Passed
Pull Request — dev (#1008)
by
unknown
01:34
created

desaggregate_pv()   C

Complexity

Conditions 7

Size

Total Lines 139
Code Lines 60

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 60
dl 0
loc 139
rs 6.909
c 0
b 0
f 0
cc 7
nop 3

How to fix   Long Method   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

1
"""
2
Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate new
3
PV rooftop generators for scenarios eGon2035 and eGon100RE.
4
Data cleaning: Drop duplicates and entries with missing critical data. Determine most
5
plausible capacity from multiple values given in MaStR data. Drop generators which don't
6
have any plausible capacity data (23.5MW > P > 0.1). Randomly and weighted add a
7
start-up date if it is missing. Extract zip and municipality from 'Standort' given in
8
MaStR data. Geocode unique zip and municipality combinations with Nominatim (1sec
9
delay). Drop generators for which geocoding failed or which are located outside the
10
municipalities of Germany. Add some visual sanity checks for cleaned data.
11
Allocation of MaStR data: Allocate each generator to an existing building from OSM.
12
Determine the quantile each generator and building is in depending on the capacity of
13
the generator and the area of the polygon of the building. Randomly distribute
14
generators within each municipality preferably within the same building area quantile as
15
the generators are capacity wise. If not enough buildings exists within a municipality
16
and quantile additional buildings from other quantiles are chosen randomly.
17
Desegregation of pv rooftop scenarios: The scenario data per federal state is linear
18
distributed to the mv grid districts according to the pv rooftop potential per mv grid
19
district. The rooftop potential is estimated from the building area given from the OSM
20
buildings. Grid districts, which are located in several federal states, are allocated PV
21
capacity according to their respective roof potential in the individual federal states.
22
The desegregation of PV plants within a grid districts respects existing plants from
23
MaStR, which did not reach their end of life. New PV plants are randomly and weighted
24
generated using a breakdown of MaStR data as generator basis. Plant metadata (e.g. plant
25
orientation) is also added random and weighted from MaStR data as basis.
26
"""
27
from __future__ import annotations
28
29
from collections import Counter
30
from functools import wraps
31
from pathlib import Path
32
from time import perf_counter
33
from typing import Any
34
35
from geoalchemy2 import Geometry
36
from geopy.extra.rate_limiter import RateLimiter
37
from geopy.geocoders import Nominatim
38
from loguru import logger
39
from numpy.random import RandomState, default_rng
40
from pyproj.crs.crs import CRS
41
from sqlalchemy import BigInteger, Column, Float, Integer, String
42
from sqlalchemy.dialects.postgresql import HSTORE
43
from sqlalchemy.ext.declarative import declarative_base
44
import geopandas as gpd
45
import numpy as np
46
import pandas as pd
47
48
from egon.data import config, db
49
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import (
50
    OsmBuildingsSynthetic,
51
)
52
from egon.data.datasets.scenario_capacities import EgonScenarioCapacities
53
from egon.data.datasets.zensus_vg250 import Vg250Gem
54
55
engine = db.engine()
56
Base = declarative_base()
57
SEED = int(config.settings()["egon-data"]["--random-seed"])
58
59
# TODO: move to yml
60
# mastr data
61
MASTR_RELEVANT_COLS = [
62
    "EinheitMastrNummer",
63
    "Bruttoleistung",
64
    "StatisikFlag",
65
    "Bruttoleistung_extended",
66
    "Nettonennleistung",
67
    "InstallierteLeistung",
68
    "zugeordneteWirkleistungWechselrichter",
69
    "EinheitBetriebsstatus",
70
    "Standort",
71
    "Bundesland",
72
    "Land",
73
    "Landkreis",
74
    "Gemeinde",
75
    "Postleitzahl",
76
    "Ort",
77
    "GeplantesInbetriebnahmedatum",
78
    "Inbetriebnahmedatum",
79
    "GemeinsamerWechselrichterMitSpeicher",
80
    "Lage",
81
    "Leistungsbegrenzung",
82
    "EinheitlicheAusrichtungUndNeigungswinkel",
83
    "Hauptausrichtung",
84
    "HauptausrichtungNeigungswinkel",
85
    "Nebenausrichtung",
86
]
87
88
MASTR_DTYPES = {
89
    "EinheitMastrNummer": str,
90
    "Bruttoleistung": float,
91
    "StatisikFlag": str,
92
    "Bruttoleistung_extended": float,
93
    "Nettonennleistung": float,
94
    "InstallierteLeistung": float,
95
    "zugeordneteWirkleistungWechselrichter": float,
96
    "EinheitBetriebsstatus": str,
97
    "Standort": str,
98
    "Bundesland": str,
99
    "Land": str,
100
    "Landkreis": str,
101
    "Gemeinde": str,
102
    # "Postleitzahl": int,  # fails because of nan values
103
    "Ort": str,
104
    "GemeinsamerWechselrichterMitSpeicher": str,
105
    "Lage": str,
106
    "Leistungsbegrenzung": str,
107
    # this will parse nan values as false wich is not always correct
108
    # "EinheitlicheAusrichtungUndNeigungswinkel": bool,
109
    "Hauptausrichtung": str,
110
    "HauptausrichtungNeigungswinkel": str,
111
    "Nebenausrichtung": str,
112
    "NebenausrichtungNeigungswinkel": str,
113
}
114
115
MASTR_PARSE_DATES = [
116
    "GeplantesInbetriebnahmedatum",
117
    "Inbetriebnahmedatum",
118
]
119
120
MASTR_INDEX_COL = "EinheitMastrNummer"
121
122
EPSG = 4326
123
SRID = 3035
124
125
# data cleaning
126
MAX_REALISTIC_PV_CAP = 23500
127
MIN_REALISTIC_PV_CAP = 0.1
128
ROUNDING = 1
129
130
# geopy
131
MIN_DELAY_SECONDS = 1
132
USER_AGENT = "rli_kh_geocoder"
133
134
# show additional logging information
135
VERBOSE = False
136
137
EXPORT_DIR = Path(__name__).resolve().parent / "data"
138
EXPORT_FILE = "mastr_geocoded.gpkg"
139
EXPORT_PATH = EXPORT_DIR / EXPORT_FILE
140
DRIVER = "GPKG"
141
142
# Number of quantiles
143
Q = 5
144
145
# Scenario Data
146
CARRIER = "solar_rooftop"
147
SCENARIOS = ["eGon2035", "eGon100RE"]
148
SCENARIO_TIMESTAMP = {
149
    "eGon2035": pd.Timestamp("2035-01-01", tz="UTC"),
150
    "eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"),
151
}
152
PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D")
153
154
# Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp
155
# https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf
156
MODUL_CAP = 0.4  # kWp
157
MODUL_SIZE = 1.096 * 1.754  # m²
158
PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE
159
160
# Estimation of usable roof area
161
# Factor for the conversion of building area to roof area
162
# estimation mean roof pitch: 35°
163
# estimation usable roof share: 80%
164
# estimation that only the south side of the building is used for pv
165
# see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf
166
# AREA_FACTOR = 1.221
167
# USABLE_ROOF_SHARE = 0.8
168
# SOUTH_SHARE = 0.5
169
# ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE
170
ROOF_FACTOR = 0.5
171
172
CAP_RANGES = [
173
    (0, 30),
174
    (30, 100),
175
    (100, float("inf")),
176
]
177
178
MIN_BUILDING_SIZE = 10.0
179
UPPER_QUNATILE = 0.95
180
LOWER_QUANTILE = 0.05
181
182
COLS_TO_RENAME = {
183
    "EinheitlicheAusrichtungUndNeigungswinkel": (
184
        "einheitliche_ausrichtung_und_neigungswinkel"
185
    ),
186
    "Hauptausrichtung": "hauptausrichtung",
187
    "HauptausrichtungNeigungswinkel": "hauptausrichtung_neigungswinkel",
188
}
189
190
COLS_TO_EXPORT = [
191
    "scenario",
192
    "bus_id",
193
    "building_id",
194
    "gens_id",
195
    "capacity",
196
    "einheitliche_ausrichtung_und_neigungswinkel",
197
    "hauptausrichtung",
198
    "hauptausrichtung_neigungswinkel",
199
    "voltage_level",
200
    "weather_cell_id",
201
]
202
203
# TODO
204
INCLUDE_SYNTHETIC_BUILDINGS = True
205
ONLY_BUILDINGS_WITH_DEMAND = True
206
TEST_RUN = False
207
208
209
def timer_func(func):
210
    @wraps(func)
211
    def timeit_wrapper(*args, **kwargs):
212
        start_time = perf_counter()
213
        result = func(*args, **kwargs)
214
        end_time = perf_counter()
215
        total_time = end_time - start_time
216
        logger.debug(
217
            f"Function {func.__name__} took {total_time:.4f} seconds."
218
        )
219
        return result
220
221
    return timeit_wrapper
222
223
224
@timer_func
225
def mastr_data(
226
    index_col: str | int | list[str] | list[int],
227
    usecols: list[str],
228
    dtype: dict[str, Any] | None,
229
    parse_dates: list[str] | None,
230
) -> pd.DataFrame:
231
    """
232
    Read MaStR data from csv.
233
234
    Parameters
235
    -----------
236
    index_col : str, int or list of str or int
237
        Column(s) to use as the row labels of the DataFrame.
238
    usecols : list of str
239
        Return a subset of the columns.
240
    dtype : dict of column (str) -> type (any), optional
241
        Data type for data or columns.
242
    parse_dates : list of names (str), optional
243
        Try to parse given columns to datetime.
244
    Returns
245
    -------
246
    pandas.DataFrame
247
        DataFrame containing MaStR data.
248
    """
249
    mastr_path = Path(
250
        config.datasets()["power_plants"]["sources"]["mastr_pv"]
251
    ).resolve()
252
253
    mastr_df = pd.read_csv(
254
        mastr_path,
255
        index_col=index_col,
256
        usecols=usecols,
257
        dtype=dtype,
258
        parse_dates=parse_dates,
259
    )
260
261
    mastr_df = mastr_df.loc[
262
        (mastr_df.StatisikFlag == "B")
263
        & (mastr_df.EinheitBetriebsstatus == "InBetrieb")
264
        & (mastr_df.Land == "Deutschland")
265
        & (mastr_df.Lage == "BaulicheAnlagen")
266
    ]
267
268
    if (
269
        config.settings()["egon-data"]["--dataset-boundary"]
270
        == "Schleswig-Holstein"
271
    ):
272
        init_len = len(mastr_df)
273
274
        mastr_df = mastr_df.loc[mastr_df.Bundesland == "SchleswigHolstein"]
275
276
        logger.info(
277
            f"Using only MaStR data within Schleswig-Holstein. "
278
            f"{init_len - len(mastr_df)} of {init_len} generators are dropped."
279
        )
280
281
    logger.debug("MaStR data loaded.")
282
283
    return mastr_df
284
285
286
@timer_func
287
def clean_mastr_data(
288
    mastr_df: pd.DataFrame,
289
    max_realistic_pv_cap: int | float,
290
    min_realistic_pv_cap: int | float,
291
    rounding: int,
292
    seed: int,
293
) -> pd.DataFrame:
294
    """
295
    Clean the MaStR data from implausible data.
296
297
    * Drop MaStR ID duplicates.
298
    * Drop generators with implausible capacities.
299
    * Drop generators without any kind of start-up date.
300
    * Clean up Standort column and capacity.
301
302
    Parameters
303
    -----------
304
    mastr_df : pandas.DataFrame
305
        DataFrame containing MaStR data.
306
    max_realistic_pv_cap : int or float
307
        Maximum capacity, which is considered to be realistic.
308
    min_realistic_pv_cap : int or float
309
        Minimum capacity, which is considered to be realistic.
310
    rounding : int
311
        Rounding to use when cleaning up capacity. E.g. when
312
        rounding is 1 a capacity of 9.93 will be rounded to 9.9.
313
    seed : int
314
        Seed to use for random operations with NumPy and pandas.
315
    Returns
316
    -------
317
    pandas.DataFrame
318
        DataFrame containing cleaned MaStR data.
319
    """
320
    init_len = len(mastr_df)
321
322
    # drop duplicates
323
    mastr_df = mastr_df.loc[~mastr_df.index.duplicated()]
324
325
    # drop invalid entries in standort
326
    index_to_drop = mastr_df.loc[
327
        (mastr_df.Standort.isna()) | (mastr_df.Standort.isnull())
328
    ].index
329
330
    mastr_df = mastr_df.loc[~mastr_df.index.isin(index_to_drop)]
331
332
    df = mastr_df[
333
        [
334
            "Bruttoleistung",
335
            "Bruttoleistung_extended",
336
            "Nettonennleistung",
337
            "zugeordneteWirkleistungWechselrichter",
338
            "InstallierteLeistung",
339
        ]
340
    ].round(rounding)
341
342
    # use only the smallest capacity rating if multiple are given
343
    mastr_df = mastr_df.assign(
344
        capacity=[
345
            most_plausible(p_tub, min_realistic_pv_cap)
346
            for p_tub in df.itertuples(index=False)
347
        ]
348
    )
349
350
    # drop generators without any capacity info
351
    # and capacity of zero
352
    # and if the capacity is > 23.5 MW, because
353
    # Germanies largest rooftop PV is 23 MW
354
    # https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379
355
    mastr_df = mastr_df.loc[
356
        (~mastr_df.capacity.isna())
357
        & (mastr_df.capacity <= max_realistic_pv_cap)
358
        & (mastr_df.capacity > min_realistic_pv_cap)
359
    ]
360
361
    # get zip and municipality
362
    mastr_df[["zip_and_municipality", "drop_this"]] = pd.DataFrame(
363
        mastr_df.Standort.astype(str)
364
        .apply(
365
            zip_and_municipality_from_standort,
366
            args=(VERBOSE,),
367
        )
368
        .tolist(),
369
        index=mastr_df.index,
370
    )
371
372
    # drop invalid entries
373
    mastr_df = mastr_df.loc[mastr_df.drop_this].drop(columns="drop_this")
374
375
    # add ", Deutschland" just in case
376
    mastr_df = mastr_df.assign(
377
        zip_and_municipality=(mastr_df.zip_and_municipality + ", Deutschland")
378
    )
379
380
    # get consistent start-up date
381
    mastr_df = mastr_df.assign(
382
        start_up_date=mastr_df.Inbetriebnahmedatum,
383
    )
384
385
    mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
386
        mastr_df.start_up_date.isna()
387
    ].assign(
388
        start_up_date=mastr_df.GeplantesInbetriebnahmedatum.loc[
389
            mastr_df.start_up_date.isna()
390
        ]
391
    )
392
393
    # randomly and weighted fill missing start-up dates
394
    pool = mastr_df.loc[
395
        ~mastr_df.start_up_date.isna()
396
    ].start_up_date.to_numpy()
397
398
    size = len(mastr_df) - len(pool)
399
400
    if size > 0:
401
        np.random.seed(seed)
402
403
        choice = np.random.choice(
404
            pool,
405
            size=size,
406
            replace=False,
407
        )
408
409
        mastr_df.loc[mastr_df.start_up_date.isna()] = mastr_df.loc[
410
            mastr_df.start_up_date.isna()
411
        ].assign(start_up_date=choice)
412
413
        logger.info(
414
            f"Randomly and weigthed added start-up date to {size} generators."
415
        )
416
417
    mastr_df = mastr_df.assign(
418
        start_up_date=pd.to_datetime(mastr_df.start_up_date, utc=True)
419
    )
420
421
    end_len = len(mastr_df)
422
    logger.debug(
423
        f"Dropped {init_len - end_len} "
424
        f"({((init_len - end_len) / init_len) * 100:g}%)"
425
        f" of {init_len} rows from MaStR DataFrame."
426
    )
427
428
    return mastr_df
429
430
431
def zip_and_municipality_from_standort(
432
    standort: str,
433
    verbose: bool = False,
434
) -> tuple[str, bool]:
435
    """
436
    Get zip code and municipality from Standort string split into a list.
437
    Parameters
438
    -----------
439
    standort : str
440
        Standort as given from MaStR data.
441
    verbose : bool
442
        Logs additional info if True.
443
    Returns
444
    -------
445
    str
446
        Standort with only the zip code and municipality
447
        as well a ', Germany' added.
448
    """
449
    if verbose:
450
        logger.debug(f"Uncleaned String: {standort}")
451
452
    standort_list = standort.split()
453
454
    found = False
455
    count = 0
456
457
    for count, elem in enumerate(standort_list):
458
        if len(elem) != 5:
459
            continue
460
        if not elem.isnumeric():
461
            continue
462
463
        found = True
464
465
        break
466
467
    if found:
468
        cleaned_str = " ".join(standort_list[count:])
469
470
        if verbose:
471
            logger.debug(f"Cleaned String:   {cleaned_str}")
472
473
        return cleaned_str, found
474
475
    logger.warning(
476
        "Couldn't identify zip code. This entry will be dropped."
477
        f" Original standort: {standort}."
478
    )
479
480
    return standort, found
481
482
483
def most_plausible(
484
    p_tub: tuple,
485
    min_realistic_pv_cap: int | float,
486
) -> float:
487
    """
488
    Try to determine the most plausible capacity.
489
    Try to determine the most plausible capacity from a given
490
    generator from MaStR data.
491
    Parameters
492
    -----------
493
    p_tub : tuple
494
        Tuple containing the different capacities given in
495
        the MaStR data.
496
    min_realistic_pv_cap : int or float
497
        Minimum capacity, which is considered to be realistic.
498
    Returns
499
    -------
500
    float
501
        Capacity of the generator estimated as the most realistic.
502
    """
503
    count = Counter(p_tub).most_common(3)
504
505
    if len(count) == 1:
506
        return count[0][0]
507
508
    val1 = count[0][0]
509
    val2 = count[1][0]
510
511
    if len(count) == 2:
512
        min_val = min(val1, val2)
513
        max_val = max(val1, val2)
514
    else:
515
        val3 = count[2][0]
516
517
        min_val = min(val1, val2, val3)
518
        max_val = max(val1, val2, val3)
519
520
    if min_val < min_realistic_pv_cap:
521
        return max_val
522
523
    return min_val
524
525
526
def geocoder(
527
    user_agent: str,
528
    min_delay_seconds: int,
529
) -> RateLimiter:
530
    """
531
    Setup Nominatim geocoding class.
532
    Parameters
533
    -----------
534
    user_agent : str
535
        The app name.
536
    min_delay_seconds : int
537
        Delay in seconds to use between requests to Nominatim.
538
        A minimum of 1 is advised.
539
    Returns
540
    -------
541
    geopy.extra.rate_limiter.RateLimiter
542
        Nominatim RateLimiter geocoding class to use for geocoding.
543
    """
544
    locator = Nominatim(user_agent=user_agent)
545
    return RateLimiter(
546
        locator.geocode,
547
        min_delay_seconds=min_delay_seconds,
548
    )
549
550
551
def geocoding_data(
552
    clean_mastr_df: pd.DataFrame,
553
) -> pd.DataFrame:
554
    """
555
    Setup DataFrame to geocode.
556
    Parameters
557
    -----------
558
    clean_mastr_df : pandas.DataFrame
559
        DataFrame containing cleaned MaStR data.
560
    Returns
561
    -------
562
    pandas.DataFrame
563
        DataFrame containing all unique combinations of
564
        zip codes with municipalities for geocoding.
565
    """
566
    return pd.DataFrame(
567
        data=clean_mastr_df.zip_and_municipality.unique(),
568
        columns=["zip_and_municipality"],
569
    )
570
571
572
@timer_func
573
def geocode_data(
574
    geocoding_df: pd.DataFrame,
575
    ratelimiter: RateLimiter,
576
    epsg: int,
577
) -> gpd.GeoDataFrame:
578
    """
579
    Geocode zip code and municipality.
580
    Extract latitude, longitude and altitude.
581
    Transfrom latitude and longitude to shapely
582
    Point and return a geopandas GeoDataFrame.
583
    Parameters
584
    -----------
585
    geocoding_df : pandas.DataFrame
586
        DataFrame containing all unique combinations of
587
        zip codes with municipalities for geocoding.
588
    ratelimiter : geopy.extra.rate_limiter.RateLimiter
589
        Nominatim RateLimiter geocoding class to use for geocoding.
590
    epsg : int
591
        EPSG ID to use as CRS.
592
    Returns
593
    -------
594
    geopandas.GeoDataFrame
595
        GeoDataFrame containing all unique combinations of
596
        zip codes with municipalities with matching geolocation.
597
    """
598
    logger.info(f"Geocoding {len(geocoding_df)} locations.")
599
600
    geocode_df = geocoding_df.assign(
601
        location=geocoding_df.zip_and_municipality.apply(ratelimiter)
602
    )
603
604
    geocode_df = geocode_df.assign(
605
        point=geocode_df.location.apply(
606
            lambda loc: tuple(loc.point) if loc else None
607
        )
608
    )
609
610
    geocode_df[["latitude", "longitude", "altitude"]] = pd.DataFrame(
611
        geocode_df.point.tolist(), index=geocode_df.index
612
    )
613
614
    return gpd.GeoDataFrame(
615
        geocode_df,
616
        geometry=gpd.points_from_xy(geocode_df.longitude, geocode_df.latitude),
617
        crs=f"EPSG:{epsg}",
618
    )
619
620
621
def merge_geocode_with_mastr(
622
    clean_mastr_df: pd.DataFrame, geocode_gdf: gpd.GeoDataFrame
623
) -> gpd.GeoDataFrame:
624
    """
625
    Merge geometry to original mastr data.
626
    Parameters
627
    -----------
628
    clean_mastr_df : pandas.DataFrame
629
        DataFrame containing cleaned MaStR data.
630
    geocode_gdf : geopandas.GeoDataFrame
631
        GeoDataFrame containing all unique combinations of
632
        zip codes with municipalities with matching geolocation.
633
    Returns
634
    -------
635
    gepandas.GeoDataFrame
636
        GeoDataFrame containing cleaned MaStR data with
637
        matching geolocation from geocoding.
638
    """
639
    return gpd.GeoDataFrame(
640
        clean_mastr_df.merge(
641
            geocode_gdf[["zip_and_municipality", "geometry"]],
642
            how="left",
643
            left_on="zip_and_municipality",
644
            right_on="zip_and_municipality",
645
        ),
646
        crs=geocode_gdf.crs,
647
    ).set_index(clean_mastr_df.index)
648
649
650
def drop_invalid_entries_from_gdf(
651
    gdf: gpd.GeoDataFrame,
652
) -> gpd.GeoDataFrame:
653
    """
654
    Drop invalid entries from geopandas GeoDataFrame.
655
    TODO: how to omit the logging from geos here???
656
    Parameters
657
    -----------
658
    gdf : geopandas.GeoDataFrame
659
        GeoDataFrame to be checked for validity.
660
    Returns
661
    -------
662
    gepandas.GeoDataFrame
663
        GeoDataFrame with rows with invalid geometries
664
        dropped.
665
    """
666
    valid_gdf = gdf.loc[gdf.is_valid]
667
668
    logger.debug(
669
        f"{len(gdf) - len(valid_gdf)} "
670
        f"({(len(gdf) - len(valid_gdf)) / len(gdf) * 100:g}%) "
671
        f"of {len(gdf)} values were invalid and are dropped."
672
    )
673
674
    return valid_gdf
675
676
677
@timer_func
678
def municipality_data() -> gpd.GeoDataFrame:
679
    """
680
    Get municipality data from eGo^n Database.
681
    Returns
682
    -------
683
    gepandas.GeoDataFrame
684
        GeoDataFrame with municipality data.
685
    """
686
    with db.session_scope() as session:
687
        query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom"))
688
689
    return gpd.read_postgis(
690
        query.statement, query.session.bind, index_col="ags"
691
    )
692
693
694
@timer_func
695
def add_ags_to_gens(
696
    valid_mastr_gdf: gpd.GeoDataFrame,
697
    municipalities_gdf: gpd.GeoDataFrame,
698
) -> gpd.GeoDataFrame:
699
    """
700
    Add information about AGS ID to generators.
701
    Parameters
702
    -----------
703
    valid_mastr_gdf : geopandas.GeoDataFrame
704
        GeoDataFrame with valid and cleaned MaStR data.
705
    municipalities_gdf : geopandas.GeoDataFrame
706
        GeoDataFrame with municipality data.
707
    Returns
708
    -------
709
    gepandas.GeoDataFrame
710
        GeoDataFrame with valid and cleaned MaStR data
711
        with AGS ID added.
712
    """
713
    return valid_mastr_gdf.sjoin(
714
        municipalities_gdf,
715
        how="left",
716
        predicate="intersects",
717
    ).rename(columns={"index_right": "ags"})
718
719
720
def drop_gens_outside_muns(
721
    valid_mastr_gdf: gpd.GeoDataFrame,
722
) -> gpd.GeoDataFrame:
723
    """
724
    Drop all generators outside of municipalities.
725
    Parameters
726
    -----------
727
    valid_mastr_gdf : geopandas.GeoDataFrame
728
        GeoDataFrame with valid and cleaned MaStR data.
729
    Returns
730
    -------
731
    gepandas.GeoDataFrame
732
        GeoDataFrame with valid and cleaned MaStR data
733
        with generatos without an AGS ID dropped.
734
    """
735
    gdf = valid_mastr_gdf.loc[~valid_mastr_gdf.ags.isna()]
736
737
    logger.debug(
738
        f"{len(valid_mastr_gdf) - len(gdf)} "
739
        f"({(len(valid_mastr_gdf) - len(gdf)) / len(valid_mastr_gdf) * 100:g}%) "
740
        f"of {len(valid_mastr_gdf)} values are outside of the municipalities"
741
        " and are therefore dropped."
742
    )
743
744
    return gdf
745
746
747
class EgonMastrPvRoofGeocoded(Base):
748
    __tablename__ = "egon_mastr_pv_roof_geocoded"
749
    __table_args__ = {"schema": "supply"}
750
751
    zip_and_municipality = Column(String, primary_key=True, index=True)
752
    location = Column(String)
753
    point = Column(String)
754
    latitude = Column(Float)
755
    longitude = Column(Float)
756
    altitude = Column(Float)
757
    geometry = Column(Geometry(srid=EPSG))
758
759
760
def create_geocoded_table(geocode_gdf):
761
    """
762
    Create geocoded table mastr pv rooftop
763
    Parameters
764
    -----------
765
    geocode_gdf : geopandas.GeoDataFrame
766
        GeoDataFrame containing geocoding information on pv rooftop locations.
767
    """
768
    EgonMastrPvRoofGeocoded.__table__.drop(bind=engine, checkfirst=True)
769
    EgonMastrPvRoofGeocoded.__table__.create(bind=engine, checkfirst=True)
770
771
    geocode_gdf.to_postgis(
772
        name=EgonMastrPvRoofGeocoded.__table__.name,
773
        schema=EgonMastrPvRoofGeocoded.__table__.schema,
774
        con=db.engine(),
775
        if_exists="append",
776
        index=False,
777
        # dtype={}
778
    )
779
780
781
def geocoded_data_from_db(
782
    epsg: str | int,
783
) -> gpd.GeoDataFrame:
784
    """
785
    Read OSM buildings data from eGo^n Database.
786
    Parameters
787
    -----------
788
    to_crs : pyproj.crs.crs.CRS
789
        CRS to transform geometries to.
790
    Returns
791
    -------
792
    geopandas.GeoDataFrame
793
        GeoDataFrame containing OSM buildings data.
794
    """
795
    with db.session_scope() as session:
796
        query = session.query(
797
            EgonMastrPvRoofGeocoded.zip_and_municipality,
798
            EgonMastrPvRoofGeocoded.geometry,
799
        )
800
801
    return gpd.read_postgis(
802
        query.statement, query.session.bind, geom_col="geometry"
803
    ).to_crs(f"EPSG:{epsg}")
804
805
806
def load_mastr_data():
807
    """Read PV rooftop data from MaStR CSV
808
    Note: the source will be replaced as soon as the MaStR data is available
809
    in DB.
810
    Returns
811
    -------
812
    geopandas.GeoDataFrame
813
        GeoDataFrame containing MaStR data with geocoded locations.
814
    """
815
    mastr_df = mastr_data(
816
        MASTR_INDEX_COL,
817
        MASTR_RELEVANT_COLS,
818
        MASTR_DTYPES,
819
        MASTR_PARSE_DATES,
820
    )
821
822
    clean_mastr_df = clean_mastr_data(
823
        mastr_df,
824
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
825
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
826
        seed=SEED,
827
        rounding=ROUNDING,
828
    )
829
830
    geocode_gdf = geocoded_data_from_db(EPSG)
831
832
    mastr_gdf = merge_geocode_with_mastr(clean_mastr_df, geocode_gdf)
833
834
    valid_mastr_gdf = drop_invalid_entries_from_gdf(mastr_gdf)
835
836
    municipalities_gdf = municipality_data()
837
838
    valid_mastr_gdf = add_ags_to_gens(valid_mastr_gdf, municipalities_gdf)
839
840
    return drop_gens_outside_muns(valid_mastr_gdf)
841
842
843
class OsmBuildingsFiltered(Base):
844
    __tablename__ = "osm_buildings_filtered"
845
    __table_args__ = {"schema": "openstreetmap"}
846
847
    osm_id = Column(BigInteger)
848
    amenity = Column(String)
849
    building = Column(String)
850
    name = Column(String)
851
    geom = Column(Geometry(srid=SRID), index=True)
852
    area = Column(Float)
853
    geom_point = Column(Geometry(srid=SRID), index=True)
854
    tags = Column(HSTORE)
855
    id = Column(BigInteger, primary_key=True, index=True)
856
857
858
@timer_func
859
def osm_buildings(
860
    to_crs: CRS,
861
) -> gpd.GeoDataFrame:
862
    """
863
    Read OSM buildings data from eGo^n Database.
864
    Parameters
865
    -----------
866
    to_crs : pyproj.crs.crs.CRS
867
        CRS to transform geometries to.
868
    Returns
869
    -------
870
    geopandas.GeoDataFrame
871
        GeoDataFrame containing OSM buildings data.
872
    """
873
    with db.session_scope() as session:
874
        query = session.query(
875
            OsmBuildingsFiltered.id,
876
            OsmBuildingsFiltered.area,
877
            OsmBuildingsFiltered.geom_point.label("geom"),
878
        )
879
880
    return gpd.read_postgis(
881
        query.statement, query.session.bind, index_col="id"
882
    ).to_crs(to_crs)
883
884
885
@timer_func
886
def synthetic_buildings(
887
    to_crs: CRS,
888
) -> gpd.GeoDataFrame:
889
    """
890
    Read synthetic buildings data from eGo^n Database.
891
    Parameters
892
    -----------
893
    to_crs : pyproj.crs.crs.CRS
894
        CRS to transform geometries to.
895
    Returns
896
    -------
897
    geopandas.GeoDataFrame
898
        GeoDataFrame containing OSM buildings data.
899
    """
900
    with db.session_scope() as session:
901
        query = session.query(
902
            OsmBuildingsSynthetic.id,
903
            OsmBuildingsSynthetic.area,
904
            OsmBuildingsSynthetic.geom_point.label("geom"),
905
        )
906
907
    return gpd.read_postgis(
908
        query.statement, query.session.bind, index_col="id"
909
    ).to_crs(to_crs)
910
911
912
@timer_func
913
def add_ags_to_buildings(
914
    buildings_gdf: gpd.GeoDataFrame,
915
    municipalities_gdf: gpd.GeoDataFrame,
916
) -> gpd.GeoDataFrame:
917
    """
918
    Add information about AGS ID to buildings.
919
    Parameters
920
    -----------
921
    buildings_gdf : geopandas.GeoDataFrame
922
        GeoDataFrame containing OSM buildings data.
923
    municipalities_gdf : geopandas.GeoDataFrame
924
        GeoDataFrame with municipality data.
925
    Returns
926
    -------
927
    gepandas.GeoDataFrame
928
        GeoDataFrame containing OSM buildings data
929
        with AGS ID added.
930
    """
931
    return buildings_gdf.sjoin(
932
        municipalities_gdf,
933
        how="left",
934
        predicate="intersects",
935
    ).rename(columns={"index_right": "ags"})
936
937
938
def drop_buildings_outside_muns(
939
    buildings_gdf: gpd.GeoDataFrame,
940
) -> gpd.GeoDataFrame:
941
    """
942
    Drop all buildings outside of municipalities.
943
    Parameters
944
    -----------
945
    buildings_gdf : geopandas.GeoDataFrame
946
        GeoDataFrame containing OSM buildings data.
947
    Returns
948
    -------
949
    gepandas.GeoDataFrame
950
        GeoDataFrame containing OSM buildings data
951
        with buildings without an AGS ID dropped.
952
    """
953
    gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()]
954
955
    logger.debug(
956
        f"{len(buildings_gdf) - len(gdf)} "
957
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
958
        f"of {len(buildings_gdf)} values are outside of the municipalities "
959
        "and are therefore dropped."
960
    )
961
962
    return gdf
963
964
965
def egon_building_peak_loads():
966
    sql = """
967
    SELECT building_id
968
    FROM demand.egon_building_electricity_peak_loads
969
    WHERE scenario = 'eGon2035'
970
    """
971
972
    return (
973
        db.select_dataframe(sql).building_id.astype(int).sort_values().unique()
974
    )
975
976
977
@timer_func
978
def load_building_data():
979
    """
980
    Read buildings from DB
981
    Tables:
982
983
    * `openstreetmap.osm_buildings_filtered` (from OSM)
984
    * `openstreetmap.osm_buildings_synthetic` (synthetic, created by us)
985
986
    Use column `id` for both as it is unique hence you concat both datasets. If
987
    INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be loaded.
988
989
    Returns
990
    -------
991
    gepandas.GeoDataFrame
992
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
993
        dropped.
994
    """
995
996
    municipalities_gdf = municipality_data()
997
998
    osm_buildings_gdf = osm_buildings(municipalities_gdf.crs)
999
1000
    if INCLUDE_SYNTHETIC_BUILDINGS:
1001
        synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs)
1002
1003
        buildings_gdf = gpd.GeoDataFrame(
1004
            pd.concat(
1005
                [
1006
                    osm_buildings_gdf,
1007
                    synthetic_buildings_gdf,
1008
                ]
1009
            ),
1010
            geometry="geom",
1011
            crs=osm_buildings_gdf.crs,
1012
        ).rename(columns={"area": "building_area"})
1013
1014
        buildings_gdf.index = buildings_gdf.index.astype(int)
1015
1016
    else:
1017
        buildings_gdf = osm_buildings_gdf.rename(
1018
            columns={"area": "building_area"}
1019
        )
1020
1021
    if ONLY_BUILDINGS_WITH_DEMAND:
1022
        building_ids = egon_building_peak_loads()
1023
1024
        init_len = len(building_ids)
1025
1026
        building_ids = np.intersect1d(
1027
            list(map(int, building_ids)),
1028
            list(map(int, buildings_gdf.index.to_numpy())),
1029
        )
1030
1031
        end_len = len(building_ids)
1032
1033
        logger.debug(
1034
            f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) of buildings have "
1035
            f"peak load."
1036
        )
1037
1038
        buildings_gdf = buildings_gdf.loc[building_ids]
1039
1040
    buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf)
1041
1042
    buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf)
1043
1044
    grid_districts_gdf = grid_districts(EPSG)
1045
1046
    federal_state_gdf = federal_state_data(grid_districts_gdf.crs)
1047
1048
    grid_federal_state_gdf = overlay_grid_districts_with_counties(
1049
        grid_districts_gdf,
1050
        federal_state_gdf,
1051
    )
1052
1053
    buildings_overlay_gdf = add_overlay_id_to_buildings(
1054
        buildings_ags_gdf,
1055
        grid_federal_state_gdf,
1056
    )
1057
1058
    logger.debug("Loaded buildings.")
1059
1060
    buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf)
1061
1062
    # overwrite bus_id with data from new table
1063
    sql = "SELECT building_id, bus_id FROM boundaries.egon_map_zensus_mvgd_buildings"
1064
    map_building_bus_df = db.select_dataframe(sql)
1065
1066
    building_ids = np.intersect1d(
1067
        list(map(int, map_building_bus_df.building_id.unique())),
1068
        list(map(int, buildings_overlay_gdf.index.to_numpy())),
1069
    )
1070
1071
    buildings_within_gdf = buildings_overlay_gdf.loc[building_ids]
1072
1073
    gdf = (
1074
        buildings_within_gdf.reset_index()
1075
        .drop(columns=["bus_id"])
1076
        .merge(
1077
            how="left",
1078
            right=map_building_bus_df,
1079
            left_on="id",
1080
            right_on="building_id",
1081
        )
1082
        .drop(columns=["building_id"])
1083
        .set_index("id")
1084
        .sort_index()
1085
    )
1086
1087
    return gdf[~gdf.index.duplicated(keep="first")]
1088
1089
1090
@timer_func
1091
def sort_and_qcut_df(
1092
    df: pd.DataFrame | gpd.GeoDataFrame,
1093
    col: str,
1094
    q: int,
1095
) -> pd.DataFrame | gpd.GeoDataFrame:
1096
    """
1097
    Determine the quantile of a given attribute in a (Geo)DataFrame.
1098
    Sort the (Geo)DataFrame in ascending order for the given attribute.
1099
    Parameters
1100
    -----------
1101
    df : pandas.DataFrame or geopandas.GeoDataFrame
1102
        (Geo)DataFrame to sort and qcut.
1103
    col : str
1104
        Name of the attribute to sort and qcut the (Geo)DataFrame on.
1105
    q : int
1106
        Number of quantiles.
1107
    Returns
1108
    -------
1109
    pandas.DataFrame or gepandas.GeoDataFrame
1110
        Sorted and qcut (Geo)DataFrame.
1111
    """
1112
    df = df.sort_values(col, ascending=True)
1113
1114
    return df.assign(
1115
        quant=pd.qcut(
1116
            df[col],
1117
            q=q,
1118
            labels=range(q),
1119
        )
1120
    )
1121
1122
1123
@timer_func
1124
def allocate_pv(
1125
    q_mastr_gdf: gpd.GeoDataFrame,
1126
    q_buildings_gdf: gpd.GeoDataFrame,
1127
    seed: int,
1128
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1129
    """
1130
    Allocate the MaStR pv generators to the OSM buildings.
1131
    This will determine a building for each pv generator if there are more
1132
    buildings than generators within a given AGS. Primarily generators are
1133
    distributed with the same qunatile as the buildings. Multiple assignment
1134
    is excluded.
1135
    Parameters
1136
    -----------
1137
    q_mastr_gdf : geopandas.GeoDataFrame
1138
        GeoDataFrame containing geocoded and qcut MaStR data.
1139
    q_buildings_gdf : geopandas.GeoDataFrame
1140
        GeoDataFrame containing qcut OSM buildings data.
1141
    seed : int
1142
        Seed to use for random operations with NumPy and pandas.
1143
    Returns
1144
    -------
1145
    tuple with two geopandas.GeoDataFrame s
1146
        GeoDataFrame containing MaStR data allocated to building IDs.
1147
        GeoDataFrame containing building data allocated to MaStR IDs.
1148
    """
1149
    rng = default_rng(seed=seed)
1150
1151
    q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan)
1152
    q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan)
1153
1154
    ags_list = q_buildings_gdf.ags.unique()
1155
1156
    if TEST_RUN:
1157
        ags_list = ags_list[:250]
1158
1159
    num_ags = len(ags_list)
1160
1161
    t0 = perf_counter()
1162
1163
    for count, ags in enumerate(ags_list):
1164
1165
        buildings = q_buildings_gdf.loc[
1166
            (q_buildings_gdf.ags == ags) & (q_buildings_gdf.gens_id.isna())
1167
        ]
1168
        gens = q_mastr_gdf.loc[
1169
            (q_mastr_gdf.ags == ags) & (q_mastr_gdf.building_id.isna())
1170
        ]
1171
1172
        len_build = len(buildings)
1173
        len_gens = len(gens)
1174
1175
        if len_build < len_gens:
1176
            gens = gens.sample(len_build, random_state=RandomState(seed=seed))
1177
            logger.error(
1178
                f"There are {len_gens} generators and only {len_build}"
1179
                f" buildings in AGS {ags}. {len_gens - len(gens)} "
1180
                "generators were truncated to match the amount of buildings."
1181
            )
1182
1183
            assert len_build == len(gens)
1184
1185
        for quant in gens.quant.unique():
1186
            q_buildings = buildings.loc[
1187
                (buildings.quant == quant) & (buildings.gens_id.isna())
1188
            ]
1189
            q_gens = gens.loc[gens.quant == quant]
1190
1191
            len_build = len(q_buildings)
1192
            len_gens = len(q_gens)
1193
1194
            if len_build < len_gens:
1195
                delta = len_gens - len_build
1196
1197
                logger.warning(
1198
                    f"There are {len_gens} generators and only {len_build} "
1199
                    f"buildings in AGS {ags} and quantile {quant}. {delta} "
1200
                    f"buildings from AGS {ags} will be added randomly."
1201
                )
1202
1203
                add_buildings = pd.Index(
1204
                    rng.choice(
1205
                        buildings.loc[
1206
                            (buildings.quant != quant)
1207
                            & (buildings.gens_id.isna())
1208
                        ].index,
1209
                        size=delta,
1210
                        replace=False,
1211
                    )
1212
                )
1213
1214
                q_buildings = buildings.loc[
1215
                    q_buildings.index.append(add_buildings)
1216
                ]
1217
1218
                assert len(q_buildings) == len_gens
1219
1220
            chosen_buildings = pd.Index(
1221
                rng.choice(
1222
                    q_buildings.index,
1223
                    size=len_gens,
1224
                    replace=False,
1225
                )
1226
            )
1227
1228
            # q_mastr_gdf.loc[q_gens.index, "building_id"] = chosen_buildings
1229
            q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index
1230
1231
        if count % 100 == 0:
1232
            logger.debug(
1233
                f"Allocation of {count / num_ags * 100:g} % of AGS done. It took "
1234
                f"{perf_counter() - t0:g} seconds."
1235
            )
1236
1237
            t0 = perf_counter()
1238
1239
    assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()]
1240
1241
    q_mastr_gdf.loc[
1242
        assigned_buildings.gens_id, "building_id"
1243
    ] = assigned_buildings.index
1244
1245
    assigned_gens = q_mastr_gdf.loc[~q_buildings_gdf.building_id.isna()]
1246
1247
    assert len(assigned_buildings) == len(assigned_gens)
1248
1249
    logger.debug("Allocated status quo generators to buildings.")
1250
1251
    return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf)
1252
1253
1254
def frame_to_numeric(
1255
    df: pd.DataFrame | gpd.GeoDataFrame,
1256
) -> pd.DataFrame | gpd.GeoDataFrame:
1257
    """
1258
    Try to convert all columns of a DataFrame to numeric ignoring errors.
1259
    Parameters
1260
    ----------
1261
    df : pandas.DataFrame or geopandas.GeoDataFrame
1262
    Returns
1263
    -------
1264
    pandas.DataFrame or geopandas.GeoDataFrame
1265
    """
1266
    if str(df.index.dtype) == "object":
1267
        df.index = pd.to_numeric(df.index, errors="ignore")
1268
1269
    for col in df.columns:
1270
        if str(df[col].dtype) == "object":
1271
            df[col] = pd.to_numeric(df[col], errors="ignore")
1272
1273
    return df
1274
1275
1276
def validate_output(
1277
    desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame,
1278
    desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame,
1279
) -> None:
1280
    """
1281
    Validate output.
1282
1283
    * Validate that there are exactly as many buildings with a pv system as there are
1284
      pv systems with a building
1285
    * Validate that the building IDs with a pv system are the same building IDs as
1286
      assigned to the pv systems
1287
    * Validate that the pv system IDs with a building are the same pv system IDs as
1288
      assigned to the buildings
1289
1290
    Parameters
1291
    -----------
1292
    desagg_mastr_gdf : geopandas.GeoDataFrame
1293
        GeoDataFrame containing MaStR data allocated to building IDs.
1294
    desagg_buildings_gdf : geopandas.GeoDataFrame
1295
        GeoDataFrame containing building data allocated to MaStR IDs.
1296
    """
1297
    assert len(
1298
        desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()]
1299
    ) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()])
1300
    assert (
1301
        np.sort(
1302
            desagg_mastr_gdf.loc[
1303
                ~desagg_mastr_gdf.building_id.isna()
1304
            ].building_id.unique()
1305
        )
1306
        == np.sort(
1307
            desagg_buildings_gdf.loc[
1308
                ~desagg_buildings_gdf.gens_id.isna()
1309
            ].index.unique()
1310
        )
1311
    ).all()
1312
    assert (
1313
        np.sort(
1314
            desagg_mastr_gdf.loc[
1315
                ~desagg_mastr_gdf.building_id.isna()
1316
            ].index.unique()
1317
        )
1318
        == np.sort(
1319
            desagg_buildings_gdf.loc[
1320
                ~desagg_buildings_gdf.gens_id.isna()
1321
            ].gens_id.unique()
1322
        )
1323
    ).all()
1324
1325
    logger.debug("Validated output.")
1326
1327
1328
def drop_unallocated_gens(
1329
    gdf: gpd.GeoDataFrame,
1330
) -> gpd.GeoDataFrame:
1331
    """
1332
    Drop generators which did not get allocated.
1333
1334
    Parameters
1335
    -----------
1336
    gdf : geopandas.GeoDataFrame
1337
        GeoDataFrame containing MaStR data allocated to building IDs.
1338
    Returns
1339
    -------
1340
    geopandas.GeoDataFrame
1341
        GeoDataFrame containing MaStR data with generators dropped which did not get
1342
        allocated.
1343
    """
1344
    init_len = len(gdf)
1345
    gdf = gdf.loc[~gdf.building_id.isna()]
1346
    end_len = len(gdf)
1347
1348
    logger.debug(
1349
        f"Dropped {init_len - end_len} "
1350
        f"({((init_len - end_len) / init_len) * 100:g}%)"
1351
        f" of {init_len} unallocated rows from MaStR DataFrame."
1352
    )
1353
1354
    return gdf
1355
1356
1357
@timer_func
1358
def allocate_to_buildings(
1359
    mastr_gdf: gpd.GeoDataFrame,
1360
    buildings_gdf: gpd.GeoDataFrame,
1361
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]:
1362
    """
1363
    Allocate status quo pv rooftop generators to buildings.
1364
    Parameters
1365
    -----------
1366
    mastr_gdf : geopandas.GeoDataFrame
1367
        GeoDataFrame containing MaStR data with geocoded locations.
1368
    buildings_gdf : geopandas.GeoDataFrame
1369
        GeoDataFrame containing OSM buildings data with buildings without an AGS ID
1370
        dropped.
1371
    Returns
1372
    -------
1373
    tuple with two geopandas.GeoDataFrame s
1374
        GeoDataFrame containing MaStR data allocated to building IDs.
1375
        GeoDataFrame containing building data allocated to MaStR IDs.
1376
    """
1377
    logger.debug("Starting allocation of status quo.")
1378
1379
    q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q)
1380
    q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q)
1381
1382
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv(
1383
        q_mastr_gdf, q_buildings_gdf, SEED
1384
    )
1385
1386
    validate_output(desagg_mastr_gdf, desagg_buildings_gdf)
1387
1388
    return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf
1389
1390
1391
@timer_func
1392
def grid_districts(
1393
    epsg: int,
1394
) -> gpd.GeoDataFrame:
1395
    """
1396
    Load mv grid district geo data from eGo^n Database as
1397
    geopandas.GeoDataFrame.
1398
    Parameters
1399
    -----------
1400
    epsg : int
1401
        EPSG ID to use as CRS.
1402
    Returns
1403
    -------
1404
    geopandas.GeoDataFrame
1405
        GeoDataFrame containing mv grid district ID and geo shapes data.
1406
    """
1407
    gdf = db.select_geodataframe(
1408
        """
1409
        SELECT bus_id, geom
1410
        FROM grid.egon_mv_grid_district
1411
        ORDER BY bus_id
1412
        """,
1413
        index_col="bus_id",
1414
        geom_col="geom",
1415
        epsg=epsg,
1416
    )
1417
1418
    gdf.index = gdf.index.astype(int)
1419
1420
    logger.debug("Grid districts loaded.")
1421
1422
    return gdf
1423
1424
1425
def scenario_data(
1426
    carrier: str = "solar_rooftop",
1427
    scenario: str = "eGon2035",
1428
) -> pd.DataFrame:
1429
    """
1430
    Get scenario capacity data from eGo^n Database.
1431
    Parameters
1432
    -----------
1433
    carrier : str
1434
        Carrier type to filter table by.
1435
    scenario : str
1436
        Scenario to filter table by.
1437
    Returns
1438
    -------
1439
    geopandas.GeoDataFrame
1440
        GeoDataFrame with scenario capacity data in GW.
1441
    """
1442
    with db.session_scope() as session:
1443
        query = session.query(EgonScenarioCapacities).filter(
1444
            EgonScenarioCapacities.carrier == carrier,
1445
            EgonScenarioCapacities.scenario_name == scenario,
1446
        )
1447
1448
    df = pd.read_sql(
1449
        query.statement, query.session.bind, index_col="index"
1450
    ).sort_index()
1451
1452
    logger.debug("Scenario capacity data loaded.")
1453
1454
    return df
1455
1456
1457 View Code Duplication
class Vg250Lan(Base):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
1458
    __tablename__ = "vg250_lan"
1459
    __table_args__ = {"schema": "boundaries"}
1460
1461
    id = Column(BigInteger, primary_key=True, index=True)
1462
    ade = Column(BigInteger)
1463
    gf = Column(BigInteger)
1464
    bsg = Column(BigInteger)
1465
    ars = Column(String)
1466
    ags = Column(String)
1467
    sdv_ars = Column(String)
1468
    gen = Column(String)
1469
    bez = Column(String)
1470
    ibz = Column(BigInteger)
1471
    bem = Column(String)
1472
    nbd = Column(String)
1473
    sn_l = Column(String)
1474
    sn_r = Column(String)
1475
    sn_k = Column(String)
1476
    sn_v1 = Column(String)
1477
    sn_v2 = Column(String)
1478
    sn_g = Column(String)
1479
    fk_s3 = Column(String)
1480
    nuts = Column(String)
1481
    ars_0 = Column(String)
1482
    ags_0 = Column(String)
1483
    wsk = Column(String)
1484
    debkg_id = Column(String)
1485
    rs = Column(String)
1486
    sdv_rs = Column(String)
1487
    rs_0 = Column(String)
1488
    geometry = Column(Geometry(srid=EPSG), index=True)
1489
1490
1491
def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame:
1492
    """
1493
    Get feder state data from eGo^n Database.
1494
    Parameters
1495
    -----------
1496
    to_crs : pyproj.crs.crs.CRS
1497
        CRS to transform geometries to.
1498
    Returns
1499
    -------
1500
    geopandas.GeoDataFrame
1501
        GeoDataFrame with federal state data.
1502
    """
1503
    with db.session_scope() as session:
1504
        query = session.query(
1505
            Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom")
1506
        )
1507
1508
        gdf = gpd.read_postgis(
1509
            query.statement, session.connection(), index_col="id"
1510
        ).to_crs(to_crs)
1511
1512
    logger.debug("Federal State data loaded.")
1513
1514
    return gdf
1515
1516
1517
@timer_func
1518
def overlay_grid_districts_with_counties(
1519
    mv_grid_district_gdf: gpd.GeoDataFrame,
1520
    federal_state_gdf: gpd.GeoDataFrame,
1521
) -> gpd.GeoDataFrame:
1522
    """
1523
    Calculate the intersections of mv grid districts and counties.
1524
    Parameters
1525
    -----------
1526
    mv_grid_district_gdf : gpd.GeoDataFrame
1527
        GeoDataFrame containing mv grid district ID and geo shapes data.
1528
    federal_state_gdf : gpd.GeoDataFrame
1529
        GeoDataFrame with federal state data.
1530
    Returns
1531
    -------
1532
    geopandas.GeoDataFrame
1533
        GeoDataFrame containing OSM buildings data.
1534
    """
1535
    logger.debug(
1536
        "Calculating intersection overlay between mv grid districts and "
1537
        "counties. This may take a while..."
1538
    )
1539
1540
    gdf = gpd.overlay(
1541
        federal_state_gdf.to_crs(mv_grid_district_gdf.crs),
1542
        mv_grid_district_gdf.reset_index(),
1543
        how="intersection",
1544
        keep_geom_type=True,
1545
    )
1546
1547
    logger.debug("Done!")
1548
1549
    return gdf
1550
1551
1552
@timer_func
1553
def add_overlay_id_to_buildings(
1554
    buildings_gdf: gpd.GeoDataFrame,
1555
    grid_federal_state_gdf: gpd.GeoDataFrame,
1556
) -> gpd.GeoDataFrame:
1557
    """
1558
    Add information about overlay ID to buildings.
1559
    Parameters
1560
    -----------
1561
    buildings_gdf : geopandas.GeoDataFrame
1562
        GeoDataFrame containing OSM buildings data.
1563
    grid_federal_state_gdf : geopandas.GeoDataFrame
1564
        GeoDataFrame with intersection shapes between counties and grid districts.
1565
    Returns
1566
    -------
1567
    geopandas.GeoDataFrame
1568
        GeoDataFrame containing OSM buildings data with overlay ID added.
1569
    """
1570
    gdf = (
1571
        buildings_gdf.to_crs(grid_federal_state_gdf.crs)
1572
        .sjoin(
1573
            grid_federal_state_gdf,
1574
            how="left",
1575
            predicate="intersects",
1576
        )
1577
        .rename(columns={"index_right": "overlay_id"})
1578
    )
1579
1580
    logger.debug("Added overlay ID to OSM buildings.")
1581
1582
    return gdf
1583
1584
1585
def drop_buildings_outside_grids(
1586
    buildings_gdf: gpd.GeoDataFrame,
1587
) -> gpd.GeoDataFrame:
1588
    """
1589
    Drop all buildings outside of grid areas.
1590
    Parameters
1591
    -----------
1592
    buildings_gdf : geopandas.GeoDataFrame
1593
        GeoDataFrame containing OSM buildings data.
1594
    Returns
1595
    -------
1596
    gepandas.GeoDataFrame
1597
        GeoDataFrame containing OSM buildings data
1598
        with buildings without an bus ID dropped.
1599
    """
1600
    gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()]
1601
1602
    logger.debug(
1603
        f"{len(buildings_gdf) - len(gdf)} "
1604
        f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) "
1605
        f"of {len(buildings_gdf)} values are outside of the grid areas "
1606
        "and are therefore dropped."
1607
    )
1608
1609
    return gdf
1610
1611
1612
def cap_per_bus_id(
1613
    scenario: str,
1614
) -> pd.DataFrame:
1615
    """
1616
    Get table with total pv rooftop capacity per grid district.
1617
1618
    Parameters
1619
    -----------
1620
    scenario : str
1621
        Scenario name.
1622
    Returns
1623
    -------
1624
    pandas.DataFrame
1625
        DataFrame with total rooftop capacity per mv grid.
1626
    """
1627
    targets = config.datasets()["solar_rooftop"]["targets"]
1628
1629
    sql = f"""
1630
    SELECT bus as bus_id, p_nom as capacity
1631
    FROM {targets['generators']['schema']}.{targets['generators']['table']}
1632
    WHERE carrier = 'solar_rooftop'
1633
    AND scn_name = '{scenario}'
1634
    """
1635
1636
    return db.select_dataframe(sql, index_col="bus_id")
1637
1638
    # overlay_gdf = overlay_gdf.assign(capacity=np.nan)
1639
    #
1640
    # for cap, nuts in scenario_df[["capacity", "nuts"]].itertuples(index=False):
1641
    #     nuts_gdf = overlay_gdf.loc[overlay_gdf.nuts == nuts]
1642
    #
1643
    #     capacity = nuts_gdf.building_area.multiply(
1644
    #         cap / nuts_gdf.building_area.sum()
1645
    #     )
1646
    #
1647
    #     overlay_gdf.loc[nuts_gdf.index] = overlay_gdf.loc[
1648
    #         nuts_gdf.index
1649
    #     ].assign(capacity=capacity.multiply(conversion).to_numpy())
1650
    #
1651
    # return overlay_gdf[["bus_id", "capacity"]].groupby("bus_id").sum()
1652
1653
1654
def determine_end_of_life_gens(
1655
    mastr_gdf: gpd.GeoDataFrame,
1656
    scenario_timestamp: pd.Timestamp,
1657
    pv_rooftop_lifetime: pd.Timedelta,
1658
) -> gpd.GeoDataFrame:
1659
    """
1660
    Determine if an old PV system has reached its end of life.
1661
    Parameters
1662
    -----------
1663
    mastr_gdf : geopandas.GeoDataFrame
1664
        GeoDataFrame containing geocoded MaStR data.
1665
    scenario_timestamp : pandas.Timestamp
1666
        Timestamp at which the scenario takes place.
1667
    pv_rooftop_lifetime : pandas.Timedelta
1668
        Average expected lifetime of PV rooftop systems.
1669
    Returns
1670
    -------
1671
    geopandas.GeoDataFrame
1672
        GeoDataFrame containing geocoded MaStR data and info if the system
1673
        has reached its end of life.
1674
    """
1675
    before = mastr_gdf.capacity.sum()
1676
1677
    mastr_gdf = mastr_gdf.assign(
1678
        age=scenario_timestamp - mastr_gdf.start_up_date
1679
    )
1680
1681
    mastr_gdf = mastr_gdf.assign(
1682
        end_of_life=pv_rooftop_lifetime < mastr_gdf.age
1683
    )
1684
1685
    after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum()
1686
1687
    logger.debug(
1688
        "Determined if pv rooftop systems reached their end of life.\nTotal capacity: "
1689
        f"{before}\nActive capacity: {after}"
1690
    )
1691
1692
    return mastr_gdf
1693
1694
1695
def calculate_max_pv_cap_per_building(
1696
    buildings_gdf: gpd.GeoDataFrame,
1697
    mastr_gdf: gpd.GeoDataFrame,
1698
    pv_cap_per_sq_m: float | int,
1699
    roof_factor: float | int,
1700
) -> gpd.GeoDataFrame:
1701
    """
1702
    Calculate the estimated maximum possible PV capacity per building.
1703
    Parameters
1704
    -----------
1705
    buildings_gdf : geopandas.GeoDataFrame
1706
        GeoDataFrame containing OSM buildings data.
1707
    mastr_gdf : geopandas.GeoDataFrame
1708
        GeoDataFrame containing geocoded MaStR data.
1709
    pv_cap_per_sq_m : float, int
1710
        Average expected, installable PV capacity per square meter.
1711
    roof_factor : float, int
1712
        Average for PV usable roof area share.
1713
    Returns
1714
    -------
1715
    geopandas.GeoDataFrame
1716
        GeoDataFrame containing OSM buildings data with estimated maximum PV
1717
        capacity.
1718
    """
1719
    gdf = (
1720
        buildings_gdf.reset_index()
1721
        .rename(columns={"index": "id"})
1722
        .merge(
1723
            mastr_gdf[
1724
                [
1725
                    "capacity",
1726
                    "end_of_life",
1727
                    "building_id",
1728
                    "EinheitlicheAusrichtungUndNeigungswinkel",
1729
                    "Hauptausrichtung",
1730
                    "HauptausrichtungNeigungswinkel",
1731
                ]
1732
            ],
1733
            how="left",
1734
            left_on="id",
1735
            right_on="building_id",
1736
        )
1737
        .set_index("id")
1738
        .drop(columns="building_id")
1739
    )
1740
1741
    return gdf.assign(
1742
        max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m),
1743
        end_of_life=gdf.end_of_life.fillna(True).astype(bool),
1744
        bus_id=gdf.bus_id.astype(int),
1745
    )
1746
1747
1748
def calculate_building_load_factor(
1749
    mastr_gdf: gpd.GeoDataFrame,
1750
    buildings_gdf: gpd.GeoDataFrame,
1751
    rounding: int = 4,
1752
) -> gpd.GeoDataFrame:
1753
    """
1754
    Calculate the roof load factor from existing PV systems.
1755
    Parameters
1756
    -----------
1757
    mastr_gdf : geopandas.GeoDataFrame
1758
        GeoDataFrame containing geocoded MaStR data.
1759
    buildings_gdf : geopandas.GeoDataFrame
1760
        GeoDataFrame containing OSM buildings data.
1761
    rounding : int
1762
        Rounding to use for load factor.
1763
    Returns
1764
    -------
1765
    geopandas.GeoDataFrame
1766
        GeoDataFrame containing geocoded MaStR data with calculated load factor.
1767
    """
1768
    gdf = mastr_gdf.merge(
1769
        buildings_gdf[["max_cap", "building_area"]]
1770
        .loc[~buildings_gdf["max_cap"].isna()]
1771
        .reset_index(),
1772
        how="left",
1773
        left_on="building_id",
1774
        right_on="id",
1775
    ).set_index("id")
1776
1777
    return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding))
1778
1779
1780
def get_probability_for_property(
1781
    mastr_gdf: gpd.GeoDataFrame,
1782
    cap_range: tuple[int | float, int | float],
1783
    prop: str,
1784
) -> tuple[np.array, np.array]:
1785
    """
1786
    Calculate the probability of the different options of a property of the
1787
    existing PV plants.
1788
    Parameters
1789
    -----------
1790
    mastr_gdf : geopandas.GeoDataFrame
1791
        GeoDataFrame containing geocoded MaStR data.
1792
    cap_range : tuple(int, int)
1793
        Capacity range of PV plants to look at.
1794
    prop : str
1795
        Property to calculate probabilities for. String needs to be in columns
1796
        of mastr_gdf.
1797
    Returns
1798
    -------
1799
    tuple
1800
        numpy.array
1801
            Unique values of property.
1802
        numpy.array
1803
            Probabilties per unique value.
1804
    """
1805
    cap_range_gdf = mastr_gdf.loc[
1806
        (mastr_gdf.capacity > cap_range[0])
1807
        & (mastr_gdf.capacity <= cap_range[1])
1808
    ]
1809
1810
    if prop == "load_factor":
1811
        cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1]
1812
1813
    count = Counter(
1814
        cap_range_gdf[prop].loc[
1815
            ~cap_range_gdf[prop].isna()
1816
            & ~cap_range_gdf[prop].isnull()
1817
            & ~(cap_range_gdf[prop] == "None")
1818
        ]
1819
    )
1820
1821
    values = np.array(list(count.keys()))
1822
    probabilities = np.fromiter(count.values(), dtype=float)
1823
    probabilities = probabilities / np.sum(probabilities)
1824
1825
    return values, probabilities
1826
1827
1828
@timer_func
1829
def probabilities(
1830
    mastr_gdf: gpd.GeoDataFrame,
1831
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1832
    properties: list[str] | None = None,
1833
) -> dict:
1834
    """
1835
    Calculate the probability of the different options of properties of the
1836
    existing PV plants.
1837
    Parameters
1838
    -----------
1839
    mastr_gdf : geopandas.GeoDataFrame
1840
        GeoDataFrame containing geocoded MaStR data.
1841
    cap_ranges : list(tuple(int, int))
1842
        List of capacity ranges to distinguish between. The first tuple should
1843
        start with a zero and the last one should end with infinite.
1844
    properties : list(str)
1845
        List of properties to calculate probabilities for. Strings needs to be
1846
        in columns of mastr_gdf.
1847
    Returns
1848
    -------
1849
    dict
1850
        Dictionary with values and probabilities per capacity range.
1851
    """
1852
    if cap_ranges is None:
1853
        cap_ranges = [
1854
            (0, 30),
1855
            (30, 100),
1856
            (100, float("inf")),
1857
        ]
1858
    if properties is None:
1859
        properties = [
1860
            "EinheitlicheAusrichtungUndNeigungswinkel",
1861
            "Hauptausrichtung",
1862
            "HauptausrichtungNeigungswinkel",
1863
            "load_factor",
1864
        ]
1865
1866
    prob_dict = {}
1867
1868
    for cap_range in cap_ranges:
1869
        prob_dict[cap_range] = {
1870
            "values": {},
1871
            "probabilities": {},
1872
        }
1873
1874
        for prop in properties:
1875
            v, p = get_probability_for_property(
1876
                mastr_gdf,
1877
                cap_range,
1878
                prop,
1879
            )
1880
1881
            prob_dict[cap_range]["values"][prop] = v
1882
            prob_dict[cap_range]["probabilities"][prop] = p
1883
1884
    return prob_dict
1885
1886
1887
def cap_share_per_cap_range(
1888
    mastr_gdf: gpd.GeoDataFrame,
1889
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1890
) -> dict[tuple[int | float, int | float], float]:
1891
    """
1892
    Calculate the share of PV capacity from the total PV capacity within
1893
    capacity ranges.
1894
    Parameters
1895
    -----------
1896
    mastr_gdf : geopandas.GeoDataFrame
1897
        GeoDataFrame containing geocoded MaStR data.
1898
    cap_ranges : list(tuple(int, int))
1899
        List of capacity ranges to distinguish between. The first tuple should
1900
        start with a zero and the last one should end with infinite.
1901
    Returns
1902
    -------
1903
    dict
1904
        Dictionary with share of PV capacity from the total PV capacity within
1905
        capacity ranges.
1906
    """
1907
    if cap_ranges is None:
1908
        cap_ranges = [
1909
            (0, 30),
1910
            (30, 100),
1911
            (100, float("inf")),
1912
        ]
1913
1914
    cap_share_dict = {}
1915
1916
    total_cap = mastr_gdf.capacity.sum()
1917
1918
    for cap_range in cap_ranges:
1919
        cap_share = (
1920
            mastr_gdf.loc[
1921
                (mastr_gdf.capacity > cap_range[0])
1922
                & (mastr_gdf.capacity <= cap_range[1])
1923
            ].capacity.sum()
1924
            / total_cap
1925
        )
1926
1927
        cap_share_dict[cap_range] = cap_share
1928
1929
    return cap_share_dict
1930
1931
1932
def mean_load_factor_per_cap_range(
1933
    mastr_gdf: gpd.GeoDataFrame,
1934
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1935
) -> dict[tuple[int | float, int | float], float]:
1936
    """
1937
    Calculate the mean roof load factor per capacity range from existing PV
1938
    plants.
1939
    Parameters
1940
    -----------
1941
    mastr_gdf : geopandas.GeoDataFrame
1942
        GeoDataFrame containing geocoded MaStR data.
1943
    cap_ranges : list(tuple(int, int))
1944
        List of capacity ranges to distinguish between. The first tuple should
1945
        start with a zero and the last one should end with infinite.
1946
    Returns
1947
    -------
1948
    dict
1949
        Dictionary with mean roof load factor per capacity range.
1950
    """
1951
    if cap_ranges is None:
1952
        cap_ranges = [
1953
            (0, 30),
1954
            (30, 100),
1955
            (100, float("inf")),
1956
        ]
1957
1958
    load_factor_dict = {}
1959
1960
    for cap_range in cap_ranges:
1961
        load_factor = mastr_gdf.loc[
1962
            (mastr_gdf.load_factor <= 1)
1963
            & (mastr_gdf.capacity > cap_range[0])
1964
            & (mastr_gdf.capacity <= cap_range[1])
1965
        ].load_factor.mean()
1966
1967
        load_factor_dict[cap_range] = load_factor
1968
1969
    return load_factor_dict
1970
1971
1972
def building_area_range_per_cap_range(
1973
    mastr_gdf: gpd.GeoDataFrame,
1974
    cap_ranges: list[tuple[int | float, int | float]] | None = None,
1975
    min_building_size: int | float = 10.0,
1976
    upper_quantile: float = 0.95,
1977
    lower_quantile: float = 0.05,
1978
) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]:
1979
    """
1980
    Estimate normal building area range per capacity range.
1981
    Calculate the mean roof load factor per capacity range from existing PV
1982
    plants.
1983
    Parameters
1984
    -----------
1985
    mastr_gdf : geopandas.GeoDataFrame
1986
        GeoDataFrame containing geocoded MaStR data.
1987
    cap_ranges : list(tuple(int, int))
1988
        List of capacity ranges to distinguish between. The first tuple should
1989
        start with a zero and the last one should end with infinite.
1990
    min_building_size : int, float
1991
        Minimal building size to consider for PV plants.
1992
    upper_quantile : float
1993
        Upper quantile to estimate maximum building size per capacity range.
1994
    lower_quantile : float
1995
        Lower quantile to estimate minimum building size per capacity range.
1996
    Returns
1997
    -------
1998
    dict
1999
        Dictionary with estimated normal building area range per capacity
2000
        range.
2001
    """
2002
    if cap_ranges is None:
2003
        cap_ranges = [
2004
            (0, 30),
2005
            (30, 100),
2006
            (100, float("inf")),
2007
        ]
2008
2009
    building_area_range_dict = {}
2010
2011
    n_ranges = len(cap_ranges)
2012
2013
    for count, cap_range in enumerate(cap_ranges):
2014
        cap_range_gdf = mastr_gdf.loc[
2015
            (mastr_gdf.capacity > cap_range[0])
2016
            & (mastr_gdf.capacity <= cap_range[1])
2017
        ]
2018
2019
        if count == 0:
2020
            building_area_range_dict[cap_range] = (
2021
                min_building_size,
2022
                cap_range_gdf.building_area.quantile(upper_quantile),
2023
            )
2024
        elif count == n_ranges - 1:
2025
            building_area_range_dict[cap_range] = (
2026
                cap_range_gdf.building_area.quantile(lower_quantile),
2027
                float("inf"),
2028
            )
2029
        else:
2030
            building_area_range_dict[cap_range] = (
2031
                cap_range_gdf.building_area.quantile(lower_quantile),
2032
                cap_range_gdf.building_area.quantile(upper_quantile),
2033
            )
2034
2035
    values = list(building_area_range_dict.values())
2036
2037
    building_area_range_normed_dict = {}
2038
2039
    for count, (cap_range, (min_area, max_area)) in enumerate(
2040
        building_area_range_dict.items()
2041
    ):
2042
        if count == 0:
2043
            building_area_range_normed_dict[cap_range] = (
2044
                min_area,
2045
                np.mean((values[count + 1][0], max_area)),
2046
            )
2047
        elif count == n_ranges - 1:
2048
            building_area_range_normed_dict[cap_range] = (
2049
                np.mean((values[count - 1][1], min_area)),
2050
                max_area,
2051
            )
2052
        else:
2053
            building_area_range_normed_dict[cap_range] = (
2054
                np.mean((values[count - 1][1], min_area)),
2055
                np.mean((values[count + 1][0], max_area)),
2056
            )
2057
2058
    return building_area_range_normed_dict
2059
2060
2061
@timer_func
2062
def desaggregate_pv_in_mv_grid(
2063
    buildings_gdf: gpd.GeoDataFrame,
2064
    pv_cap: float | int,
2065
    **kwargs,
2066
) -> gpd.GeoDataFrame:
2067
    """
2068
    Desaggregate PV capacity on buildings within a given grid district.
2069
    Parameters
2070
    -----------
2071
    buildings_gdf : geopandas.GeoDataFrame
2072
        GeoDataFrame containing buildings within the grid district.
2073
    pv_cap : float, int
2074
        PV capacity to desaggregate.
2075
    Other Parameters
2076
    -----------
2077
    prob_dict : dict
2078
        Dictionary with values and probabilities per capacity range.
2079
    cap_share_dict : dict
2080
        Dictionary with share of PV capacity from the total PV capacity within
2081
        capacity ranges.
2082
    building_area_range_dict : dict
2083
        Dictionary with estimated normal building area range per capacity
2084
        range.
2085
    load_factor_dict : dict
2086
        Dictionary with mean roof load factor per capacity range.
2087
    seed : int
2088
        Seed to use for random operations with NumPy and pandas.
2089
    pv_cap_per_sq_m : float, int
2090
        Average expected, installable PV capacity per square meter.
2091
    Returns
2092
    -------
2093
    geopandas.GeoDataFrame
2094
        GeoDataFrame containing OSM building data with desaggregated PV
2095
        plants.
2096
    """
2097
    bus_id = int(buildings_gdf.bus_id.iat[0])
2098
2099
    rng = default_rng(seed=kwargs["seed"])
2100
    random_state = RandomState(seed=kwargs["seed"])
2101
2102
    results_df = pd.DataFrame(columns=buildings_gdf.columns)
2103
2104
    for cap_range, share in kwargs["cap_share_dict"].items():
2105
        pv_cap_range = pv_cap * share
2106
2107
        b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range]
2108
2109
        cap_range_buildings_gdf = buildings_gdf.loc[
2110
            ~buildings_gdf.index.isin(results_df.index)
2111
            & (buildings_gdf.building_area > b_area_min)
2112
            & (buildings_gdf.building_area <= b_area_max)
2113
        ]
2114
2115
        mean_load_factor = kwargs["load_factor_dict"][cap_range]
2116
        cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2117
            mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2118
            load_factor=np.nan,
2119
            capacity=np.nan,
2120
        )
2121
2122
        total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2123
2124
        if total_mean_cap == 0:
2125
            logger.warning(
2126
                f"There are no matching roof for capacity range {cap_range} "
2127
                f"kW in grid {bus_id}. Using all buildings as fallback."
2128
            )
2129
2130
            cap_range_buildings_gdf = buildings_gdf.loc[
2131
                ~buildings_gdf.index.isin(results_df.index)
2132
            ]
2133
2134
            if len(cap_range_buildings_gdf) == 0:
2135
                logger.warning(
2136
                    "There are no roofes available for capacity range "
2137
                    f"{cap_range} kW in grid {bus_id}. Allowing dual use."
2138
                )
2139
                cap_range_buildings_gdf = buildings_gdf.copy()
2140
2141
            cap_range_buildings_gdf = cap_range_buildings_gdf.assign(
2142
                mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor,
2143
                load_factor=np.nan,
2144
                capacity=np.nan,
2145
            )
2146
2147
            total_mean_cap = cap_range_buildings_gdf.mean_cap.sum()
2148
2149
        elif total_mean_cap < pv_cap_range:
2150
            logger.warning(
2151
                f"Average roof utilization of the roof area in grid {bus_id} "
2152
                f"and capacity range {cap_range} kW is not sufficient. The "
2153
                "roof utilization will be above average."
2154
            )
2155
2156
        frac = max(
2157
            pv_cap_range / total_mean_cap,
2158
            1 / len(cap_range_buildings_gdf),
2159
        )
2160
2161
        samples_gdf = cap_range_buildings_gdf.sample(
2162
            frac=min(1, frac),
2163
            random_state=random_state,
2164
        )
2165
2166
        cap_range_dict = kwargs["prob_dict"][cap_range]
2167
2168
        values_dict = cap_range_dict["values"]
2169
        p_dict = cap_range_dict["probabilities"]
2170
2171
        load_factors = rng.choice(
2172
            a=values_dict["load_factor"],
2173
            size=len(samples_gdf),
2174
            p=p_dict["load_factor"],
2175
        )
2176
2177
        samples_gdf = samples_gdf.assign(
2178
            load_factor=load_factors,
2179
            capacity=(
2180
                samples_gdf.building_area
2181
                * load_factors
2182
                * kwargs["pv_cap_per_sq_m"]
2183
            ).clip(lower=0.4),
2184
        )
2185
2186
        missing_factor = pv_cap_range / samples_gdf.capacity.sum()
2187
2188
        samples_gdf = samples_gdf.assign(
2189
            capacity=(samples_gdf.capacity * missing_factor),
2190
            load_factor=(samples_gdf.load_factor * missing_factor),
2191
        )
2192
2193
        assert np.isclose(
2194
            samples_gdf.capacity.sum(),
2195
            pv_cap_range,
2196
            rtol=1e-03,
2197
        ), f"{samples_gdf.capacity.sum()} != {pv_cap_range}"
2198
2199
        results_df = pd.concat(
2200
            [
2201
                results_df,
2202
                samples_gdf,
2203
            ],
2204
        )
2205
2206
    total_missing_factor = pv_cap / results_df.capacity.sum()
2207
2208
    results_df = results_df.assign(
2209
        capacity=(results_df.capacity * total_missing_factor),
2210
    )
2211
2212
    assert np.isclose(
2213
        results_df.capacity.sum(),
2214
        pv_cap,
2215
        rtol=1e-03,
2216
    ), f"{results_df.capacity.sum()} != {pv_cap}"
2217
2218
    return gpd.GeoDataFrame(
2219
        results_df,
2220
        crs=samples_gdf.crs,
0 ignored issues
show
introduced by
The variable samples_gdf does not seem to be defined in case the for loop on line 2104 is not entered. Are you sure this can never be the case?
Loading history...
2221
        geometry="geom",
2222
    )
2223
2224
2225
@timer_func
2226
def desaggregate_pv(
2227
    buildings_gdf: gpd.GeoDataFrame,
2228
    cap_df: pd.DataFrame,
2229
    **kwargs,
2230
) -> gpd.GeoDataFrame:
2231
    """
2232
    Desaggregate PV capacity on buildings within a given grid district.
2233
    Parameters
2234
    -----------
2235
    buildings_gdf : geopandas.GeoDataFrame
2236
        GeoDataFrame containing OSM buildings data.
2237
    cap_df : pandas.DataFrame
2238
        DataFrame with total rooftop capacity per mv grid.
2239
    Other Parameters
2240
    -----------
2241
    prob_dict : dict
2242
        Dictionary with values and probabilities per capacity range.
2243
    cap_share_dict : dict
2244
        Dictionary with share of PV capacity from the total PV capacity within
2245
        capacity ranges.
2246
    building_area_range_dict : dict
2247
        Dictionary with estimated normal building area range per capacity
2248
        range.
2249
    load_factor_dict : dict
2250
        Dictionary with mean roof load factor per capacity range.
2251
    seed : int
2252
        Seed to use for random operations with NumPy and pandas.
2253
    pv_cap_per_sq_m : float, int
2254
        Average expected, installable PV capacity per square meter.
2255
    Returns
2256
    -------
2257
    geopandas.GeoDataFrame
2258
        GeoDataFrame containing OSM building data with desaggregated PV
2259
        plants.
2260
    """
2261
    allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life]
2262
2263
    building_bus_ids = set(buildings_gdf.bus_id)
2264
    cap_bus_ids = set(cap_df.index)
2265
2266
    logger.debug(
2267
        f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from capacity: "
2268
        f"{len(cap_bus_ids)}"
2269
    )
2270
2271
    if len(building_bus_ids) > len(cap_bus_ids):
2272
        missing = building_bus_ids - cap_bus_ids
2273
    else:
2274
        missing = cap_bus_ids - building_bus_ids
2275
2276
    logger.debug(str(missing))
2277
2278
    bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids))
2279
2280
    # assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index)
2281
2282
    for bus_id in bus_ids:
2283
        buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id]
2284
2285
        pv_installed_gdf = buildings_grid_gdf.loc[
2286
            ~buildings_grid_gdf.end_of_life
2287
        ]
2288
2289
        pv_installed = pv_installed_gdf.capacity.sum()
2290
2291
        pot_buildings_gdf = buildings_grid_gdf.drop(
2292
            index=pv_installed_gdf.index
2293
        )
2294
2295
        if len(pot_buildings_gdf) == 0:
2296
            logger.error(
2297
                f"In grid {bus_id} there are no potential buildings to allocate "
2298
                "PV capacity to. The grid is skipped. This message should only "
2299
                "appear doing test runs with few buildings."
2300
            )
2301
2302
            continue
2303
2304
        pv_target = cap_df.at[bus_id, "capacity"] * 1000
2305
2306
        logger.debug(f"pv_target: {pv_target}")
2307
2308
        pv_missing = pv_target - pv_installed
2309
2310
        if pv_missing <= 0:
2311
            logger.info(
2312
                f"In grid {bus_id} there is more PV installed ({pv_installed: g}) in "
2313
                f"status Quo than allocated within the scenario ({pv_target: g}). No "
2314
                f"new generators are added."
2315
            )
2316
2317
            continue
2318
2319
        if pot_buildings_gdf.max_cap.sum() < pv_missing:
2320
            logger.error(
2321
                f"In grid {bus_id} there is less PV potential ("
2322
                f"{pot_buildings_gdf.max_cap.sum():g} kW) than allocated PV  capacity "
2323
                f"({pv_missing:g} kW). The average roof utilization will be very high."
2324
            )
2325
2326
        gdf = desaggregate_pv_in_mv_grid(
2327
            buildings_gdf=pot_buildings_gdf,
2328
            pv_cap=pv_missing,
2329
            **kwargs,
2330
        )
2331
2332
        logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}")
2333
        logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}")
2334
        logger.debug(
2335
            f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}"
2336
        )
2337
2338
        if not np.isclose(
2339
            gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3
2340
        ):
2341
            logger.warning(
2342
                f"The desired capacity and actual capacity in grid {bus_id} differ.\n"
2343
                f"Desired cap: {pv_target}\nActual cap: "
2344
                f"{gdf.capacity.sum() + pv_installed}"
2345
            )
2346
2347
        allocated_buildings_gdf = pd.concat(
2348
            [
2349
                allocated_buildings_gdf,
2350
                gdf,
2351
            ]
2352
        )
2353
2354
    logger.debug("Desaggregated scenario.")
2355
    logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}")
2356
    logger.debug(
2357
        f"Generator capacity: {allocated_buildings_gdf.capacity.sum(): g}"
2358
    )
2359
2360
    return gpd.GeoDataFrame(
2361
        allocated_buildings_gdf,
2362
        crs=gdf.crs,
0 ignored issues
show
introduced by
The variable gdf does not seem to be defined for all execution paths.
Loading history...
2363
        geometry="geom",
2364
    )
2365
2366
2367
@timer_func
2368
def add_buildings_meta_data(
2369
    buildings_gdf: gpd.GeoDataFrame,
2370
    prob_dict: dict,
2371
    seed: int,
2372
) -> gpd.GeoDataFrame:
2373
    """
2374
    Randomly add additional metadata to desaggregated PV plants.
2375
    Parameters
2376
    -----------
2377
    buildings_gdf : geopandas.GeoDataFrame
2378
        GeoDataFrame containing OSM buildings data with desaggregated PV
2379
        plants.
2380
    prob_dict : dict
2381
        Dictionary with values and probabilities per capacity range.
2382
    seed : int
2383
        Seed to use for random operations with NumPy and pandas.
2384
    Returns
2385
    -------
2386
    geopandas.GeoDataFrame
2387
        GeoDataFrame containing OSM building data with desaggregated PV
2388
        plants.
2389
    """
2390
    rng = default_rng(seed=seed)
2391
    buildings_gdf = buildings_gdf.reset_index().rename(
2392
        columns={
2393
            "index": "building_id",
2394
        }
2395
    )
2396
2397
    for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items():
2398
        cap_range_gdf = buildings_gdf.loc[
2399
            (buildings_gdf.capacity >= min_cap)
2400
            & (buildings_gdf.capacity < max_cap)
2401
        ]
2402
2403
        for key, values in cap_range_prob_dict["values"].items():
2404
            if key == "load_factor":
2405
                continue
2406
2407
            gdf = cap_range_gdf.loc[
2408
                cap_range_gdf[key].isna()
2409
                | cap_range_gdf[key].isnull()
2410
                | (cap_range_gdf[key] == "None")
2411
            ]
2412
2413
            key_vals = rng.choice(
2414
                a=values,
2415
                size=len(gdf),
2416
                p=cap_range_prob_dict["probabilities"][key],
2417
            )
2418
2419
            buildings_gdf.loc[gdf.index, key] = key_vals
2420
2421
    return buildings_gdf
2422
2423
2424
def add_voltage_level(
2425
    buildings_gdf: gpd.GeoDataFrame,
2426
) -> gpd.GeoDataFrame:
2427
    """
2428
    Add voltage level derived from generator capacity to the power plants.
2429
    Parameters
2430
    -----------
2431
    buildings_gdf : geopandas.GeoDataFrame
2432
        GeoDataFrame containing OSM buildings data with desaggregated PV
2433
        plants.
2434
    Returns
2435
    -------
2436
    geopandas.GeoDataFrame
2437
        GeoDataFrame containing OSM building data with voltage level per generator.
2438
    """
2439
2440
    def voltage_levels(p: float) -> int:
2441
        if p < 100:
2442
            return 7
2443
        elif p < 200:
2444
            return 6
2445
        elif p < 5500:
2446
            return 5
2447
        elif p < 20000:
2448
            return 4
2449
        elif p < 120000:
2450
            return 3
2451
        return 1
2452
2453
    return buildings_gdf.assign(
2454
        voltage_level=buildings_gdf.capacity.apply(voltage_levels)
2455
    )
2456
2457
2458
def add_start_up_date(
2459
    buildings_gdf: gpd.GeoDataFrame,
2460
    start: pd.Timestamp,
2461
    end: pd.Timestamp,
2462
    seed: int,
2463
):
2464
    """
2465
    Randomly and linear add start-up date to new pv generators.
2466
    Parameters
2467
    ----------
2468
    buildings_gdf : geopandas.GeoDataFrame
2469
        GeoDataFrame containing OSM buildings data with desaggregated PV
2470
        plants.
2471
    start : pandas.Timestamp
2472
        Minimum Timestamp to use.
2473
    end : pandas.Timestamp
2474
        Maximum Timestamp to use.
2475
    seed : int
2476
        Seed to use for random operations with NumPy and pandas.
2477
    Returns
2478
    -------
2479
    geopandas.GeoDataFrame
2480
        GeoDataFrame containing OSM buildings data with start-up date added.
2481
    """
2482
    rng = default_rng(seed=seed)
2483
2484
    date_range = pd.date_range(start=start, end=end, freq="1D")
2485
2486
    return buildings_gdf.assign(
2487
        start_up_date=rng.choice(date_range, size=len(buildings_gdf))
2488
    )
2489
2490
2491
@timer_func
2492
def allocate_scenarios(
2493
    mastr_gdf: gpd.GeoDataFrame,
2494
    valid_buildings_gdf: gpd.GeoDataFrame,
2495
    last_scenario_gdf: gpd.GeoDataFrame,
2496
    scenario: str,
2497
):
2498
    """
2499
    Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings.
2500
    Parameters
2501
    ----------
2502
    mastr_gdf : geopandas.GeoDataFrame
2503
        GeoDataFrame containing geocoded MaStR data.
2504
    valid_buildings_gdf : geopandas.GeoDataFrame
2505
        GeoDataFrame containing OSM buildings data.
2506
    last_scenario_gdf : geopandas.GeoDataFrame
2507
        GeoDataFrame containing OSM buildings matched with pv generators from temporal
2508
        preceding scenario.
2509
    scenario : str
2510
        Scenario to desaggrgate and allocate.
2511
    Returns
2512
    -------
2513
    tuple
2514
        geopandas.GeoDataFrame
2515
            GeoDataFrame containing OSM buildings matched with pv generators.
2516
        pandas.DataFrame
2517
            DataFrame containing pv rooftop capacity per grid id.
2518
    """
2519
    cap_per_bus_id_df = cap_per_bus_id(scenario)
2520
2521
    logger.debug(
2522
        f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}"
2523
    )
2524
2525
    last_scenario_gdf = determine_end_of_life_gens(
2526
        last_scenario_gdf,
2527
        SCENARIO_TIMESTAMP[scenario],
2528
        PV_ROOFTOP_LIFETIME,
2529
    )
2530
2531
    buildings_gdf = calculate_max_pv_cap_per_building(
2532
        valid_buildings_gdf,
2533
        last_scenario_gdf,
2534
        PV_CAP_PER_SQ_M,
2535
        ROOF_FACTOR,
2536
    )
2537
2538
    mastr_gdf = calculate_building_load_factor(
2539
        mastr_gdf,
2540
        buildings_gdf,
2541
    )
2542
2543
    probabilities_dict = probabilities(
2544
        mastr_gdf,
2545
        cap_ranges=CAP_RANGES,
2546
    )
2547
2548
    cap_share_dict = cap_share_per_cap_range(
2549
        mastr_gdf,
2550
        cap_ranges=CAP_RANGES,
2551
    )
2552
2553
    load_factor_dict = mean_load_factor_per_cap_range(
2554
        mastr_gdf,
2555
        cap_ranges=CAP_RANGES,
2556
    )
2557
2558
    building_area_range_dict = building_area_range_per_cap_range(
2559
        mastr_gdf,
2560
        cap_ranges=CAP_RANGES,
2561
        min_building_size=MIN_BUILDING_SIZE,
2562
        upper_quantile=UPPER_QUNATILE,
2563
        lower_quantile=LOWER_QUANTILE,
2564
    )
2565
2566
    allocated_buildings_gdf = desaggregate_pv(
2567
        buildings_gdf=buildings_gdf,
2568
        cap_df=cap_per_bus_id_df,
2569
        prob_dict=probabilities_dict,
2570
        cap_share_dict=cap_share_dict,
2571
        building_area_range_dict=building_area_range_dict,
2572
        load_factor_dict=load_factor_dict,
2573
        seed=SEED,
2574
        pv_cap_per_sq_m=PV_CAP_PER_SQ_M,
2575
    )
2576
2577
    allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario)
2578
2579
    meta_buildings_gdf = frame_to_numeric(
2580
        add_buildings_meta_data(
2581
            allocated_buildings_gdf,
2582
            probabilities_dict,
2583
            SEED,
2584
        )
2585
    )
2586
2587
    return (
2588
        add_start_up_date(
2589
            meta_buildings_gdf,
2590
            start=last_scenario_gdf.start_up_date.max(),
2591
            end=SCENARIO_TIMESTAMP[scenario],
2592
            seed=SEED,
2593
        ),
2594
        cap_per_bus_id_df,
2595
    )
2596
2597
2598
class EgonPowerPlantPvRoofBuildingScenario(Base):
2599
    __tablename__ = "egon_power_plants_pv_roof_building"
2600
    __table_args__ = {"schema": "supply"}
2601
2602
    index = Column(Integer, primary_key=True, index=True)
2603
    scenario = Column(String)
2604
    bus_id = Column(Integer, nullable=True)
2605
    building_id = Column(Integer)
2606
    gens_id = Column(String, nullable=True)
2607
    capacity = Column(Float)
2608
    einheitliche_ausrichtung_und_neigungswinkel = Column(Float)
2609
    hauptausrichtung = Column(String)
2610
    hauptausrichtung_neigungswinkel = Column(String)
2611
    voltage_level = Column(Integer)
2612
    weather_cell_id = Column(Integer)
2613
2614
2615
def create_scenario_table(buildings_gdf):
2616
    """Create mapping table pv_unit <-> building for scenario"""
2617
    EgonPowerPlantPvRoofBuildingScenario.__table__.drop(
2618
        bind=engine, checkfirst=True
2619
    )
2620
    EgonPowerPlantPvRoofBuildingScenario.__table__.create(
2621
        bind=engine, checkfirst=True
2622
    )
2623
2624
    buildings_gdf.rename(columns=COLS_TO_RENAME).assign(
2625
        capacity=buildings_gdf.capacity.div(10**3)  # kW -> MW
2626
    )[COLS_TO_EXPORT].reset_index().to_sql(
2627
        name=EgonPowerPlantPvRoofBuildingScenario.__table__.name,
2628
        schema=EgonPowerPlantPvRoofBuildingScenario.__table__.schema,
2629
        con=db.engine(),
2630
        if_exists="append",
2631
        index=False,
2632
    )
2633
2634
2635
def geocode_mastr_data():
2636
    """
2637
    Read PV rooftop data from MaStR CSV
2638
    TODO: the source will be replaced as soon as the MaStR data is available
2639
     in DB.
2640
    """
2641
    mastr_df = mastr_data(
2642
        MASTR_INDEX_COL,
2643
        MASTR_RELEVANT_COLS,
2644
        MASTR_DTYPES,
2645
        MASTR_PARSE_DATES,
2646
    )
2647
2648
    clean_mastr_df = clean_mastr_data(
2649
        mastr_df,
2650
        max_realistic_pv_cap=MAX_REALISTIC_PV_CAP,
2651
        min_realistic_pv_cap=MIN_REALISTIC_PV_CAP,
2652
        seed=SEED,
2653
        rounding=ROUNDING,
2654
    )
2655
2656
    geocoding_df = geocoding_data(clean_mastr_df)
2657
2658
    ratelimiter = geocoder(USER_AGENT, MIN_DELAY_SECONDS)
2659
2660
    geocode_gdf = geocode_data(geocoding_df, ratelimiter, EPSG)
2661
2662
    create_geocoded_table(geocode_gdf)
2663
2664
2665
def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame:
2666
    sql = """
2667
    SELECT building_id, zensus_population_id
2668
    FROM boundaries.egon_map_zensus_mvgd_buildings
2669
    """
2670
2671
    buildings_gdf = buildings_gdf.merge(
2672
        right=db.select_dataframe(sql),
2673
        how="left",
2674
        on="building_id",
2675
    )
2676
2677
    sql = """
2678
    SELECT zensus_population_id, w_id as weather_cell_id
2679
    FROM boundaries.egon_map_zensus_weather_cell
2680
    """
2681
2682
    buildings_gdf = buildings_gdf.merge(
2683
        right=db.select_dataframe(sql),
2684
        how="left",
2685
        on="zensus_population_id",
2686
    )
2687
2688
    if buildings_gdf.weather_cell_id.isna().any():
2689
        missing = buildings_gdf.loc[
2690
            buildings_gdf.weather_cell_id.isna()
2691
        ].building_id.tolist()
2692
        raise ValueError(
2693
            f"Following buildings don't have a weather cell id: {missing}"
2694
        )
2695
2696
    return buildings_gdf
2697
2698
2699
def pv_rooftop_to_buildings():
2700
    """Main script, executed as task"""
2701
2702
    mastr_gdf = load_mastr_data()
2703
2704
    buildings_gdf = load_building_data()
2705
2706
    desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings(
2707
        mastr_gdf, buildings_gdf
2708
    )
2709
2710
    all_buildings_gdf = (
2711
        desagg_mastr_gdf.assign(scenario="status_quo")
2712
        .reset_index()
2713
        .rename(columns={"geometry": "geom", "EinheitMastrNummer": "gens_id"})
2714
    )
2715
2716
    scenario_buildings_gdf = all_buildings_gdf.copy()
2717
2718
    cap_per_bus_id_df = pd.DataFrame()
2719
2720
    for scenario in SCENARIOS:
2721
        logger.debug(f"Desaggregating scenario {scenario}.")
2722
        (
2723
            scenario_buildings_gdf,
2724
            cap_per_bus_id_scenario_df,
2725
        ) = allocate_scenarios(  # noqa: F841
2726
            desagg_mastr_gdf,
2727
            desagg_buildings_gdf,
2728
            scenario_buildings_gdf,
2729
            scenario,
2730
        )
2731
2732
        all_buildings_gdf = gpd.GeoDataFrame(
2733
            pd.concat(
2734
                [all_buildings_gdf, scenario_buildings_gdf], ignore_index=True
2735
            ),
2736
            crs=scenario_buildings_gdf.crs,
2737
            geometry="geom",
2738
        )
2739
2740
        cap_per_bus_id_df = pd.concat(
2741
            [cap_per_bus_id_df, cap_per_bus_id_scenario_df]
2742
        )
2743
2744
    # add weather cell
2745
    all_buildings_gdf = add_weather_cell_id(all_buildings_gdf)
2746
2747
    # export scenario
2748
    create_scenario_table(add_voltage_level(all_buildings_gdf))
2749