1
|
|
|
"""Module containing code dealing with crossbording gas pipelines for eGon100RE
|
2
|
|
|
|
3
|
|
|
In this module the crossbordering pipelines for H2 and CH4, exclusively
|
4
|
|
|
between Germany and its neighbouring countries, in eGon100RE are
|
5
|
|
|
defined and inserted in the database.
|
6
|
|
|
|
7
|
|
|
Dependecies (pipeline)
|
8
|
|
|
======================
|
9
|
|
|
* :dataset: PypsaEurSec, GasNodesandPipes, HydrogenBusEtrago,
|
10
|
|
|
ElectricalNeighbours
|
11
|
|
|
|
12
|
|
|
Resulting tables
|
13
|
|
|
================
|
14
|
|
|
* grid.egon_etrago_link is completed
|
15
|
|
|
|
16
|
|
|
"""
|
17
|
|
|
|
18
|
|
|
import pandas as pd
|
19
|
|
|
|
20
|
|
|
from egon.data import config, db
|
21
|
|
|
from egon.data.datasets.gas_neighbours.gas_abroad import (
|
22
|
|
|
insert_gas_grid_capacities,
|
23
|
|
|
)
|
24
|
|
|
from egon.data.datasets.pypsaeursec import read_network
|
25
|
|
|
|
26
|
|
|
countries = [
|
27
|
|
|
"AT",
|
28
|
|
|
"BE",
|
29
|
|
|
"CH",
|
30
|
|
|
"CZ",
|
31
|
|
|
"DK",
|
32
|
|
|
"FR",
|
33
|
|
|
"LU",
|
34
|
|
|
"NL",
|
35
|
|
|
"NO",
|
36
|
|
|
"PL",
|
37
|
|
|
]
|
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def insert_gas_neigbours_eGon100RE():
|
41
|
|
|
"""Insert missing gas crossbordering grid capacities for eGon100RE
|
42
|
|
|
|
43
|
|
|
This function insert the crossbordering pipelines for H2 and CH4,
|
44
|
|
|
exclusively between Germany and its neighbouring countries,
|
45
|
|
|
for eGon100RE in the database by executing the following steps:
|
46
|
|
|
* call of the the function
|
47
|
|
|
:py:func:`define_DE_crossbording_pipes_geom_eGon100RE`, that
|
48
|
|
|
defines the crossbordering pipelines (H2 and CH4) between
|
49
|
|
|
Germany and its neighbouring countries
|
50
|
|
|
* call of the the function
|
51
|
|
|
:py:func:`read_DE_crossbordering_cap_from_pes`, that calculates
|
52
|
|
|
the crossbordering total exchange capactities for H2 and CH4
|
53
|
|
|
between Germany and its neighbouring countries based on the
|
54
|
|
|
pypsa-eur-sec results
|
55
|
|
|
* call of the the function
|
56
|
|
|
:py:func:`calculate_crossbordering_gas_grid_capacities_eGon100RE`,
|
57
|
|
|
that attributes to each crossbordering pipeline (H2 and CH4)
|
58
|
|
|
between Germany and its neighbouring countries its capacity
|
59
|
|
|
* insertion of the H2 and CH4 pipelines between Germany and its
|
60
|
|
|
neighbouring countries in the database with function
|
61
|
|
|
:py:func:`insert_gas_grid_capacities`
|
62
|
|
|
|
63
|
|
|
Returns
|
64
|
|
|
-------
|
65
|
|
|
None
|
66
|
|
|
|
67
|
|
|
"""
|
68
|
|
|
|
69
|
|
|
DE_pipe_capacities_list = define_DE_crossbording_pipes_geom_eGon100RE()
|
70
|
|
|
cap_DE = read_DE_crossbordering_cap_from_pes()
|
71
|
|
|
|
72
|
|
|
Crossbordering_pipe_capacities_list = (
|
73
|
|
|
calculate_crossbordering_gas_grid_capacities_eGon100RE(
|
74
|
|
|
cap_DE, DE_pipe_capacities_list
|
75
|
|
|
)
|
76
|
|
|
)
|
77
|
|
|
|
78
|
|
|
for i in ["link_id", "bus0", "bus1"]:
|
79
|
|
|
Crossbordering_pipe_capacities_list[i] = (
|
80
|
|
|
Crossbordering_pipe_capacities_list[i].astype(str).astype(int)
|
81
|
|
|
)
|
82
|
|
|
|
83
|
|
|
for i in ["p_nom", "length"]:
|
84
|
|
|
Crossbordering_pipe_capacities_list[i] = (
|
85
|
|
|
Crossbordering_pipe_capacities_list[i].astype(str).astype(float)
|
86
|
|
|
)
|
87
|
|
|
|
88
|
|
|
insert_gas_grid_capacities(
|
89
|
|
|
Crossbordering_pipe_capacities_list, "eGon100RE"
|
90
|
|
|
)
|
91
|
|
|
|
92
|
|
|
|
93
|
|
|
def define_DE_crossbording_pipes_geom_eGon100RE(scn_name="eGon100RE"):
|
94
|
|
|
"""Define the missing crossbordering gas pipelines in eGon100RE
|
95
|
|
|
|
96
|
|
|
This function defines the crossbordering pipelines (for H2 and CH4)
|
97
|
|
|
between Germany and its neighbouring countries. These pipelines
|
98
|
|
|
are defined as links and there are copied from the corresponding
|
99
|
|
|
CH4 crossbering pipelines from eGon2035.
|
100
|
|
|
|
101
|
|
|
Parameters
|
102
|
|
|
----------
|
103
|
|
|
scn_name : str
|
104
|
|
|
Name of the scenario
|
105
|
|
|
|
106
|
|
|
Returns
|
107
|
|
|
-------
|
108
|
|
|
gas_pipelines_list_DE : pandas.DataFrame
|
109
|
|
|
List of the crossbordering H2 and CH4 pipelines between
|
110
|
|
|
Germany and its neighbouring countries in eGon100RE, with
|
111
|
|
|
geometry (geom and topo) but no capacity.
|
112
|
|
|
|
113
|
|
|
"""
|
114
|
|
|
sources = config.datasets()["gas_neighbours"]["sources"]
|
115
|
|
|
|
116
|
|
|
gas_pipelines_list = db.select_geodataframe(
|
117
|
|
|
f"""
|
118
|
|
|
SELECT * FROM grid.egon_etrago_link
|
119
|
|
|
WHERE ("bus0" IN (
|
120
|
|
|
SELECT bus_id FROM
|
121
|
|
|
{sources['buses']['schema']}.{sources['buses']['table']}
|
122
|
|
|
WHERE country != 'DE'
|
123
|
|
|
AND country != 'RU'
|
124
|
|
|
AND carrier = 'CH4'
|
125
|
|
|
AND scn_name = 'eGon2035')
|
126
|
|
|
AND "bus1" IN (SELECT bus_id FROM
|
127
|
|
|
{sources['buses']['schema']}.{sources['buses']['table']}
|
128
|
|
|
WHERE country = 'DE'
|
129
|
|
|
AND carrier = 'CH4'
|
130
|
|
|
AND scn_name = 'eGon2035'))
|
131
|
|
|
OR ("bus0" IN (
|
132
|
|
|
SELECT bus_id FROM
|
133
|
|
|
{sources['buses']['schema']}.{sources['buses']['table']}
|
134
|
|
|
WHERE country = 'DE'
|
135
|
|
|
AND carrier = 'CH4'
|
136
|
|
|
AND scn_name = 'eGon2035')
|
137
|
|
|
AND "bus1" IN (
|
138
|
|
|
SELECT bus_id FROM
|
139
|
|
|
{sources['buses']['schema']}.{sources['buses']['table']}
|
140
|
|
|
WHERE country != 'DE'
|
141
|
|
|
AND country != 'RU'
|
142
|
|
|
AND carrier = 'CH4'
|
143
|
|
|
AND scn_name = 'eGon2035'))
|
144
|
|
|
AND scn_name = 'eGon2035'
|
145
|
|
|
AND carrier = 'CH4'
|
146
|
|
|
""",
|
147
|
|
|
epsg=4326,
|
148
|
|
|
)
|
149
|
|
|
|
150
|
|
|
# Insert bus0 and bus1
|
151
|
|
|
gas_pipelines_list = gas_pipelines_list[
|
152
|
|
|
["bus0", "bus1", "length", "geom", "topo"]
|
153
|
|
|
].rename(columns={"bus0": "bus0_2035", "bus1": "bus1_2035"})
|
154
|
|
|
|
155
|
|
|
gas_nodes_list_2035 = db.select_geodataframe(
|
156
|
|
|
f"""
|
157
|
|
|
SELECT * FROM {sources['buses']['schema']}.{sources['buses']['table']}
|
158
|
|
|
WHERE scn_name = 'eGon2035'
|
159
|
|
|
AND carrier = 'CH4'
|
160
|
|
|
""",
|
161
|
|
|
epsg=4326,
|
162
|
|
|
)
|
163
|
|
|
|
164
|
|
|
busID_table = gas_nodes_list_2035[["geom", "bus_id", "country"]].rename(
|
165
|
|
|
columns={"bus_id": "bus_id_CH4_2035"}
|
166
|
|
|
)
|
167
|
|
|
gas_pipelines_list_DE = pd.DataFrame(
|
168
|
|
|
columns=["length", "geom", "topo", "bus0", "bus1", "carrier"]
|
169
|
|
|
)
|
170
|
|
|
|
171
|
|
|
for carrier in ["H2", "CH4"]:
|
172
|
|
|
if carrier == "CH4":
|
173
|
|
|
carrier_bus_DE = carrier
|
174
|
|
|
elif carrier == "H2":
|
175
|
|
|
carrier_bus_DE = "H2_grid"
|
176
|
|
|
|
177
|
|
|
busID_table_DE = db.assign_gas_bus_id(
|
178
|
|
|
busID_table[busID_table["country"] == "DE"],
|
179
|
|
|
scn_name,
|
180
|
|
|
carrier_bus_DE,
|
|
|
|
|
181
|
|
|
).set_index("bus_id_CH4_2035")
|
182
|
|
|
|
183
|
|
|
gas_nodes_abroad_100RE = db.select_geodataframe(
|
184
|
|
|
f"""
|
185
|
|
|
SELECT * FROM grid.egon_etrago_bus
|
186
|
|
|
WHERE scn_name = 'eGon100RE'
|
187
|
|
|
AND carrier = '{carrier}'
|
188
|
|
|
AND country != 'DE'
|
189
|
|
|
""",
|
190
|
|
|
epsg=4326,
|
191
|
|
|
)
|
192
|
|
|
|
193
|
|
|
buses = busID_table[busID_table["country"] != "DE"]
|
194
|
|
|
buses["bus_id"] = 0
|
195
|
|
|
|
196
|
|
|
# Select bus_id from db
|
197
|
|
|
for i, row in buses.iterrows():
|
198
|
|
|
distance = gas_nodes_abroad_100RE.set_index(
|
199
|
|
|
"bus_id"
|
200
|
|
|
).geom.distance(row.geom)
|
201
|
|
|
buses.loc[i, "bus_id"] = distance[
|
202
|
|
|
distance == distance.min()
|
203
|
|
|
].index.values[0]
|
204
|
|
|
|
205
|
|
|
buses = buses.set_index("bus_id_CH4_2035")
|
206
|
|
|
|
207
|
|
|
bus0 = []
|
208
|
|
|
bus1 = []
|
209
|
|
|
country = []
|
210
|
|
|
|
211
|
|
|
for b0 in gas_pipelines_list["bus0_2035"].to_list():
|
212
|
|
|
if b0 in busID_table_DE.index.to_list():
|
213
|
|
|
bus0.append(int(busID_table_DE.loc[b0, "bus_id"]))
|
214
|
|
|
else:
|
215
|
|
|
bus0.append(int(buses.loc[b0, "bus_id"]))
|
216
|
|
|
country.append(buses.loc[b0, "country"])
|
217
|
|
|
for b1 in gas_pipelines_list["bus1_2035"].to_list():
|
218
|
|
|
if b1 in busID_table_DE.index.to_list():
|
219
|
|
|
bus1.append(int(busID_table_DE.loc[b1, "bus_id"]))
|
220
|
|
|
else:
|
221
|
|
|
bus1.append(int(buses.loc[b1, "bus_id"]))
|
222
|
|
|
country.append(buses.loc[b1, "country"])
|
223
|
|
|
|
224
|
|
|
gas_pipelines_list["bus0"] = bus0
|
225
|
|
|
gas_pipelines_list["bus1"] = bus1
|
226
|
|
|
gas_pipelines_list["country"] = country
|
227
|
|
|
|
228
|
|
|
# Insert carrier
|
229
|
|
|
if carrier == "CH4":
|
230
|
|
|
carrier_pipes = carrier
|
231
|
|
|
elif carrier == "H2":
|
232
|
|
|
carrier_pipes = "H2_retrofit"
|
233
|
|
|
gas_pipelines_list["carrier"] = carrier_pipes
|
|
|
|
|
234
|
|
|
|
235
|
|
|
gas_pipelines_list_DE = gas_pipelines_list_DE.append(
|
236
|
|
|
gas_pipelines_list, ignore_index=True
|
237
|
|
|
)
|
238
|
|
|
|
239
|
|
|
gas_pipelines_list_DE["scn_name"] = scn_name
|
240
|
|
|
|
241
|
|
|
# Select next id value
|
242
|
|
|
new_id = db.next_etrago_id("link")
|
243
|
|
|
gas_pipelines_list_DE["link_id"] = range(
|
244
|
|
|
new_id, new_id + len(gas_pipelines_list_DE)
|
245
|
|
|
)
|
246
|
|
|
gas_pipelines_list_DE["link_id"] = gas_pipelines_list_DE["link_id"].astype(
|
247
|
|
|
int
|
248
|
|
|
)
|
249
|
|
|
gas_pipelines_list_DE = gas_pipelines_list_DE.drop(
|
250
|
|
|
columns={"bus0_2035", "bus1_2035"}
|
251
|
|
|
)
|
252
|
|
|
|
253
|
|
|
return gas_pipelines_list_DE
|
254
|
|
|
|
255
|
|
|
|
256
|
|
|
def read_DE_crossbordering_cap_from_pes():
|
257
|
|
|
"""Read gas pipelines crossbordering capacities from pes run
|
258
|
|
|
|
259
|
|
|
This function calculates the crossbordering total exchange
|
260
|
|
|
capactities for H2 and CH4 between Germany and its neighbouring
|
261
|
|
|
countries based on the pypsa-eur-sec results.
|
262
|
|
|
|
263
|
|
|
Returns
|
264
|
|
|
-------
|
265
|
|
|
DE_pipe_capacities_list : pandas.DataFrame
|
266
|
|
|
List of the H2 and CH4 exchange capacity for each neighbouring
|
267
|
|
|
country of Germany.
|
268
|
|
|
|
269
|
|
|
"""
|
270
|
|
|
n = read_network()
|
271
|
|
|
|
272
|
|
|
DE_pipe_capacities_list_H2 = n.links[
|
273
|
|
|
(n.links["carrier"] == "H2 pipeline retrofitted")
|
274
|
|
|
& ((n.links["bus0"] == "DE0 0 H2") | (n.links["bus1"] == "DE0 0 H2"))
|
275
|
|
|
]
|
276
|
|
|
|
277
|
|
|
DE_pipe_capacities_list_CH4 = n.links[
|
278
|
|
|
(n.links["carrier"] == "gas pipeline")
|
279
|
|
|
& ((n.links["bus0"] == "DE0 0 gas") | (n.links["bus1"] == "DE0 0 gas"))
|
280
|
|
|
]
|
281
|
|
|
|
282
|
|
|
pipe_capacities_list = pd.DataFrame(
|
283
|
|
|
columns=["p_nom", "carrier", "country_code"]
|
284
|
|
|
)
|
285
|
|
|
for DE_pipe_capacities_list in [
|
286
|
|
|
DE_pipe_capacities_list_H2,
|
287
|
|
|
DE_pipe_capacities_list_CH4,
|
288
|
|
|
]:
|
289
|
|
|
|
290
|
|
|
DE_pipe_capacities_list = DE_pipe_capacities_list[
|
291
|
|
|
["bus0", "bus1", "p_nom_opt", "carrier"]
|
292
|
|
|
].rename(columns={"p_nom_opt": "p_nom"})
|
293
|
|
|
|
294
|
|
|
DE_pipe_capacities_list[
|
295
|
|
|
"country_code"
|
296
|
|
|
] = DE_pipe_capacities_list.apply(
|
297
|
|
|
lambda row: str(sorted([row.bus0[:2], row.bus1[:2]])), axis=1
|
298
|
|
|
)
|
299
|
|
|
|
300
|
|
|
DE_pipe_capacities_list = DE_pipe_capacities_list.drop(
|
301
|
|
|
columns=[
|
302
|
|
|
"bus0",
|
303
|
|
|
"bus1",
|
304
|
|
|
]
|
305
|
|
|
)
|
306
|
|
|
|
307
|
|
|
DE_pipe_capacities_list = DE_pipe_capacities_list.groupby(
|
308
|
|
|
["country_code"], as_index=False
|
309
|
|
|
).agg({"p_nom": "sum", "carrier": "first"})
|
310
|
|
|
|
311
|
|
|
pipe_capacities_list = pipe_capacities_list.append(
|
312
|
|
|
DE_pipe_capacities_list, ignore_index=True
|
313
|
|
|
)
|
314
|
|
|
|
315
|
|
|
map_countries = {
|
316
|
|
|
"['AT', 'DE']": "AT",
|
317
|
|
|
"['BE', 'DE']": "BE",
|
318
|
|
|
"['CH', 'DE']": "CH",
|
319
|
|
|
"['CZ', 'DE']": "CZ",
|
320
|
|
|
"['DE', 'DK']": "DK",
|
321
|
|
|
"['DE', 'FR']": "FR",
|
322
|
|
|
"['DE', 'LU']": "LU",
|
323
|
|
|
"['DE', 'NL']": "NL",
|
324
|
|
|
"['DE', 'NO']": "NO",
|
325
|
|
|
"['DE', 'PL']": "PL",
|
326
|
|
|
}
|
327
|
|
|
|
328
|
|
|
pipe_capacities_list["country_code"] = pipe_capacities_list[
|
329
|
|
|
"country_code"
|
330
|
|
|
].replace(map_countries)
|
331
|
|
|
pipe_capacities_list["carrier"] = pipe_capacities_list["carrier"].replace(
|
332
|
|
|
{
|
333
|
|
|
"H2 pipeline retrofitted": "H2_retrofit",
|
334
|
|
|
"gas pipeline": "CH4",
|
335
|
|
|
}
|
336
|
|
|
)
|
337
|
|
|
|
338
|
|
|
return pipe_capacities_list
|
339
|
|
|
|
340
|
|
|
|
341
|
|
|
def calculate_crossbordering_gas_grid_capacities_eGon100RE(
|
342
|
|
|
cap_DE, DE_pipe_capacities_list
|
343
|
|
|
):
|
344
|
|
|
"""Attribute gas crossbordering grid capacities for eGon100RE
|
345
|
|
|
|
346
|
|
|
This function attributes to each crossbordering pipeline (H2 and
|
347
|
|
|
CH4) between Germany and its neighbouring countries its capacity.
|
348
|
|
|
|
349
|
|
|
Parameters
|
350
|
|
|
----------
|
351
|
|
|
cap_DE : pandas.DataFrame
|
352
|
|
|
List of the H2 and CH4 exchange capacity for each neighbouring
|
353
|
|
|
country of Germany.
|
354
|
|
|
DE_pipe_capacities_list : pandas.DataFrame
|
355
|
|
|
List of the crossbordering for H2 and CH4 pipelines between
|
356
|
|
|
Germany and its neighbouring countries in eGon100RE, with
|
357
|
|
|
geometry (geom and topo) but no capacity.
|
358
|
|
|
|
359
|
|
|
Returns
|
360
|
|
|
-------
|
361
|
|
|
Crossbordering_pipe_capacities_list : pandas.DataFrame
|
362
|
|
|
List of the crossbordering H2 and CH4 pipelines between
|
363
|
|
|
Germany and its neighbouring countries in eGon100RE.
|
364
|
|
|
|
365
|
|
|
"""
|
366
|
|
|
|
367
|
|
|
Crossbordering_pipe_capacities_list = pd.DataFrame(
|
368
|
|
|
columns=[
|
369
|
|
|
"length",
|
370
|
|
|
"geom",
|
371
|
|
|
"topo",
|
372
|
|
|
"bus0",
|
373
|
|
|
"bus1",
|
374
|
|
|
"carrier",
|
375
|
|
|
"scn_name",
|
376
|
|
|
"link_id",
|
377
|
|
|
"p_nom",
|
378
|
|
|
]
|
379
|
|
|
)
|
380
|
|
|
|
381
|
|
|
for carrier in ["CH4", "H2_retrofit"]:
|
382
|
|
|
p_nom = []
|
383
|
|
|
cap = cap_DE[cap_DE["carrier"] == carrier].set_index("country_code")
|
384
|
|
|
pipe_capacities_list = DE_pipe_capacities_list[
|
385
|
|
|
DE_pipe_capacities_list["carrier"] == carrier
|
386
|
|
|
]
|
387
|
|
|
|
388
|
|
|
for c in pipe_capacities_list["country"].to_list():
|
389
|
|
|
n_links = len(
|
390
|
|
|
pipe_capacities_list[
|
391
|
|
|
pipe_capacities_list["country"] == c
|
392
|
|
|
].index
|
393
|
|
|
)
|
394
|
|
|
p_nom.append(cap.at[c, "p_nom"] / n_links)
|
395
|
|
|
|
396
|
|
|
pipe_capacities_list["p_nom"] = p_nom
|
397
|
|
|
pipe_capacities_list = pipe_capacities_list.drop(columns={"country"})
|
398
|
|
|
Crossbordering_pipe_capacities_list = (
|
399
|
|
|
Crossbordering_pipe_capacities_list.append(pipe_capacities_list)
|
400
|
|
|
)
|
401
|
|
|
|
402
|
|
|
return Crossbordering_pipe_capacities_list
|
403
|
|
|
|