460 | ).sort_index() |
||
| 1461 | |||
| 1462 | logger.debug("Scenario capacity data loaded.") |
||
| 1463 | |||
| 1464 | return df |
||
| 1465 | |||
| 1466 | |||
| 1467 | View Code Duplication | class Vg250Lan(Base): |
|
|
|
|||
| 1468 | __tablename__ = "vg250_lan" |
||
| 1469 | __table_args__ = {"schema": "boundaries"} |
||
| 1470 | |||
| 1471 | id = Column(BigInteger, primary_key=True, index=True) |
||
| 1472 | ade = Column(BigInteger) |
||
| 1473 | gf = Column(BigInteger) |
||
| 1474 | bsg = Column(BigInteger) |
||
| 1475 | ars = Column(String) |
||
| 1476 | ags = Column(String) |
||
| 1477 | sdv_ars = Column(String) |
||
| 1478 | gen = Column(String) |
||
| 1479 | bez = Column(String) |
||
| 1480 | ibz = Column(BigInteger) |
||
| 1481 | bem = Column(String) |
||
| 1482 | nbd = Column(String) |
||
| 1483 | sn_l = Column(String) |
||
| 1484 | sn_r = Column(String) |
||
| 1485 | sn_k = Column(String) |
||
| 1486 | sn_v1 = Column(String) |
||
| 1487 | sn_v2 = Column(String) |
||
| 1488 | sn_g = Column(String) |
||
| 1489 | fk_s3 = Column(String) |
||
| 1490 | nuts = Column(String) |
||
| 1491 | ars_0 = Column(String) |
||
| 1492 | ags_0 = Column(String) |
||
| 1493 | wsk = Column(String) |
||
| 1494 | debkg_id = Column(String) |
||
| 1495 | rs = Column(String) |
||
| 1496 | sdv_rs = Column(String) |
||
| 1497 | rs_0 = Column(String) |
||
| 1498 | geometry = Column(Geometry(srid=EPSG), index=True) |
||
| 1499 | |||
| 1500 | |||
| 1501 | def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame: |
||
| 1502 | """ |
||
| 1503 | Get feder state data from eGo^n Database. |
||
| 1504 | Parameters |
||
| 1505 | ----------- |
||
| 1506 | to_crs : pyproj.crs.crs.CRS |
||
| 1507 | CRS to transform geometries to. |
||
| 1508 | Returns |
||
| 1509 | ------- |
||
| 1510 | geopandas.GeoDataFrame |
||
| 1511 | GeoDataFrame with federal state data. |
||
| 1512 | """ |
||
| 1513 | with db.session_scope() as session: |
||
| 1514 | query = session.query( |
||
| 1515 | Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom") |
||
| 1516 | ) |
||
| 1517 | |||
| 1518 | gdf = gpd.read_postgis( |
||
| 1519 | query.statement, session.connection(), index_col="id" |
||
| 1520 | ).to_crs(to_crs) |
||
| 1521 | |||
| 1522 | logger.debug("Federal State data loaded.") |
||
| 1523 | |||
| 1524 | return gdf |
||
| 1525 | |||
| 1526 | |||
| 1527 | @timer_func |
||
| 1528 | def overlay_grid_districts_with_counties( |
||
| 1529 | mv_grid_district_gdf: gpd.GeoDataFrame, |
||
| 1530 | federal_state_gdf: gpd.GeoDataFrame, |
||
| 1531 | ) -> gpd.GeoDataFrame: |
||
| 1532 | """ |
||
| 1533 | Calculate the intersections of mv grid districts and counties. |
||
| 1534 | Parameters |
||
| 1535 | ----------- |
||
| 1536 | mv_grid_district_gdf : gpd.GeoDataFrame |
||
| 1537 | GeoDataFrame containing mv grid district ID and geo shapes data. |
||
| 1538 | federal_state_gdf : gpd.GeoDataFrame |
||
| 1539 | GeoDataFrame with federal state data. |
||
| 1540 | Returns |
||
| 1541 | ------- |
||
| 1542 | geopandas.GeoDataFrame |
||
| 1543 | GeoDataFrame containing OSM buildings data. |
||
| 1544 | """ |
||
| 1545 | logger.debug( |
||
| 1546 | "Calculating intersection overlay between mv grid districts and " |
||
| 1547 | "counties. This may take a while..." |
||
| 1548 | ) |
||
| 1549 | |||
| 1550 | gdf = gpd.overlay( |
||
| 1551 | federal_state_gdf.to_crs(mv_grid_district_gdf.crs), |
||
| 1552 | mv_grid_district_gdf.reset_index(), |
||
| 1553 | how="intersection", |
||
| 1554 | keep_geom_type=True, |
||
| 1555 | ) |
||
| 1556 | |||
| 1557 | logger.debug("Done!") |
||
| 1558 | |||
| 1559 | return gdf |
||
| 1560 | |||
| 1561 | |||
| 1562 | @timer_func |
||
| 1563 | def add_overlay_id_to_buildings( |
||
| 1564 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1565 | grid_federal_state_gdf: gpd.GeoDataFrame, |
||
| 1566 | ) -> gpd.GeoDataFrame: |
||
| 1567 | """ |
||
| 1568 | Add information about overlay ID to buildings. |
||
| 1569 | Parameters |
||
| 1570 | ----------- |
||
| 1571 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1572 | GeoDataFrame containing OSM buildings data. |
||
| 1573 | grid_federal_state_gdf : geopandas.GeoDataFrame |
||
| 1574 | GeoDataFrame with intersection shapes between counties and grid |
||
| 1575 | districts. |
||
| 1576 | Returns |
||
| 1577 | ------- |
||
| 1578 | geopandas.GeoDataFrame |
||
| 1579 | GeoDataFrame containing OSM buildings data with overlay ID added. |
||
| 1580 | """ |
||
| 1581 | gdf = ( |
||
| 1582 | buildings_gdf.to_crs(grid_federal_state_gdf.crs) |
||
| 1583 | .sjoin( |
||
| 1584 | grid_federal_state_gdf, |
||
| 1585 | how="left", |
||
| 1586 | predicate="intersects", |
||
| 1587 | ) |
||
| 1588 | .rename(columns={"index_right": "overlay_id"}) |
||
| 1589 | ) |
||
| 1590 | |||
| 1591 | logger.debug("Added overlay ID to OSM buildings.") |
||
| 1592 | |||
| 1593 | return gdf |
||
| 1594 | |||
| 1595 | |||
| 1596 | def drop_buildings_outside_grids( |
||
| 1597 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1598 | ) -> gpd.GeoDataFrame: |
||
| 1599 | """ |
||
| 1600 | Drop all buildings outside of grid areas. |
||
| 1601 | Parameters |
||
| 1602 | ----------- |
||
| 1603 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1604 | GeoDataFrame containing OSM buildings data. |
||
| 1605 | Returns |
||
| 1606 | ------- |
||
| 1607 | gepandas.GeoDataFrame |
||
| 1608 | GeoDataFrame containing OSM buildings data |
||
| 1609 | with buildings without an bus ID dropped. |
||
| 1610 | """ |
||
| 1611 | gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()] |
||
| 1612 | |||
| 1613 | logger.debug( |
||
| 1614 | f"{len(buildings_gdf) - len(gdf)} " |
||
| 1615 | f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
||
| 1616 | f"of {len(buildings_gdf)} values are outside of the grid areas " |
||
| 1617 | "and are therefore dropped." |
||
| 1618 | ) |
||
| 1619 | |||
| 1620 | return gdf |
||
| 1621 | |||
| 1622 | |||
| 1623 | def cap_per_bus_id( |
||
| 1624 | scenario: str, |
||
| 1625 | ) -> pd.DataFrame: |
||
| 1626 | """ |
||
| 1627 | Get table with total pv rooftop capacity per grid district. |
||
| 1628 | |||
| 1629 | Parameters |
||
| 1630 | ----------- |
||
| 1631 | scenario : str |
||
| 1632 | Scenario name. |
||
| 1633 | Returns |
||
| 1634 | ------- |
||
| 1635 | pandas.DataFrame |
||
| 1636 | DataFrame with total rooftop capacity per mv grid. |
||
| 1637 | """ |
||
| 1638 | targets = config.datasets()["solar_rooftop"]["targets"] |
||
| 1639 | |||
| 1640 | sql = f""" |
||
| 1641 | SELECT bus as bus_id, control, p_nom as capacity |
||
| 1642 | FROM {targets['generators']['schema']}.{targets['generators']['table']} |
||
| 1643 | WHERE carrier = 'solar_rooftop' |
||
| 1644 | AND scn_name = '{scenario}' |
||
| 1645 | """ |
||
| 1646 | # TODO: woher kommen die Slack rows??? |
||
| 1647 | |||
| 1648 | df = db.select_dataframe(sql, index_col="bus_id") |
||
| 1649 | |||
| 1650 | return df.loc[df.control != "Slack"] |
||
| 1651 | |||
| 1652 | # overlay_gdf = overlay_gdf.assign(capacity=np.nan) |
||
| 1653 | # |
||
| 1654 | # for cap, nuts in scenario_df[["capacity", "nuts"]].itertuples(index=False): |
||
| 1655 | # nuts_gdf = overlay_gdf.loc[overlay_gdf.nuts == nuts] |
||
| 1656 | # |
||
| 1657 | # capacity = nuts_gdf.building_area.multiply( |
||
| 1658 | # cap / nuts_gdf.building_area.sum() |
||
| 1659 | # ) |
||
| 1660 | # |
||
| 1661 | # overlay_gdf.loc[nuts_gdf.index] = overlay_gdf.loc[ |
||
| 1662 | # nuts_gdf.index |
||
| 1663 | # ].assign(capacity=capacity.multiply(conversion).to_numpy()) |
||
| 1664 | # |
||
| 1665 | # return overlay_gdf[["bus_id", "capacity"]].groupby("bus_id").sum() |
||
| 1666 | |||
| 1667 | |||
| 1668 | def determine_end_of_life_gens( |
||
| 1669 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1670 | scenario_timestamp: pd.Timestamp, |
||
| 1671 | pv_rooftop_lifetime: pd.Timedelta, |
||
| 1672 | ) -> gpd.GeoDataFrame: |
||
| 1673 | """ |
||
| 1674 | Determine if an old PV system has reached its end of life. |
||
| 1675 | Parameters |
||
| 1676 | ----------- |
||
| 1677 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1678 | GeoDataFrame containing geocoded MaStR data. |
||
| 1679 | scenario_timestamp : pandas.Timestamp |
||
| 1680 | Timestamp at which the scenario takes place. |
||
| 1681 | pv_rooftop_lifetime : pandas.Timedelta |
||
| 1682 | Average expected lifetime of PV rooftop systems. |
||
| 1683 | Returns |
||
| 1684 | ------- |
||
| 1685 | geopandas.GeoDataFrame |
||
| 1686 | GeoDataFrame containing geocoded MaStR data and info if the system |
||
| 1687 | has reached its end of life. |
||
| 1688 | """ |
||
| 1689 | before = mastr_gdf.capacity.sum() |
||
| 1690 | |||
| 1691 | mastr_gdf = mastr_gdf.assign( |
||
| 1692 | age=scenario_timestamp - mastr_gdf.start_up_date |
||
| 1693 | ) |
||
| 1694 | |||
| 1695 | mastr_gdf = mastr_gdf.assign( |
||
| 1696 | end_of_life=pv_rooftop_lifetime < mastr_gdf.age |
||
| 1697 | ) |
||
| 1698 | |||
| 1699 | after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum() |
||
| 1700 | |||
| 1701 | logger.debug( |
||
| 1702 | f"Determined if pv rooftop systems reached their end of life.\nTotal " |
||
| 1703 | f"capacity: {before}\nActive capacity: {after}" |
||
| 1704 | ) |
||
| 1705 | |||
| 1706 | return mastr_gdf |
||
| 1707 | |||
| 1708 | |||
| 1709 | def calculate_max_pv_cap_per_building( |
||
| 1710 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1711 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1712 | pv_cap_per_sq_m: float | int, |
||
| 1713 | roof_factor: float | int, |
||
| 1714 | ) -> gpd.GeoDataFrame: |
||
| 1715 | """ |
||
| 1716 | Calculate the estimated maximum possible PV capacity per building. |
||
| 1717 | Parameters |
||
| 1718 | ----------- |
||
| 1719 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1720 | GeoDataFrame containing OSM buildings data. |
||
| 1721 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1722 | GeoDataFrame containing geocoded MaStR data. |
||
| 1723 | pv_cap_per_sq_m : float, int |
||
| 1724 | Average expected, installable PV capacity per square meter. |
||
| 1725 | roof_factor : float, int |
||
| 1726 | Average for PV usable roof area share. |
||
| 1727 | Returns |
||
| 1728 | ------- |
||
| 1729 | geopandas.GeoDataFrame |
||
| 1730 | GeoDataFrame containing OSM buildings data with estimated maximum PV |
||
| 1731 | capacity. |
||
| 1732 | """ |
||
| 1733 | gdf = ( |
||
| 1734 | buildings_gdf.reset_index() |
||
| 1735 | .rename(columns={"index": "id"}) |
||
| 1736 | .merge( |
||
| 1737 | mastr_gdf[ |
||
| 1738 | [ |
||
| 1739 | "capacity", |
||
| 1740 | "end_of_life", |
||
| 1741 | "building_id", |
||
| 1742 | "EinheitlicheAusrichtungUndNeigungswinkel", |
||
| 1743 | "Hauptausrichtung", |
||
| 1744 | "HauptausrichtungNeigungswinkel", |
||
| 1745 | ] |
||
| 1746 | ], |
||
| 1747 | how="left", |
||
| 1748 | left_on="id", |
||
| 1749 | right_on="building_id", |
||
| 1750 | ) |
||
| 1751 | .set_index("id") |
||
| 1752 | .drop(columns="building_id") |
||
| 1753 | ) |
||
| 1754 | |||
| 1755 | return gdf.assign( |
||
| 1756 | max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m), |
||
| 1757 | end_of_life=gdf.end_of_life.fillna(True).astype(bool), |
||
| 1758 | bus_id=gdf.bus_id.astype(int), |
||
| 1759 | ) |
||
| 1760 | |||
| 1761 | |||
| 1762 | def calculate_building_load_factor( |
||
| 1763 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1764 | buildings_gdf: gpd.GeoDataFrame, |
||
| 1765 | rounding: int = 4, |
||
| 1766 | ) -> gpd.GeoDataFrame: |
||
| 1767 | """ |
||
| 1768 | Calculate the roof load factor from existing PV systems. |
||
| 1769 | Parameters |
||
| 1770 | ----------- |
||
| 1771 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1772 | GeoDataFrame containing geocoded MaStR data. |
||
| 1773 | buildings_gdf : geopandas.GeoDataFrame |
||
| 1774 | GeoDataFrame containing OSM buildings data. |
||
| 1775 | rounding : int |
||
| 1776 | Rounding to use for load factor. |
||
| 1777 | Returns |
||
| 1778 | ------- |
||
| 1779 | geopandas.GeoDataFrame |
||
| 1780 | GeoDataFrame containing geocoded MaStR data with calculated load |
||
| 1781 | factor. |
||
| 1782 | """ |
||
| 1783 | gdf = mastr_gdf.merge( |
||
| 1784 | buildings_gdf[["max_cap", "building_area"]] |
||
| 1785 | .loc[~buildings_gdf["max_cap"].isna()] |
||
| 1786 | .reset_index(), |
||
| 1787 | how="left", |
||
| 1788 | left_on="building_id", |
||
| 1789 | right_on="id", |
||
| 1790 | ).set_index("id") |
||
| 1791 | |||
| 1792 | return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding)) |
||
| 1793 | |||
| 1794 | |||
| 1795 | def get_probability_for_property( |
||
| 1796 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1797 | cap_range: tuple[int | float, int | float], |
||
| 1798 | prop: str, |
||
| 1799 | ) -> tuple[np.array, np.array]: |
||
| 1800 | """ |
||
| 1801 | Calculate the probability of the different options of a property of the |
||
| 1802 | existing PV plants. |
||
| 1803 | Parameters |
||
| 1804 | ----------- |
||
| 1805 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1806 | GeoDataFrame containing geocoded MaStR data. |
||
| 1807 | cap_range : tuple(int, int) |
||
| 1808 | Capacity range of PV plants to look at. |
||
| 1809 | prop : str |
||
| 1810 | Property to calculate probabilities for. String needs to be in columns |
||
| 1811 | of mastr_gdf. |
||
| 1812 | Returns |
||
| 1813 | ------- |
||
| 1814 | tuple |
||
| 1815 | numpy.array |
||
| 1816 | Unique values of property. |
||
| 1817 | numpy.array |
||
| 1818 | Probabilties per unique value. |
||
| 1819 | """ |
||
| 1820 | cap_range_gdf = mastr_gdf.loc[ |
||
| 1821 | (mastr_gdf.capacity > cap_range[0]) |
||
| 1822 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 1823 | ] |
||
| 1824 | |||
| 1825 | if prop == "load_factor": |
||
| 1826 | cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1] |
||
| 1827 | |||
| 1828 | count = Counter( |
||
| 1829 | cap_range_gdf[prop].loc[ |
||
| 1830 | ~cap_range_gdf[prop].isna() |
||
| 1831 | & ~cap_range_gdf[prop].isnull() |
||
| 1832 | & ~(cap_range_gdf[prop] == "None") |
||
| 1833 | ] |
||
| 1834 | ) |
||
| 1835 | |||
| 1836 | values = np.array(list(count.keys())) |
||
| 1837 | probabilities = np.fromiter(count.values(), dtype=float) |
||
| 1838 | probabilities = probabilities / np.sum(probabilities) |
||
| 1839 | |||
| 1840 | return values, probabilities |
||
| 1841 | |||
| 1842 | |||
| 1843 | @timer_func |
||
| 1844 | def probabilities( |
||
| 1845 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1846 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1847 | properties: list[str] | None = None, |
||
| 1848 | ) -> dict: |
||
| 1849 | """ |
||
| 1850 | Calculate the probability of the different options of properties of the |
||
| 1851 | existing PV plants. |
||
| 1852 | Parameters |
||
| 1853 | ----------- |
||
| 1854 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1855 | GeoDataFrame containing geocoded MaStR data. |
||
| 1856 | cap_ranges : list(tuple(int, int)) |
||
| 1857 | List of capacity ranges to distinguish between. The first tuple should |
||
| 1858 | start with a zero and the last one should end with infinite. |
||
| 1859 | properties : list(str) |
||
| 1860 | List of properties to calculate probabilities for. Strings need to be |
||
| 1861 | in columns of mastr_gdf. |
||
| 1862 | Returns |
||
| 1863 | ------- |
||
| 1864 | dict |
||
| 1865 | Dictionary with values and probabilities per capacity range. |
||
| 1866 | """ |
||
| 1867 | if cap_ranges is None: |
||
| 1868 | cap_ranges = [ |
||
| 1869 | (0, 30), |
||
| 1870 | (30, 100), |
||
| 1871 | (100, float("inf")), |
||
| 1872 | ] |
||
| 1873 | if properties is None: |
||
| 1874 | properties = [ |
||
| 1875 | "EinheitlicheAusrichtungUndNeigungswinkel", |
||
| 1876 | "Hauptausrichtung", |
||
| 1877 | "HauptausrichtungNeigungswinkel", |
||
| 1878 | "load_factor", |
||
| 1879 | ] |
||
| 1880 | |||
| 1881 | prob_dict = {} |
||
| 1882 | |||
| 1883 | for cap_range in cap_ranges: |
||
| 1884 | prob_dict[cap_range] = { |
||
| 1885 | "values": {}, |
||
| 1886 | "probabilities": {}, |
||
| 1887 | } |
||
| 1888 | |||
| 1889 | for prop in properties: |
||
| 1890 | v, p = get_probability_for_property( |
||
| 1891 | mastr_gdf, |
||
| 1892 | cap_range, |
||
| 1893 | prop, |
||
| 1894 | ) |
||
| 1895 | |||
| 1896 | prob_dict[cap_range]["values"][prop] = v |
||
| 1897 | prob_dict[cap_range]["probabilities"][prop] = p |
||
| 1898 | |||
| 1899 | return prob_dict |
||
| 1900 | |||
| 1901 | |||
| 1902 | def cap_share_per_cap_range( |
||
| 1903 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1904 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1905 | ) -> dict[tuple[int | float, int | float], float]: |
||
| 1906 | """ |
||
| 1907 | Calculate the share of PV capacity from the total PV capacity within |
||
| 1908 | capacity ranges. |
||
| 1909 | Parameters |
||
| 1910 | ----------- |
||
| 1911 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1912 | GeoDataFrame containing geocoded MaStR data. |
||
| 1913 | cap_ranges : list(tuple(int, int)) |
||
| 1914 | List of capacity ranges to distinguish between. The first tuple should |
||
| 1915 | start with a zero and the last one should end with infinite. |
||
| 1916 | Returns |
||
| 1917 | ------- |
||
| 1918 | dict |
||
| 1919 | Dictionary with share of PV capacity from the total PV capacity within |
||
| 1920 | capacity ranges. |
||
| 1921 | """ |
||
| 1922 | if cap_ranges is None: |
||
| 1923 | cap_ranges = [ |
||
| 1924 | (0, 30), |
||
| 1925 | (30, 100), |
||
| 1926 | (100, float("inf")), |
||
| 1927 | ] |
||
| 1928 | |||
| 1929 | cap_share_dict = {} |
||
| 1930 | |||
| 1931 | total_cap = mastr_gdf.capacity.sum() |
||
| 1932 | |||
| 1933 | for cap_range in cap_ranges: |
||
| 1934 | cap_share = ( |
||
| 1935 | mastr_gdf.loc[ |
||
| 1936 | (mastr_gdf.capacity > cap_range[0]) |
||
| 1937 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 1938 | ].capacity.sum() |
||
| 1939 | / total_cap |
||
| 1940 | ) |
||
| 1941 | |||
| 1942 | cap_share_dict[cap_range] = cap_share |
||
| 1943 | |||
| 1944 | return cap_share_dict |
||
| 1945 | |||
| 1946 | |||
| 1947 | def mean_load_factor_per_cap_range( |
||
| 1948 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1949 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1950 | ) -> dict[tuple[int | float, int | float], float]: |
||
| 1951 | """ |
||
| 1952 | Calculate the mean roof load factor per capacity range from existing PV |
||
| 1953 | plants. |
||
| 1954 | Parameters |
||
| 1955 | ----------- |
||
| 1956 | mastr_gdf : geopandas.GeoDataFrame |
||
| 1957 | GeoDataFrame containing geocoded MaStR data. |
||
| 1958 | cap_ranges : list(tuple(int, int)) |
||
| 1959 | List of capacity ranges to distinguish between. The first tuple should |
||
| 1960 | start with a zero and the last one should end with infinite. |
||
| 1961 | Returns |
||
| 1962 | ------- |
||
| 1963 | dict |
||
| 1964 | Dictionary with mean roof load factor per capacity range. |
||
| 1965 | """ |
||
| 1966 | if cap_ranges is None: |
||
| 1967 | cap_ranges = [ |
||
| 1968 | (0, 30), |
||
| 1969 | (30, 100), |
||
| 1970 | (100, float("inf")), |
||
| 1971 | ] |
||
| 1972 | |||
| 1973 | load_factor_dict = {} |
||
| 1974 | |||
| 1975 | for cap_range in cap_ranges: |
||
| 1976 | load_factor = mastr_gdf.loc[ |
||
| 1977 | (mastr_gdf.load_factor <= 1) |
||
| 1978 | & (mastr_gdf.capacity > cap_range[0]) |
||
| 1979 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 1980 | ].load_factor.mean() |
||
| 1981 | |||
| 1982 | load_factor_dict[cap_range] = load_factor |
||
| 1983 | |||
| 1984 | return load_factor_dict |
||
| 1985 | |||
| 1986 | |||
| 1987 | def building_area_range_per_cap_range( |
||
| 1988 | mastr_gdf: gpd.GeoDataFrame, |
||
| 1989 | cap_ranges: list[tuple[int | float, int | float]] | None = None, |
||
| 1990 | min_building_size: int | float = 10.0, |
||
| 1991 | upper_quantile: float = 0.95, |
||
| 1992 | lower_quantile: float = 0.05, |
||
| 1993 | ) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]: |
||
| 1994 | """ |
||
| 1995 | Estimate normal building area range per capacity range. |
||
| 1996 | Calculate the mean roof load factor per capacity range from existing PV |
||
| 1997 | plants. |
||
| 1998 | Parameters |
||
| 1999 | ----------- |
||
| 2000 | mastr_gdf : geopandas.GeoDataFrame |
||
| 2001 | GeoDataFrame containing geocoded MaStR data. |
||
| 2002 | cap_ranges : list(tuple(int, int)) |
||
| 2003 | List of capacity ranges to distinguish between. The first tuple should |
||
| 2004 | start with a zero and the last one should end with infinite. |
||
| 2005 | min_building_size : int, float |
||
| 2006 | Minimal building size to consider for PV plants. |
||
| 2007 | upper_quantile : float |
||
| 2008 | Upper quantile to estimate maximum building size per capacity range. |
||
| 2009 | lower_quantile : float |
||
| 2010 | Lower quantile to estimate minimum building size per capacity range. |
||
| 2011 | Returns |
||
| 2012 | ------- |
||
| 2013 | dict |
||
| 2014 | Dictionary with estimated normal building area range per capacity |
||
| 2015 | range. |
||
| 2016 | """ |
||
| 2017 | if cap_ranges is None: |
||
| 2018 | cap_ranges = [ |
||
| 2019 | (0, 30), |
||
| 2020 | (30, 100), |
||
| 2021 | (100, float("inf")), |
||
| 2022 | ] |
||
| 2023 | |||
| 2024 | building_area_range_dict = {} |
||
| 2025 | |||
| 2026 | n_ranges = len(cap_ranges) |
||
| 2027 | |||
| 2028 | for count, cap_range in enumerate(cap_ranges): |
||
| 2029 | cap_range_gdf = mastr_gdf.loc[ |
||
| 2030 | (mastr_gdf.capacity > cap_range[0]) |
||
| 2031 | & (mastr_gdf.capacity <= cap_range[1]) |
||
| 2032 | ] |
||
| 2033 | |||
| 2034 | if count == 0: |
||
| 2035 | building_area_range_dict[cap_range] = ( |
||
| 2036 | min_building_size, |
||
| 2037 | cap_range_gdf.building_area.quantile(upper_quantile), |
||
| 2038 | ) |
||
| 2039 | elif count == n_ranges - 1: |
||
| 2040 | building_area_range_dict[cap_range] = ( |
||
| 2041 | cap_range_gdf.building_area.quantile(lower_quantile), |
||
| 2042 | float("inf"), |
||
| 2043 | ) |
||
| 2044 | else: |
||
| 2045 | building_area_range_dict[cap_range] = ( |
||
| 2046 | cap_range_gdf.building_area.quantile(lower_quantile), |
||
| 2047 | cap_range_gdf.building_area.quantile(upper_quantile), |
||
| 2048 | ) |
||
| 2049 | |||
| 2050 | values = list(building_area_range_dict.values()) |
||
| 2051 | |||
| 2052 | building_area_range_normed_dict = {} |
||
| 2053 | |||
| 2054 | for count, (cap_range, (min_area, max_area)) in enumerate( |
||
| 2055 | building_area_range_dict.items() |
||
| 2056 | ): |
||
| 2057 | if count == 0: |
||
| 2058 | building_area_range_normed_dict[cap_range] = ( |
||
| 2059 | min_area, |
||
| 2060 | np.mean((values[count + 1][0], max_area)), |
||
| 2061 | ) |
||
| 2062 | elif count == n_ranges - 1: |
||
| 2063 | building_area_range_normed_dict[cap_range] = ( |
||
| 2064 | np.mean((values[count - 1][1], min_area)), |
||
| 2065 | max_area, |
||
| 2066 | ) |
||
| 2067 | else: |
||
| 2068 | building_area_range_normed_dict[cap_range] = ( |
||
| 2069 | np.mean((values[count - 1][1], min_area)), |
||
| 2070 | np.mean((values[count + 1][0], max_area)), |
||
| 2071 | ) |
||
| 2072 | |||
| 2073 | return building_area_range_normed_dict |
||
| 2074 | |||
| 2075 | |||
| 2076 | @timer_func |
||
| 2077 | def desaggregate_pv_in_mv_grid( |
||
| 2078 | buildings_gdf: gpd.GeoDataFrame, |
||
| 2079 | pv_cap: float | int, |
||
| 2080 | **kwargs, |
||
| 2081 | ) -> gpd.GeoDataFrame: |
||
| 2082 | """ |
||
| 2083 | Desaggregate PV capacity on buildings within a given grid district. |
||
| 2084 | Parameters |
||
| 2085 | ----------- |
||
| 2086 | buildings_gdf : geopandas.GeoDataFrame |
||
| 2087 | GeoDataFrame containing buildings within the grid district. |
||
| 2088 | pv_cap : float, int |
||
| 2089 | PV capacity to desaggregate. |
||
| 2090 | Other Parameters |
||
| 2091 | ----------- |
||
| 2092 | prob_dict : dict |
||
| 2093 | Dictionary with values and probabilities per capacity range. |
||
| 2094 | cap_share_dict : dict |
||
| 2095 | Dictionary with share of PV capacity from the total PV capacity within |
||
| 2096 | capacity ranges. |
||
| 2097 | building_area_range_dict : dict |
||
| 2098 | Dictionary with estimated normal building area range per capacity |
||
| 2099 | range. |
||
| 2100 | load_factor_dict : dict |
||
| 2101 | Dictionary with mean roof load factor per capacity range. |
||
| 2102 | seed : int |
||
| 2103 | Seed to use for random operations with NumPy and pandas. |
||
| 2104 | pv_cap_per_sq_m : float, int |
||
| 2105 | Average expected, installable PV capacity per square meter. |
||
| 2106 | Returns |
||
| 2107 | ------- |
||
| 2108 | geopandas.GeoDataFrame |
||
| 2109 | GeoDataFrame containing OSM building data with desaggregated PV |
||
| 2110 | plants. |
||
| 2111 | """ |
||
| 2112 | bus_id = int(buildings_gdf.bus_id.iat[0]) |
||
| 2113 | |||
| 2114 | rng = default_rng(seed=kwargs["seed"]) |
||
| 2115 | random_state = RandomState(seed=kwargs["seed"]) |
||
| 2116 | |||
| 2117 | results_df = pd.DataFrame(columns=buildings_gdf.columns) |
||
| 2118 | |||
| 2119 | for cap_range, share in kwargs["cap_share_dict"].items(): |
||
| 2120 | pv_cap_range = pv_cap * share |
||
| 2121 | |||
| 2122 | b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range] |
||
| 2123 | |||
| 2124 | cap_range_buildings_gdf = buildings_gdf.loc[ |
||
| 2125 | ~buildings_gdf.index.isin(results_df.index) |
||
| 2126 | & (buildings_gdf.building_area > b_area_min) |
||
| 2127 | & (buildings_gdf.building_area <= b_area_max) |
||
| 2128 | ] |
||
| 2129 | |||
| 2130 | mean_load_factor = kwargs["load_factor_dict"][cap_range] |
||
| 2131 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
||
| 2132 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
||
| 2133 | load_factor=np.nan, |
||
| 2134 | capacity=np.nan, |
||
| 2135 | ) |
||
| 2136 | |||
| 2137 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
||
| 2138 | |||
| 2139 | if total_mean_cap == 0: |
||
| 2140 | logger.warning( |
||
| 2141 | f"There are no matching roof for capacity range {cap_range} " |
||
| 2142 | f"kW in grid {bus_id}. Using all buildings as fallback." |
||
| 2143 | ) |
||
| 2144 | |||
| 2145 | cap_range_buildings_gdf = buildings_gdf.loc[ |
||
| 2146 | ~buildings_gdf.index.isin(results_df.index) |
||
| 2147 | ] |
||
| 2148 | |||
| 2149 | if len(cap_range_buildings_gdf) == 0: |
||
| 2150 | logger.warning( |
||
| 2151 | "There are no roofes available for capacity range " |
||
| 2152 | f"{cap_range} kW in grid {bus_id}. Allowing dual use." |
||
| 2153 | ) |
||
| 2154 | cap_range_buildings_gdf = buildings_gdf.copy() |
||
| 2155 | |||
| 2156 | cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
||
| 2157 | mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
||
| 2158 | load_factor=np.nan, |
||
| 2159 | capacity=np.nan, |
||
| 2160 | ) |
||
| 2161 | |||
| 2162 | total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
||
| 2163 | |||
| 2164 | elif total_mean_cap < pv_cap_range: |
||
| 2165 | logger.warning( |
||
| 2166 | f"Average roof utilization of the roof area in grid {bus_id} " |
||
| 2167 | f"and capacity range {cap_range} kW is not sufficient. The " |
||
| 2168 | "roof utilization will be above average." |
||
| 2169 | ) |
||
| 2170 | |||
| 2171 | frac = max( |
||
| 2172 | pv_cap_range / total_mean_cap, |
||
| 2173 | 1 / len(cap_range_buildings_gdf), |
||
| 2174 | ) |
||
| 2175 | |||
| 2176 | samples_gdf = cap_range_buildings_gdf.sample( |
||
| 2177 | frac=min(1, frac), |
||
| 2178 | random_state=random_state, |
||
| 2179 | ) |
||
| 2180 | |||
| 2181 | cap_range_dict = kwargs["prob_dict"][cap_range] |
||
| 2182 | |||
| 2183 | values_dict = cap_range_dict["values"] |
||
| 2184 | p_dict = cap_range_dict["probabilities"] |
||
| 2185 | |||
| 2186 | load_factors = rng.choice( |
||
| 2187 | a=values_dict["load_factor"], |
||
| 2188 | size=len(samples_gdf), |
||
| 2189 | p=p_dict["load_factor"], |
||
| 2190 | ) |
||
| 2191 | |||
| 2192 | samples_gdf = samples_gdf.assign( |
||
| 2193 | load_factor=load_factors, |
||
| 2194 | capacity=( |
||
| 2195 | samples_gdf.building_area |
||
| 2196 | * load_factors |
||
| 2197 | * kwargs["pv_cap_per_sq_m"] |
||
| 2198 | ).clip(lower=0.4), |
||
| 2199 | ) |
||
| 2200 | |||
| 2201 | missing_factor = pv_cap_range / samples_gdf.capacity.sum() |
||
| 2202 | |||
| 2203 | samples_gdf = samples_gdf.assign( |
||
| 2204 | capacity=(samples_gdf.capacity * missing_factor), |
||
| 2205 | load_factor=(samples_gdf.load_factor * missing_factor), |
||
| 2206 | ) |
||
| 2207 | |||
| 2208 | assert np.isclose( |
||
| 2209 | samples_gdf.capacity.sum(), |
||
| 2210 | pv_cap_range, |
||
| 2211 | rtol=1e-03, |
||
| 2212 | ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}" |
||
| 2213 | |||
| 2214 | results_df = pd.concat( |
||
| 2215 | [ |
||
| 2216 | results_df, |
||
| 2217 | samples_gdf, |
||
| 2218 | ], |
||
| 2219 | ) |
||
| 2220 | |||
| 2221 | total_missing_factor = pv_cap / results_df.capacity.sum() |
||
| 2222 | |||
| 2223 | results_df = results_df.assign( |
||
| 2224 | capacity=(results_df.capacity * total_missing_factor), |
||
| 2225 | ) |
||
| 2226 | |||
| 2227 | assert np.isclose( |
||
| 2228 | results_df.capacity.sum(), |
||
| 2229 | pv_cap, |
||
| 2230 | rtol=1e-03, |
||
| 2231 | ), f"{results_df.capacity.sum()} != {pv_cap}" |
||
| 2232 | |||
| 2233 | return gpd.GeoDataFrame( |
||
| 2234 | results_df, |
||
| 2235 | crs=samples_gdf.crs, |
||
| 2236 | geometry="geom", |
||
| 2237 | ) |
||
| 2238 | |||
| 2239 | |||
| 2240 | @timer_func |
||
| 2241 | def desaggregate_pv( |
||
| 2242 | buildings_gdf: gpd.GeoDataFrame, |
||
| 2243 | cap_df: pd.DataFrame, |
||
| 2244 | **kwargs, |
||
| 2245 | ) -> gpd.GeoDataFrame: |
||
| 2246 | """ |
||
| 2247 | Desaggregate PV capacity on buildings within a given grid district. |
||
| 2248 | Parameters |
||
| 2249 | ----------- |
||
| 2250 | buildings_gdf : geopandas.GeoDataFrame |
||
| 2251 | GeoDataFrame containing OSM buildings data. |
||
| 2252 | cap_df : pandas.DataFrame |
||
| 2253 | DataFrame with total rooftop capacity per mv grid. |
||
| 2254 | Other Parameters |
||
| 2255 | ----------- |
||
| 2256 | prob_dict : dict |
||
| 2257 | Dictionary with values and probabilities per capacity range. |
||
| 2258 | cap_share_dict : dict |
||
| 2259 | Dictionary with share of PV capacity from the total PV capacity within |
||
| 2260 | capacity ranges. |
||
| 2261 | building_area_range_dict : dict |
||
| 2262 | Dictionary with estimated normal building area range per capacity |
||
| 2263 | range. |
||
| 2264 | load_factor_dict : dict |
||
| 2265 | Dictionary with mean roof load factor per capacity range. |
||
| 2266 | seed : int |
||
| 2267 | Seed to use for random operations with NumPy and pandas. |
||
| 2268 | pv_cap_per_sq_m : float, int |
||
| 2269 | Average expected, installable PV capacity per square meter. |
||
| 2270 | Returns |
||
| 2271 | ------- |
||
| 2272 | geopandas.GeoDataFrame |
||
| 2273 | GeoDataFrame containing OSM building data with desaggregated PV |
||
| 2274 | plants. |
||
| 2275 | """ |
||
| 2276 | allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life] |
||
| 2277 | |||
| 2278 | building_bus_ids = set(buildings_gdf.bus_id) |
||
| 2279 | cap_bus_ids = set(cap_df.index) |
||
| 2280 | |||
| 2281 | logger.debug( |
||
| 2282 | f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from " |
||
| 2283 | f"capacity: {len(cap_bus_ids)}" |
||
| 2284 | ) |
||
| 2285 | |||
| 2286 | if len(building_bus_ids) > len(cap_bus_ids): |
||
| 2287 | missing = building_bus_ids - cap_bus_ids |
||
| 2288 | else: |
||
| 2289 | missing = cap_bus_ids - building_bus_ids |
||
| 2290 | |||
| 2291 | logger.debug(str(missing)) |
||
| 2292 | |||
| 2293 | bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids)) |
||
| 2294 | |||
| 2295 | # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index) |
||
| 2296 | |||
| 2297 | for bus_id in bus_ids: |
||
| 2298 | buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id] |
||
| 2299 | |||
| 2300 | pv_installed_gdf = buildings_grid_gdf.loc[ |
||
| 2301 | ~buildings_grid_gdf.end_of_life |
||
| 2302 | ] |
||
| 2303 | |||
| 2304 | pv_installed = pv_installed_gdf.capacity.sum() |
||
| 2305 | |||
| 2306 | pot_buildings_gdf = buildings_grid_gdf.drop( |
||
| 2307 | index=pv_installed_gdf.index |
||
| 2308 | ) |
||
| 2309 | |||
| 2310 | if len(pot_buildings_gdf) == 0: |
||
| 2311 | logger.error( |
||
| 2312 | f"In grid {bus_id} there are no potential buildings to " |
||
| 2313 | f"allocate PV capacity to. The grid is skipped. This message " |
||
| 2314 | f"should only appear doing test runs with few buildings." |
||
| 2315 | ) |
||
| 2316 | |||
| 2317 | continue |
||
| 2318 | |||
| 2319 | pv_target = cap_df.at[bus_id, "capacity"] * 1000 |
||
| 2320 | |||
| 2321 | logger.debug(f"pv_target: {pv_target}") |
||
| 2322 | |||
| 2323 | pv_missing = pv_target - pv_installed |
||
| 2324 | |||
| 2325 | if pv_missing <= 0: |
||
| 2326 | logger.warning( |
||
| 2327 | f"In grid {bus_id} there is more PV installed " |
||
| 2328 | f"({pv_installed: g} kW) in status Quo than allocated within " |
||
| 2329 | f"the scenario ({pv_target: g} kW). " |
||
| 2330 | f"No new generators are added." |
||
| 2331 | ) |
||
| 2332 | |||
| 2333 | continue |
||
| 2334 | |||
| 2335 | if pot_buildings_gdf.max_cap.sum() < pv_missing: |
||
| 2336 | logger.error( |
||
| 2337 | f"In grid {bus_id} there is less PV potential (" |
||
| 2338 | f"{pot_buildings_gdf.max_cap.sum():g} kW) than allocated PV " |
||
| 2339 | f"capacity ({pv_missing:g} kW). The average roof utilization " |
||
| 2340 | f"will be very high." |
||
| 2341 | ) |
||
| 2342 | |||
| 2343 | gdf = desaggregate_pv_in_mv_grid( |
||
| 2344 | buildings_gdf=pot_buildings_gdf, |
||
| 2345 | pv_cap=pv_missing, |
||
| 2346 | **kwargs, |
||
| 2347 | ) |
||
| 2348 | |||
| 2349 | logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}") |
||
| 2350 | logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}") |
||
| 2351 | logger.debug( |
||
| 2352 | f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}" |
||
| 2353 | ) |
||
| 2354 | |||
| 2355 | if not np.isclose( |
||
| 2356 | gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3 |
||
| 2357 | ): |
||
| 2358 | logger.warning( |
||
| 2359 | f"The desired capacity and actual capacity in grid {bus_id} " |
||
| 2360 | f"differ.\n" |
||
| 2361 | f"Desired cap: {pv_target}\nActual cap: " |
||
| 2362 | f"{gdf.capacity.sum() + pv_installed}" |
||
| 2363 | ) |
||
| 2364 | |||
| 2365 | pre_cap = allocated_buildings_gdf.capacity.sum() |
||
| 2366 | new_cap = gdf.capacity.sum() |
||
| 2367 | |||
| 2368 | allocated_buildings_gdf = pd.concat( |
||
| 2369 | [ |
||
| 2370 | allocated_buildings_gdf, |
||
| 2371 | gdf, |
||
| 2372 | ] |
||
| 2373 | ) |
||
| 2374 | |||
| 2375 | total_cap = allocated_buildings_gdf.capacity.sum() |
||
| 2376 | |||
| 2377 | assert np.isclose(pre_cap + new_cap, total_cap) |
||
| 2378 | |||
| 2379 | logger.debug("Desaggregated scenario.") |
||
| 2380 | logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}") |
||
| 2381 | logger.debug( |
||
| 2382 | f"Generator capacity: " |
||
| 2383 | f"{allocated_buildings_gdf.capacity.sum() / 1000: g}" |
||
| 2384 | ) |
||
| 2385 | |||
| 2386 | return gpd.GeoDataFrame( |
||
| 2387 | allocated_buildings_gdf, |
||
| 2388 | crs=gdf.crs, |
||
| 2389 | geometry="geom", |
||
| 2390 | ) |
||
| 2391 | |||
| 2392 | |||
| 2393 | @timer_func |
||
| 2394 | def add_buildings_meta_data( |
||
| 2395 | buildings_gdf: gpd.GeoDataFrame, |
||
| 2396 | prob_dict: dict, |
||
| 2397 | seed: int, |
||
| 2398 | ) -> gpd.GeoDataFrame: |
||
| 2399 | """ |
||
| 2400 | Randomly add additional metadata to desaggregated PV plants. |
||
| 2401 | Parameters |
||
| 2402 | ----------- |
||
| 2403 | buildings_gdf : geopandas.GeoDataFrame |
||
| 2404 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
| 2405 | plants. |
||
| 2406 | prob_dict : dict |
||
| 2407 | Dictionary with values and probabilities per capacity range. |
||
| 2408 | seed : int |
||
| 2409 | Seed to use for random operations with NumPy and pandas. |
||
| 2410 | Returns |
||
| 2411 | ------- |
||
| 2412 | geopandas.GeoDataFrame |
||
| 2413 | GeoDataFrame containing OSM building data with desaggregated PV |
||
| 2414 | plants. |
||
| 2415 | """ |
||
| 2416 | rng = default_rng(seed=seed) |
||
| 2417 | buildings_gdf = buildings_gdf.reset_index().rename( |
||
| 2418 | columns={ |
||
| 2419 | "index": "building_id", |
||
| 2420 | } |
||
| 2421 | ) |
||
| 2422 | |||
| 2423 | for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items(): |
||
| 2424 | cap_range_gdf = buildings_gdf.loc[ |
||
| 2425 | (buildings_gdf.capacity >= min_cap) |
||
| 2426 | & (buildings_gdf.capacity < max_cap) |
||
| 2427 | ] |
||
| 2428 | |||
| 2429 | for key, values in cap_range_prob_dict["values"].items(): |
||
| 2430 | if key == "load_factor": |
||
| 2431 | continue |
||
| 2432 | |||
| 2433 | gdf = cap_range_gdf.loc[ |
||
| 2434 | cap_range_gdf[key].isna() |
||
| 2435 | | cap_range_gdf[key].isnull() |
||
| 2436 | | (cap_range_gdf[key] == "None") |
||
| 2437 | ] |
||
| 2438 | |||
| 2439 | key_vals = rng.choice( |
||
| 2440 | a=values, |
||
| 2441 | size=len(gdf), |
||
| 2442 | p=cap_range_prob_dict["probabilities"][key], |
||
| 2443 | ) |
||
| 2444 | |||
| 2445 | buildings_gdf.loc[gdf.index, key] = key_vals |
||
| 2446 | |||
| 2447 | return buildings_gdf |
||
| 2448 | |||
| 2449 | |||
| 2450 | def add_voltage_level( |
||
| 2451 | buildings_gdf: gpd.GeoDataFrame, |
||
| 2452 | ) -> gpd.GeoDataFrame: |
||
| 2453 | """ |
||
| 2454 | Get voltage level data from mastr table and assign to units. Infer missing |
||
| 2455 | values derived from generator capacity to the power plants. |
||
| 2456 | |||
| 2457 | Parameters |
||
| 2458 | ----------- |
||
| 2459 | buildings_gdf : geopandas.GeoDataFrame |
||
| 2460 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
| 2461 | plants. |
||
| 2462 | Returns |
||
| 2463 | ------- |
||
| 2464 | geopandas.GeoDataFrame |
||
| 2465 | GeoDataFrame containing OSM building data with voltage level per |
||
| 2466 | generator. |
||
| 2467 | """ |
||
| 2468 | |||
| 2469 | View Code Duplication | def voltage_levels(p: float) -> int: |
|
| 2470 | if p <= 100: |
||
| 2471 | return 7 |
||
| 2472 | elif p <= 200: |
||
| 2473 | return 6 |
||
| 2474 | elif p <= 5500: |
||
| 2475 | return 5 |
||
| 2476 | elif p <= 20000: |
||
| 2477 | return 4 |
||
| 2478 | elif p <= 120000: |
||
| 2479 | return 3 |
||
| 2480 | return 1 |
||
| 2481 | |||
| 2482 | # Join mastr table |
||
| 2483 | with db.session_scope() as session: |
||
| 2484 | query = session.query( |
||
| 2485 | EgonPowerPlantsPv.gens_id, |
||
| 2486 | EgonPowerPlantsPv.voltage_level, |
||
| 2487 | ) |
||
| 2488 | voltage_levels_df = pd.read_sql( |
||
| 2489 | query.statement, query.session.bind, index_col=None |
||
| 2490 | ) |
||
| 2491 | buildings_gdf = buildings_gdf.merge( |
||
| 2492 | voltage_levels_df, |
||
| 2493 | left_on="gens_id", |
||
| 2494 | right_on="gens_id", |
||
| 2495 | how="left", |
||
| 2496 | ) |
||
| 2497 | |||
| 2498 | # Infer missing values |
||
| 2499 | mask = buildings_gdf.voltage_level.isna() |
||
| 2500 | buildings_gdf.loc[mask, "voltage_level"] = buildings_gdf.loc[ |
||
| 2501 | mask |
||
| 2502 | ].capacity.apply(voltage_levels) |
||
| 2503 | |||
| 2504 | return buildings_gdf |
||
| 2505 | |||
| 2506 | |||
| 2507 | def add_start_up_date( |
||
| 2508 | buildings_gdf: gpd.GeoDataFrame, |
||
| 2509 | start: pd.Timestamp, |
||
| 2510 | end: pd.Timestamp, |
||
| 2511 | seed: int, |
||
| 2512 | ): |
||
| 2513 | """ |
||
| 2514 | Randomly and linear add start-up date to new pv generators. |
||
| 2515 | Parameters |
||
| 2516 | ---------- |
||
| 2517 | buildings_gdf : geopandas.GeoDataFrame |
||
| 2518 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
| 2519 | plants. |
||
| 2520 | start : pandas.Timestamp |
||
| 2521 | Minimum Timestamp to use. |
||
| 2522 | end : pandas.Timestamp |
||
| 2523 | Maximum Timestamp to use. |
||
| 2524 | seed : int |
||
| 2525 | Seed to use for random operations with NumPy and pandas. |
||
| 2526 | Returns |
||
| 2527 | ------- |
||
| 2528 | geopandas.GeoDataFrame |
||
| 2529 | GeoDataFrame containing OSM buildings data with start-up date added. |
||
| 2530 | """ |
||
| 2531 | rng = default_rng(seed=seed) |
||
| 2532 | |||
| 2533 | date_range = pd.date_range(start=start, end=end, freq="1D") |
||
| 2534 | |||
| 2535 | return buildings_gdf.assign( |
||
| 2536 | start_up_date=rng.choice(date_range, size=len(buildings_gdf)) |
||
| 2537 | ) |
||
| 2538 | |||
| 2539 | |||
| 2540 | @timer_func |
||
| 2541 | def allocate_scenarios( |
||
| 2542 | mastr_gdf: gpd.GeoDataFrame, |
||
| 2543 | valid_buildings_gdf: gpd.GeoDataFrame, |
||
| 2544 | last_scenario_gdf: gpd.GeoDataFrame, |
||
| 2545 | scenario: str, |
||
| 2546 | ): |
||
| 2547 | """ |
||
| 2548 | Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings. |
||
| 2549 | Parameters |
||
| 2550 | ---------- |
||
| 2551 | mastr_gdf : geopandas.GeoDataFrame |
||
| 2552 | GeoDataFrame containing geocoded MaStR data. |
||
| 2553 | valid_buildings_gdf : geopandas.GeoDataFrame |
||
| 2554 | GeoDataFrame containing OSM buildings data. |
||
| 2555 | last_scenario_gdf : geopandas.GeoDataFrame |
||
| 2556 | GeoDataFrame containing OSM buildings matched with pv generators from |
||
| 2557 | temporally preceding scenario. |
||
| 2558 | scenario : str |
||
| 2559 | Scenario to desaggrgate and allocate. |
||
| 2560 | Returns |
||
| 2561 | ------- |
||
| 2562 | tuple |
||
| 2563 | geopandas.GeoDataFrame |
||
| 2564 | GeoDataFrame containing OSM buildings matched with pv generators. |
||
| 2565 | pandas.DataFrame |
||
| 2566 | DataFrame containing pv rooftop capacity per grid id. |
||
| 2567 | """ |
||
| 2568 | cap_per_bus_id_df = cap_per_bus_id(scenario) |
||
| 2569 | |||
| 2570 | logger.debug( |
||
| 2571 | f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}" |
||
| 2572 | ) |
||
| 2573 | |||
| 2574 | last_scenario_gdf = determine_end_of_life_gens( |
||
| 2575 | last_scenario_gdf, |
||
| 2576 | SCENARIO_TIMESTAMP[scenario], |
||
| 2577 | PV_ROOFTOP_LIFETIME, |
||
| 2578 | ) |
||
| 2579 | |||
| 2580 | buildings_gdf = calculate_max_pv_cap_per_building( |
||
| 2581 | valid_buildings_gdf, |
||
| 2582 | last_scenario_gdf, |
||
| 2583 | PV_CAP_PER_SQ_M, |
||
| 2584 | ROOF_FACTOR, |
||
| 2585 | ) |
||
| 2586 | |||
| 2587 | mastr_gdf = calculate_building_load_factor( |
||
| 2588 | mastr_gdf, |
||
| 2589 | buildings_gdf, |
||
| 2590 | ) |
||
| 2591 | |||
| 2592 | probabilities_dict = probabilities( |
||
| 2593 | mastr_gdf, |
||
| 2594 | cap_ranges=CAP_RANGES, |
||
| 2595 | ) |
||
| 2596 | |||
| 2597 | cap_share_dict = cap_share_per_cap_range( |
||
| 2598 | mastr_gdf, |
||
| 2599 | cap_ranges=CAP_RANGES, |
||
| 2600 | ) |
||
| 2601 | |||
| 2602 | load_factor_dict = mean_load_factor_per_cap_range( |
||
| 2603 | mastr_gdf, |
||
| 2604 | cap_ranges=CAP_RANGES, |
||
| 2605 | ) |
||
| 2606 | |||
| 2607 | building_area_range_dict = building_area_range_per_cap_range( |
||
| 2608 | mastr_gdf, |
||
| 2609 | cap_ranges=CAP_RANGES, |
||
| 2610 | min_building_size=MIN_BUILDING_SIZE, |
||
| 2611 | upper_quantile=UPPER_QUNATILE, |
||
| 2612 | lower_quantile=LOWER_QUANTILE, |
||
| 2613 | ) |
||
| 2614 | |||
| 2615 | allocated_buildings_gdf = desaggregate_pv( |
||
| 2616 | buildings_gdf=buildings_gdf, |
||
| 2617 | cap_df=cap_per_bus_id_df, |
||
| 2618 | prob_dict=probabilities_dict, |
||
| 2619 | cap_share_dict=cap_share_dict, |
||
| 2620 | building_area_range_dict=building_area_range_dict, |
||
| 2621 | load_factor_dict=load_factor_dict, |
||
| 2622 | seed=SEED, |
||
| 2623 | pv_cap_per_sq_m=PV_CAP_PER_SQ_M, |
||
| 2624 | ) |
||
| 2625 | |||
| 2626 | allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario) |
||
| 2627 | |||
| 2628 | meta_buildings_gdf = frame_to_numeric( |
||
| 2629 | add_buildings_meta_data( |
||
| 2630 | allocated_buildings_gdf, |
||
| 2631 | probabilities_dict, |
||
| 2632 | SEED, |
||
| 2633 | ) |
||
| 2634 | ) |
||
| 2635 | |||
| 2636 | return ( |
||
| 2637 | add_start_up_date( |
||
| 2638 | meta_buildings_gdf, |
||
| 2639 | start=last_scenario_gdf.start_up_date.max(), |
||
| 2640 | end=SCENARIO_TIMESTAMP[scenario], |
||
| 2641 | seed=SEED, |
||
| 2642 | ), |
||
| 2643 | cap_per_bus_id_df, |
||
| 2644 | ) |
||
| 2645 | |||
| 2646 | |||
| 2647 | class EgonPowerPlantPvRoofBuildingScenario(Base): |
||
| 2648 | __tablename__ = "egon_power_plants_pv_roof_building" |
||
| 2649 | __table_args__ = {"schema": "supply"} |
||
| 2650 | |||
| 2651 | index = Column(Integer, primary_key=True, index=True) |
||
| 2652 | scenario = Column(String) |
||
| 2653 | bus_id = Column(Integer, nullable=True) |
||
| 2654 | building_id = Column(Integer) |
||
| 2655 | gens_id = Column(String, nullable=True) |
||
| 2656 | capacity = Column(Float) |
||
| 2657 | einheitliche_ausrichtung_und_neigungswinkel = Column(Float) |
||
| 2658 | hauptausrichtung = Column(String) |
||
| 2659 | hauptausrichtung_neigungswinkel = Column(String) |
||
| 2660 | voltage_level = Column(Integer) |
||
| 2661 | weather_cell_id = Column(Integer) |
||
| 2662 | |||
| 2663 | |||
| 2664 | def create_scenario_table(buildings_gdf): |
||
| 2665 | """Create mapping table pv_unit <-> building for scenario""" |
||
| 2666 | EgonPowerPlantPvRoofBuildingScenario.__table__.drop( |
||
| 2667 | bind=engine, checkfirst=True |
||
| 2668 | ) |
||
| 2669 | EgonPowerPlantPvRoofBuildingScenario.__table__.create( |
||
| 2670 | bind=engine, checkfirst=True |
||
| 2671 | ) |
||
| 2672 | |||
| 2673 | buildings_gdf.rename(columns=COLS_TO_RENAME).assign( |
||
| 2674 | capacity=buildings_gdf.capacity.div(10**3) # kW -> MW |
||
| 2675 | )[COLS_TO_EXPORT].reset_index().to_sql( |
||
| 2676 | name=EgonPowerPlantPvRoofBuildingScenario.__table__.name, |
||
| 2677 | schema=EgonPowerPlantPvRoofBuildingScenario.__table__.schema, |
||
| 2678 | con=db.engine(), |
||
| 2679 | if_exists="append", |
||
| 2680 | index=False, |
||
| 2681 | ) |
||
| 2682 | |||
| 2683 | |||
| 2684 | def geocode_mastr_data(): |
||
| 2685 | """ |
||
| 2686 | Read PV rooftop data from MaStR CSV |
||
| 2687 | TODO: the source will be replaced as soon as the MaStR data is available |
||
| 2688 | in DB. |
||
| 2689 | """ |
||
| 2690 | mastr_df = mastr_data( |
||
| 2691 | MASTR_INDEX_COL, |
||
| 2692 | MASTR_RELEVANT_COLS, |
||
| 2693 | MASTR_DTYPES, |
||
| 2694 | MASTR_PARSE_DATES, |
||
| 2695 | ) |
||
| 2696 | |||
| 2697 | clean_mastr_df = clean_mastr_data( |
||
| 2698 | mastr_df, |
||
| 2699 | max_realistic_pv_cap=MAX_REALISTIC_PV_CAP, |
||
| 2700 | min_realistic_pv_cap=MIN_REALISTIC_PV_CAP, |
||
| 2701 | seed=SEED, |
||
| 2702 | rounding=ROUNDING, |
||
| 2703 | ) |
||
| 2704 | |||
| 2705 | geocoding_df = geocoding_data(clean_mastr_df) |
||
| 2706 | |||
| 2707 | ratelimiter = geocoder(USER_AGENT, MIN_DELAY_SECONDS) |
||
| 2708 | |||
| 2709 | geocode_gdf = geocode_data(geocoding_df, ratelimiter, EPSG) |
||
| 2710 | |||
| 2711 | create_geocoded_table(geocode_gdf) |
||
| 2712 | |||
| 2713 | |||
| 2714 | def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: |
||
| 2715 | sql = """ |
||
| 2716 | SELECT building_id, zensus_population_id |
||
| 2717 | FROM boundaries.egon_map_zensus_mvgd_buildings |
||
| 2718 | """ |
||
| 2719 | |||
| 2720 | buildings_gdf = buildings_gdf.merge( |
||
| 2721 | right=db.select_dataframe(sql).drop_duplicates(subset="building_id"), |
||
| 2722 | how="left", |
||
| 2723 | on="building_id", |
||
| 2724 | ) |
||
| 2725 | |||
| 2726 | sql = """ |
||
| 2727 | SELECT zensus_population_id, w_id as weather_cell_id |
||
| 2728 | FROM boundaries.egon_map_zensus_weather_cell |
||
| 2729 | """ |
||
| 2730 | |||
| 2731 | buildings_gdf = buildings_gdf.merge( |
||
| 2732 | right=db.select_dataframe(sql).drop_duplicates( |
||
| 2733 | subset="zensus_population_id" |
||
| 2734 | ), |
||
| 2735 | how="left", |
||
| 2736 | on="zensus_population_id", |
||
| 2737 | ) |
||
| 2738 | |||
| 2739 | if buildings_gdf.weather_cell_id.isna().any(): |
||
| 2740 | missing = buildings_gdf.loc[ |
||
| 2741 | buildings_gdf.weather_cell_id.isna() |
||
| 2742 | ].building_id.tolist() |
||
| 2743 | |||
| 2744 | raise ValueError( |
||
| 2745 | f"Following buildings don't have a weather cell id: {missing}" |
||
| 2746 | ) |
||
| 2747 | |||
| 2748 | return buildings_gdf |
||
| 2749 | |||
| 2750 | |||
| 2751 | def add_bus_ids_sq(buildings_gdf: gpd.GeoDataFrame,) -> gpd.GeoDataFrame: |
||
| 2752 | """Add bus ids for status_quo units |
||
| 2753 | |||
| 2754 | Parameters |
||
| 2755 | ----------- |
||
| 2756 | buildings_gdf : geopandas.GeoDataFrame |
||
| 2757 | GeoDataFrame containing OSM buildings data with desaggregated PV |
||
| 2758 | plants. |
||
| 2759 | Returns |
||
| 2760 | ------- |
||
| 2761 | geopandas.GeoDataFrame |
||
| 2762 | GeoDataFrame containing OSM building data with bus_id per |
||
| 2763 | generator. |
||
| 2764 | """ |
||
| 2765 | grid_districts_gdf = grid_districts(EPSG) |
||
| 2766 | |||
| 2767 | mask = buildings_gdf.scenario == "status_quo" |
||
| 2768 | buildings_gdf.loc[mask, "bus_id"] = ( |
||
| 2769 | buildings_gdf.loc[mask] |
||
| 2770 | .sjoin(grid_districts_gdf, how="left") |
||
| 2771 | .index_right |
||
| 2772 | ) |
||
| 2773 | |||
| 2774 | return buildings_gdf |
||
| 2775 | |||
| 2776 | |||
| 2777 | def pv_rooftop_to_buildings(): |
||
| 2778 | """Main script, executed as task""" |
||
| 2779 | |||
| 2780 | mastr_gdf = load_mastr_data() |
||
| 2781 | |||
| 2782 | buildings_gdf = load_building_data() |
||
| 2783 | |||
| 2784 | desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings( |
||
| 2785 | mastr_gdf, buildings_gdf |
||
| 2786 | ) |
||
| 2787 | |||
| 2788 | all_buildings_gdf = ( |
||
| 2789 | desagg_mastr_gdf.assign(scenario="status_quo") |
||
| 2790 | .reset_index() |
||
| 2791 | .rename(columns={"geometry": "geom", "EinheitMastrNummer": "gens_id"}) |
||
| 2792 | ) |
||
| 2793 | |||
| 2794 | scenario_buildings_gdf = all_buildings_gdf.copy() |
||
| 2795 | |||
| 2796 | cap_per_bus_id_df = pd.DataFrame() |
||
| 2797 | |||
| 2798 | for scenario in SCENARIOS: |
||
| 2799 | logger.debug(f"Desaggregating scenario {scenario}.") |
||
| 2800 | ( |
||
| 2801 | scenario_buildings_gdf, |
||
| 2802 | cap_per_bus_id_scenario_df, |
||
| 2803 | ) = allocate_scenarios( # noqa: F841 |
||
| 2804 | desagg_mastr_gdf, |
||
| 2805 | desagg_buildings_gdf, |
||
| 2806 | scenario_buildings_gdf, |
||
| 2807 | scenario, |
||
| 2808 | ) |
||
| 2809 | |||
| 2810 | all_buildings_gdf = gpd.GeoDataFrame( |
||
| 2811 | pd.concat( |
||
| 2812 | [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True |
||
| 2813 | ), |
||
| 2814 | crs=scenario_buildings_gdf.crs, |
||
| 2815 | geometry="geom", |
||
| 2816 | ) |
||
| 2817 | |||
| 2818 | cap_per_bus_id_df = pd.concat( |
||
| 2819 | [cap_per_bus_id_df, cap_per_bus_id_scenario_df] |
||
| 2820 | ) |
||
| 2821 | |||
| 2822 | # add weather cell |
||
| 2823 | all_buildings_gdf = add_weather_cell_id(all_buildings_gdf) |
||
| 2824 | |||
| 2825 | # add bus IDs for status quo scenario |
||
| 2826 | all_buildings_gdf = add_bus_ids_sq(all_buildings_gdf) |
||
| 2827 | |||
| 2828 | # export scenario |
||
| 2829 | create_scenario_table(add_voltage_level(all_buildings_gdf)) |
||
| 2830 |