|
1
|
|
|
"""Import MaStR dataset and write to DB tables |
|
2
|
|
|
|
|
3
|
|
|
Data dump from Marktstammdatenregister (2022-11-17) is imported into the |
|
4
|
|
|
database. Only some technologies are taken into account and written to the |
|
5
|
|
|
following tables: |
|
6
|
|
|
|
|
7
|
|
|
* PV: table `supply.egon_power_plants_pv` |
|
8
|
|
|
* wind turbines: table `supply.egon_power_plants_wind` |
|
9
|
|
|
* biomass/biogas plants: table `supply.egon_power_plants_biomass` |
|
10
|
|
|
* hydro plants: table `supply.egon_power_plants_hydro` |
|
11
|
|
|
|
|
12
|
|
|
Handling of empty source data in MaStr dump: |
|
13
|
|
|
* `voltage_level`: inferred based on nominal power (`capacity`) using the |
|
14
|
|
|
ranges from |
|
15
|
|
|
https://redmine.iks.cs.ovgu.de/oe/projects/ego-n/wiki/Definition_of_thresholds_for_voltage_level_assignment |
|
16
|
|
|
which results in True in column `voltage_level_inferred`. Remaining datasets |
|
17
|
|
|
are set to -1 (which only occurs if `capacity` is empty). |
|
18
|
|
|
* `supply.egon_power_plants_*.bus_id`: set to -1 (only if not within grid |
|
19
|
|
|
districts or no geom available, e.g. for units with nom. power <30 kW) |
|
20
|
|
|
* `supply.egon_power_plants_hydro.plant_type`: NaN |
|
21
|
|
|
|
|
22
|
|
|
The data is used especially for the generation of status quo grids by ding0. |
|
23
|
|
|
""" |
|
24
|
|
|
from geoalchemy2 import Geometry |
|
25
|
|
|
from sqlalchemy import ( |
|
26
|
|
|
Boolean, |
|
27
|
|
|
Column, |
|
28
|
|
|
DateTime, |
|
29
|
|
|
Float, |
|
30
|
|
|
Integer, |
|
31
|
|
|
Sequence, |
|
32
|
|
|
String, |
|
33
|
|
|
) |
|
34
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
|
35
|
|
|
import geopandas as gpd |
|
36
|
|
|
import pandas as pd |
|
37
|
|
|
|
|
38
|
|
|
from egon.data import db |
|
39
|
|
|
from egon.data.datasets.mastr import WORKING_DIR_MASTR_NEW |
|
40
|
|
|
import egon.data.config |
|
41
|
|
|
|
|
42
|
|
|
Base = declarative_base() |
|
43
|
|
|
|
|
44
|
|
|
TESTMODE_OFF = ( |
|
45
|
|
|
egon.data.config.settings()["egon-data"]["--dataset-boundary"] |
|
46
|
|
|
== "Everything" |
|
47
|
|
|
) |
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
|
|
class EgonPowerPlantsPv(Base): |
|
51
|
|
|
__tablename__ = "egon_power_plants_pv" |
|
52
|
|
|
__table_args__ = {"schema": "supply"} |
|
53
|
|
|
|
|
54
|
|
|
id = Column(Integer, Sequence("pp_pv_seq"), primary_key=True) |
|
55
|
|
|
bus_id = Column(Integer, nullable=True) # Grid district id |
|
56
|
|
|
gens_id = Column(String, nullable=True) # EinheitMastrNummer |
|
57
|
|
|
|
|
58
|
|
|
status = Column(String, nullable=True) # EinheitBetriebsstatus |
|
59
|
|
|
commissioning_date = Column(DateTime, nullable=True) # Inbetriebnahmedatum |
|
60
|
|
|
postcode = Column(String(5), nullable=True) # Postleitzahl |
|
61
|
|
|
city = Column(String(50), nullable=True) # Ort |
|
62
|
|
|
federal_state = Column(String(31), nullable=True) # Bundesland |
|
63
|
|
|
|
|
64
|
|
|
site_type = Column(String(69), nullable=True) # Lage |
|
65
|
|
|
usage_sector = Column(String(36), nullable=True) # Nutzungsbereich |
|
66
|
|
|
orientation_primary = Column(String(11), nullable=True) # Hauptausrichtung |
|
67
|
|
|
orientation_primary_angle = Column( |
|
68
|
|
|
String(18), nullable=True |
|
69
|
|
|
) # HauptausrichtungNeigungswinkel |
|
70
|
|
|
orientation_secondary = Column( |
|
71
|
|
|
String(11), nullable=True |
|
72
|
|
|
) # Nebenausrichtung |
|
73
|
|
|
orientation_secondary_angle = Column( |
|
74
|
|
|
String(18), nullable=True |
|
75
|
|
|
) # NebenausrichtungNeigungswinkel |
|
76
|
|
|
orientation_uniform = Column( |
|
77
|
|
|
Boolean, nullable=True |
|
78
|
|
|
) # EinheitlicheAusrichtungUndNeigungswinkel |
|
79
|
|
|
module_count = Column(Float, nullable=True) # AnzahlModule |
|
80
|
|
|
|
|
81
|
|
|
capacity = Column(Float, nullable=True) # Nettonennleistung |
|
82
|
|
|
capacity_inverter = Column( |
|
83
|
|
|
Float, nullable=True |
|
84
|
|
|
) # ZugeordneteWirkleistungWechselrichter in MW |
|
85
|
|
|
feedin_type = Column(String(47), nullable=True) # Einspeisungsart |
|
86
|
|
|
voltage_level = Column(Integer, nullable=True) |
|
87
|
|
|
voltage_level_inferred = Column(Boolean, nullable=True) |
|
88
|
|
|
|
|
89
|
|
|
geom = Column(Geometry("POINT", 4326), index=True, nullable=True) |
|
90
|
|
|
|
|
91
|
|
|
|
|
92
|
|
View Code Duplication |
class EgonPowerPlantsWind(Base): |
|
|
|
|
|
|
93
|
|
|
__tablename__ = "egon_power_plants_wind" |
|
94
|
|
|
__table_args__ = {"schema": "supply"} |
|
95
|
|
|
|
|
96
|
|
|
id = Column(Integer, Sequence("pp_wind_seq"), primary_key=True) |
|
97
|
|
|
bus_id = Column(Integer, nullable=True) # Grid district id |
|
98
|
|
|
gens_id = Column(String, nullable=True) # EinheitMastrNummer |
|
99
|
|
|
|
|
100
|
|
|
status = Column(String, nullable=True) # EinheitBetriebsstatus |
|
101
|
|
|
commissioning_date = Column(DateTime, nullable=True) # Inbetriebnahmedatum |
|
102
|
|
|
postcode = Column(String(5), nullable=True) # Postleitzahl |
|
103
|
|
|
city = Column(String(50), nullable=True) # Ort |
|
104
|
|
|
federal_state = Column(String(31), nullable=True) # Bundesland |
|
105
|
|
|
|
|
106
|
|
|
site_type = Column(String(17), nullable=True) # Lage |
|
107
|
|
|
manufacturer_name = Column(String(100), nullable=True) # Hersteller |
|
108
|
|
|
type_name = Column(String(100), nullable=True) # Typenbezeichnung |
|
109
|
|
|
hub_height = Column(Float, nullable=True) # Nabenhoehe |
|
110
|
|
|
rotor_diameter = Column(Float, nullable=True) # Rotordurchmesser |
|
111
|
|
|
|
|
112
|
|
|
capacity = Column(Float, nullable=True) # Nettonennleistung |
|
113
|
|
|
feedin_type = Column(String(47), nullable=True) # Einspeisungsart |
|
114
|
|
|
voltage_level = Column(Integer, nullable=True) |
|
115
|
|
|
voltage_level_inferred = Column(Boolean, nullable=True) |
|
116
|
|
|
|
|
117
|
|
|
geom = Column(Geometry("POINT", 4326), index=True, nullable=True) |
|
118
|
|
|
|
|
119
|
|
|
|
|
120
|
|
View Code Duplication |
class EgonPowerPlantsBiomass(Base): |
|
|
|
|
|
|
121
|
|
|
__tablename__ = "egon_power_plants_biomass" |
|
122
|
|
|
__table_args__ = {"schema": "supply"} |
|
123
|
|
|
|
|
124
|
|
|
id = Column(Integer, Sequence("pp_biomass_seq"), primary_key=True) |
|
125
|
|
|
bus_id = Column(Integer, nullable=True) # Grid district id |
|
126
|
|
|
gens_id = Column(String, nullable=True) # EinheitMastrNummer |
|
127
|
|
|
|
|
128
|
|
|
status = Column(String, nullable=True) # EinheitBetriebsstatus |
|
129
|
|
|
commissioning_date = Column(DateTime, nullable=True) # Inbetriebnahmedatum |
|
130
|
|
|
postcode = Column(String(5), nullable=True) # Postleitzahl |
|
131
|
|
|
city = Column(String(50), nullable=True) # Ort |
|
132
|
|
|
federal_state = Column(String(31), nullable=True) # Bundesland |
|
133
|
|
|
|
|
134
|
|
|
technology = Column(String(45), nullable=True) # Technologie |
|
135
|
|
|
fuel_name = Column(String(52), nullable=True) # Hauptbrennstoff |
|
136
|
|
|
fuel_type = Column(String(19), nullable=True) # Biomasseart |
|
137
|
|
|
|
|
138
|
|
|
capacity = Column(Float, nullable=True) # Nettonennleistung |
|
139
|
|
|
th_capacity = Column(Float, nullable=True) # ThermischeNutzleistung |
|
140
|
|
|
feedin_type = Column(String(47), nullable=True) # Einspeisungsart |
|
141
|
|
|
voltage_level = Column(Integer, nullable=True) |
|
142
|
|
|
voltage_level_inferred = Column(Boolean, nullable=True) |
|
143
|
|
|
|
|
144
|
|
|
geom = Column(Geometry("POINT", 4326), index=True, nullable=True) |
|
145
|
|
|
|
|
146
|
|
|
|
|
147
|
|
|
class EgonPowerPlantsHydro(Base): |
|
148
|
|
|
__tablename__ = "egon_power_plants_hydro" |
|
149
|
|
|
__table_args__ = {"schema": "supply"} |
|
150
|
|
|
|
|
151
|
|
|
id = Column(Integer, Sequence("pp_hydro_seq"), primary_key=True) |
|
152
|
|
|
bus_id = Column(Integer, nullable=True) # Grid district id |
|
153
|
|
|
gens_id = Column(String, nullable=True) # EinheitMastrNummer |
|
154
|
|
|
|
|
155
|
|
|
status = Column(String, nullable=True) # EinheitBetriebsstatus |
|
156
|
|
|
commissioning_date = Column(DateTime, nullable=True) # Inbetriebnahmedatum |
|
157
|
|
|
postcode = Column(String(5), nullable=True) # Postleitzahl |
|
158
|
|
|
city = Column(String(50), nullable=True) # Ort |
|
159
|
|
|
federal_state = Column(String(31), nullable=True) # Bundesland |
|
160
|
|
|
|
|
161
|
|
|
plant_type = Column(String(39), nullable=True) # ArtDerWasserkraftanlage |
|
162
|
|
|
water_origin = Column(String(20), nullable=True) # ArtDesZuflusses |
|
163
|
|
|
|
|
164
|
|
|
capacity = Column(Float, nullable=True) # Nettonennleistung |
|
165
|
|
|
feedin_type = Column(String(47), nullable=True) # Einspeisungsart |
|
166
|
|
|
voltage_level = Column(Integer, nullable=True) |
|
167
|
|
|
voltage_level_inferred = Column(Boolean, nullable=True) |
|
168
|
|
|
|
|
169
|
|
|
geom = Column(Geometry("POINT", 4326), index=True, nullable=True) |
|
170
|
|
|
|
|
171
|
|
|
|
|
172
|
|
|
def import_mastr() -> None: |
|
173
|
|
|
"""Import MaStR data into database""" |
|
174
|
|
|
|
|
175
|
|
|
def infer_voltage_level( |
|
176
|
|
|
units_gdf: gpd.GeoDataFrame, |
|
177
|
|
|
) -> gpd.GeoDataFrame: |
|
178
|
|
|
""" |
|
179
|
|
|
Infer nan values in voltage level derived from generator capacity to |
|
180
|
|
|
the power plants. |
|
181
|
|
|
|
|
182
|
|
|
Parameters |
|
183
|
|
|
----------- |
|
184
|
|
|
units_gdf : geopandas.GeoDataFrame |
|
185
|
|
|
GeoDataFrame containing units with voltage levels from MaStR |
|
186
|
|
|
Returnsunits_gdf: gpd.GeoDataFrame |
|
187
|
|
|
------- |
|
188
|
|
|
geopandas.GeoDataFrame |
|
189
|
|
|
GeoDataFrame containing units all having assigned a voltage level. |
|
190
|
|
|
""" |
|
191
|
|
|
|
|
192
|
|
View Code Duplication |
def voltage_levels(p: float) -> int: |
|
|
|
|
|
|
193
|
|
|
if p <= 100: |
|
194
|
|
|
return 7 |
|
195
|
|
|
elif p <= 200: |
|
196
|
|
|
return 6 |
|
197
|
|
|
elif p <= 5500: |
|
198
|
|
|
return 5 |
|
199
|
|
|
elif p <= 20000: |
|
200
|
|
|
return 4 |
|
201
|
|
|
elif p <= 120000: |
|
202
|
|
|
return 3 |
|
203
|
|
|
return 1 |
|
204
|
|
|
|
|
205
|
|
|
units_gdf["voltage_level_inferred"] = False |
|
206
|
|
|
mask = units_gdf.voltage_level.isna() |
|
207
|
|
|
units_gdf.loc[mask, "voltage_level_inferred"] = True |
|
208
|
|
|
units_gdf.loc[mask, "voltage_level"] = units_gdf.loc[ |
|
209
|
|
|
mask |
|
210
|
|
|
].Nettonennleistung.apply(voltage_levels) |
|
211
|
|
|
|
|
212
|
|
|
return units_gdf |
|
213
|
|
|
|
|
214
|
|
|
engine = db.engine() |
|
215
|
|
|
cfg = egon.data.config.datasets()["power_plants"] |
|
216
|
|
|
|
|
217
|
|
|
cols_mapping = { |
|
218
|
|
|
"all": { |
|
219
|
|
|
"EinheitMastrNummer": "gens_id", |
|
220
|
|
|
"EinheitBetriebsstatus": "status", |
|
221
|
|
|
"Inbetriebnahmedatum": "commissioning_date", |
|
222
|
|
|
"Postleitzahl": "postcode", |
|
223
|
|
|
"Ort": "city", |
|
224
|
|
|
"Bundesland": "federal_state", |
|
225
|
|
|
"Nettonennleistung": "capacity", |
|
226
|
|
|
"Einspeisungsart": "feedin_type", |
|
227
|
|
|
}, |
|
228
|
|
|
"pv": { |
|
229
|
|
|
"Lage": "site_type", |
|
230
|
|
|
"Nutzungsbereich": "usage_sector", |
|
231
|
|
|
"Hauptausrichtung": "orientation_primary", |
|
232
|
|
|
"HauptausrichtungNeigungswinkel": "orientation_primary_angle", |
|
233
|
|
|
"Nebenausrichtung": "orientation_secondary", |
|
234
|
|
|
"NebenausrichtungNeigungswinkel": "orientation_secondary_angle", |
|
235
|
|
|
"EinheitlicheAusrichtungUndNeigungswinkel": "orientation_uniform", |
|
236
|
|
|
"AnzahlModule": "module_count", |
|
237
|
|
|
"zugeordneteWirkleistungWechselrichter": "capacity_inverter", |
|
238
|
|
|
}, |
|
239
|
|
|
"wind": { |
|
240
|
|
|
"Lage": "site_type", |
|
241
|
|
|
"Hersteller": "manufacturer_name", |
|
242
|
|
|
"Typenbezeichnung": "type_name", |
|
243
|
|
|
"Nabenhoehe": "hub_height", |
|
244
|
|
|
"Rotordurchmesser": "rotor_diameter", |
|
245
|
|
|
}, |
|
246
|
|
|
"biomass": { |
|
247
|
|
|
"Technologie": "technology", |
|
248
|
|
|
"Hauptbrennstoff": "fuel_name", |
|
249
|
|
|
"Biomasseart": "fuel_type", |
|
250
|
|
|
"ThermischeNutzleistung": "th_capacity", |
|
251
|
|
|
}, |
|
252
|
|
|
"hydro": { |
|
253
|
|
|
"ArtDerWasserkraftanlage": "plant_type", |
|
254
|
|
|
"ArtDesZuflusses": "water_origin", |
|
255
|
|
|
}, |
|
256
|
|
|
} |
|
257
|
|
|
|
|
258
|
|
|
source_files = { |
|
259
|
|
|
"pv": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_pv"], |
|
260
|
|
|
"wind": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_wind"], |
|
261
|
|
|
"biomass": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_biomass"], |
|
262
|
|
|
"hydro": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_hydro"], |
|
263
|
|
|
} |
|
264
|
|
|
target_tables = { |
|
265
|
|
|
"pv": EgonPowerPlantsPv, |
|
266
|
|
|
"wind": EgonPowerPlantsWind, |
|
267
|
|
|
"biomass": EgonPowerPlantsBiomass, |
|
268
|
|
|
"hydro": EgonPowerPlantsHydro, |
|
269
|
|
|
} |
|
270
|
|
|
vlevel_mapping = { |
|
271
|
|
|
"Höchstspannung": 1, |
|
272
|
|
|
"UmspannungZurHochspannung": 2, |
|
273
|
|
|
"Hochspannung": 3, |
|
274
|
|
|
"UmspannungZurMittelspannung": 4, |
|
275
|
|
|
"Mittelspannung": 5, |
|
276
|
|
|
"UmspannungZurNiederspannung": 6, |
|
277
|
|
|
"Niederspannung": 7, |
|
278
|
|
|
} |
|
279
|
|
|
|
|
280
|
|
|
# import locations |
|
281
|
|
|
locations = pd.read_csv( |
|
282
|
|
|
WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_location"], |
|
283
|
|
|
index_col=None, |
|
284
|
|
|
) |
|
285
|
|
|
|
|
286
|
|
|
# import grid districts |
|
287
|
|
|
mv_grid_districts = db.select_geodataframe( |
|
288
|
|
|
f""" |
|
289
|
|
|
SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
|
290
|
|
|
""", |
|
291
|
|
|
epsg=4326, |
|
292
|
|
|
) |
|
293
|
|
|
|
|
294
|
|
|
# import units |
|
295
|
|
|
technologies = ["pv", "wind", "biomass", "hydro"] |
|
296
|
|
|
for tech in technologies: |
|
297
|
|
|
# read units |
|
298
|
|
|
print(f"===== Importing MaStR dataset: {tech} =====") |
|
299
|
|
|
print(" Reading CSV and filtering data...") |
|
300
|
|
|
units = pd.read_csv( |
|
301
|
|
|
source_files[tech], |
|
302
|
|
|
usecols=( |
|
303
|
|
|
["LokationMastrNummer", "Laengengrad", "Breitengrad", "Land"] |
|
304
|
|
|
+ list(cols_mapping["all"].keys()) |
|
305
|
|
|
+ list(cols_mapping[tech].keys()) |
|
306
|
|
|
), |
|
307
|
|
|
index_col=None, |
|
308
|
|
|
dtype={"Postleitzahl": str}, |
|
309
|
|
|
).rename(columns=cols_mapping) |
|
310
|
|
|
|
|
311
|
|
|
# drop units outside of Germany |
|
312
|
|
|
len_old = len(units) |
|
313
|
|
|
units = units.loc[units.Land == "Deutschland"] |
|
314
|
|
|
print(f" {len_old-len(units)} units outside of Germany dropped...") |
|
315
|
|
|
|
|
316
|
|
|
# filter for SH units if in testmode |
|
317
|
|
|
if not TESTMODE_OFF: |
|
318
|
|
|
print( |
|
319
|
|
|
""" TESTMODE: |
|
320
|
|
|
Dropping all units outside of Schleswig-Holstein... |
|
321
|
|
|
""" |
|
322
|
|
|
) |
|
323
|
|
|
units = units.loc[units.Bundesland == "SchleswigHolstein"] |
|
324
|
|
|
|
|
325
|
|
|
# merge and rename voltage level |
|
326
|
|
|
print(" Merging with locations and allocate voltage level...") |
|
327
|
|
|
units = units.merge( |
|
328
|
|
|
locations[["MaStRNummer", "Spannungsebene"]], |
|
329
|
|
|
left_on="LokationMastrNummer", |
|
330
|
|
|
right_on="MaStRNummer", |
|
331
|
|
|
how="left", |
|
332
|
|
|
) |
|
333
|
|
|
# convert voltage levels to numbers |
|
334
|
|
|
units["voltage_level"] = units.Spannungsebene.replace(vlevel_mapping) |
|
335
|
|
|
# set voltage level for nan values |
|
336
|
|
|
units = infer_voltage_level(units) |
|
337
|
|
|
|
|
338
|
|
|
# add geometry |
|
339
|
|
|
print(" Adding geometries...") |
|
340
|
|
|
units = gpd.GeoDataFrame( |
|
341
|
|
|
units, |
|
342
|
|
|
geometry=gpd.points_from_xy( |
|
343
|
|
|
units["Laengengrad"], units["Breitengrad"], crs=4326 |
|
344
|
|
|
), |
|
345
|
|
|
crs=4326, |
|
346
|
|
|
) |
|
347
|
|
|
units_wo_geom = len( |
|
348
|
|
|
units.loc[(units.Laengengrad.isna() | units.Laengengrad.isna())] |
|
349
|
|
|
) |
|
350
|
|
|
print( |
|
351
|
|
|
f" {units_wo_geom}/{len(units)} units do not have a geometry!" |
|
352
|
|
|
) |
|
353
|
|
|
|
|
354
|
|
|
# drop unnecessary and rename columns |
|
355
|
|
|
print(" Reformatting...") |
|
356
|
|
|
units.drop( |
|
357
|
|
|
columns=[ |
|
358
|
|
|
"LokationMastrNummer", |
|
359
|
|
|
"MaStRNummer", |
|
360
|
|
|
"Laengengrad", |
|
361
|
|
|
"Breitengrad", |
|
362
|
|
|
"Spannungsebene", |
|
363
|
|
|
"Land", |
|
364
|
|
|
], |
|
365
|
|
|
inplace=True, |
|
366
|
|
|
) |
|
367
|
|
|
mapping = cols_mapping["all"].copy() |
|
368
|
|
|
mapping.update(cols_mapping[tech]) |
|
369
|
|
|
mapping.update({"geometry": "geom"}) |
|
370
|
|
|
units.rename(columns=mapping, inplace=True) |
|
371
|
|
|
units["voltage_level"] = units.voltage_level.fillna(-1).astype(int) |
|
372
|
|
|
|
|
373
|
|
|
units.set_geometry("geom", inplace=True) |
|
374
|
|
|
units["id"] = range(0, len(units)) |
|
375
|
|
|
|
|
376
|
|
|
# change capacity unit: kW to MW |
|
377
|
|
|
units["capacity"] = units["capacity"] / 1e3 |
|
378
|
|
|
if "capacity_inverter" in units.columns: |
|
379
|
|
|
units["capacity_inverter"] = units["capacity_inverter"] / 1e3 |
|
380
|
|
|
if "th_capacity" in units.columns: |
|
381
|
|
|
units["th_capacity"] = units["th_capacity"] / 1e3 |
|
382
|
|
|
|
|
383
|
|
|
# assign bus ids |
|
384
|
|
|
print(" Assigning bus ids...") |
|
385
|
|
|
units = units.assign( |
|
386
|
|
|
bus_id=units.loc[~units.geom.x.isna()] |
|
387
|
|
|
.sjoin(mv_grid_districts[["bus_id", "geom"]], how="left") |
|
388
|
|
|
.drop(columns=["index_right"]) |
|
389
|
|
|
.bus_id |
|
390
|
|
|
) |
|
391
|
|
|
units["bus_id"] = units.bus_id.fillna(-1).astype(int) |
|
392
|
|
|
|
|
393
|
|
|
# write to DB |
|
394
|
|
|
print(f" Writing {len(units)} units to DB...") |
|
395
|
|
|
units.to_postgis( |
|
396
|
|
|
name=target_tables[tech].__tablename__, |
|
397
|
|
|
con=engine, |
|
398
|
|
|
if_exists="append", |
|
399
|
|
|
schema=target_tables[tech].__table_args__["schema"], |
|
400
|
|
|
) |
|
401
|
|
|
|