|
1
|
|
|
"""Residential electricity demand sanity check validation rules.""" |
|
2
|
|
|
|
|
3
|
|
|
from egon_validation.rules.base import DataFrameRule, RuleResult, Severity |
|
4
|
|
|
import numpy as np |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
View Code Duplication |
class ResidentialElectricityAnnualSum(DataFrameRule): |
|
|
|
|
|
|
8
|
|
|
"""Validate aggregated annual residential electricity demand matches DemandRegio at NUTS-3. |
|
9
|
|
|
|
|
10
|
|
|
Aggregates the annual demand of all census cells at NUTS3 to compare |
|
11
|
|
|
with initial scaling parameters from DemandRegio. |
|
12
|
|
|
|
|
13
|
|
|
Args: |
|
14
|
|
|
table: Primary table being validated (demand.egon_demandregio_zensus_electricity) |
|
15
|
|
|
rule_id: Unique identifier for this validation rule |
|
16
|
|
|
rtol: Relative tolerance for comparison (default: 0.005 = 0.5%) |
|
17
|
|
|
|
|
18
|
|
|
Example: |
|
19
|
|
|
>>> validation = { |
|
20
|
|
|
... "data_quality": [ |
|
21
|
|
|
... ResidentialElectricityAnnualSum( |
|
22
|
|
|
... table="demand.egon_demandregio_zensus_electricity", |
|
23
|
|
|
... rule_id="SANITY_RESIDENTIAL_ELECTRICITY_ANNUAL_SUM", |
|
24
|
|
|
... rtol=0.005 |
|
25
|
|
|
... ) |
|
26
|
|
|
... ] |
|
27
|
|
|
... } |
|
28
|
|
|
""" |
|
29
|
|
|
|
|
30
|
|
|
def __init__(self, table: str, rule_id: str, rtol: float = 0.005, **kwargs): |
|
31
|
|
|
super().__init__(rule_id=rule_id, table=table, rtol=rtol, **kwargs) |
|
32
|
|
|
self.kind = "sanity" # Override inferred kind |
|
33
|
|
|
|
|
34
|
|
|
def get_query(self, ctx): |
|
35
|
|
|
return """ |
|
36
|
|
|
SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum |
|
37
|
|
|
FROM ( |
|
38
|
|
|
SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3 |
|
39
|
|
|
FROM demand.egon_demandregio_zensus_electricity AS egon, |
|
40
|
|
|
boundaries.egon_map_zensus_vg250 AS boundaries |
|
41
|
|
|
WHERE egon.zensus_population_id = boundaries.zensus_population_id |
|
42
|
|
|
AND sector = 'residential' |
|
43
|
|
|
GROUP BY vg250_nuts3, scenario |
|
44
|
|
|
) AS profiles |
|
45
|
|
|
JOIN ( |
|
46
|
|
|
SELECT nuts3, scenario, sum(demand) AS demand_regio_sum |
|
47
|
|
|
FROM demand.egon_demandregio_hh |
|
48
|
|
|
GROUP BY year, scenario, nuts3 |
|
49
|
|
|
) AS dr |
|
50
|
|
|
ON profiles.vg250_nuts3 = dr.nuts3 AND profiles.scenario = dr.scenario |
|
51
|
|
|
""" |
|
52
|
|
|
|
|
53
|
|
|
def evaluate_df(self, df, ctx): |
|
54
|
|
|
rtol = self.params.get("rtol", 0.005) |
|
55
|
|
|
|
|
56
|
|
|
try: |
|
57
|
|
|
np.testing.assert_allclose( |
|
58
|
|
|
actual=df["profile_sum"], |
|
59
|
|
|
desired=df["demand_regio_sum"], |
|
60
|
|
|
rtol=rtol, |
|
61
|
|
|
verbose=False, |
|
62
|
|
|
) |
|
63
|
|
|
|
|
64
|
|
|
# Calculate actual max deviation for reporting |
|
65
|
|
|
max_diff = ((df["profile_sum"] - df["demand_regio_sum"]) / df["demand_regio_sum"]).abs().max() |
|
66
|
|
|
|
|
67
|
|
|
return RuleResult( |
|
68
|
|
|
rule_id=self.rule_id, |
|
69
|
|
|
task=self.task, |
|
70
|
|
|
table=self.table, |
|
71
|
|
|
kind=self.kind, |
|
72
|
|
|
success=True, |
|
73
|
|
|
observed=float(max_diff), |
|
74
|
|
|
expected=rtol, |
|
75
|
|
|
message=f"Aggregated annual residential electricity demand matches with DemandRegio at NUTS-3 (max deviation: {max_diff:.4%}, tolerance: {rtol:.4%})", |
|
76
|
|
|
schema=self.schema, |
|
77
|
|
|
table_name=self.table_name, |
|
78
|
|
|
rule_class=self.__class__.__name__ |
|
79
|
|
|
) |
|
80
|
|
|
except AssertionError: |
|
81
|
|
|
max_diff = ((df["profile_sum"] - df["demand_regio_sum"]) / df["demand_regio_sum"]).abs().max() |
|
82
|
|
|
violations = df[~np.isclose(df["profile_sum"], df["demand_regio_sum"], rtol=rtol)] |
|
83
|
|
|
|
|
84
|
|
|
return RuleResult( |
|
85
|
|
|
rule_id=self.rule_id, |
|
86
|
|
|
task=self.task, |
|
87
|
|
|
table=self.table, |
|
88
|
|
|
kind=self.kind, |
|
89
|
|
|
success=False, |
|
90
|
|
|
observed=float(max_diff), |
|
91
|
|
|
expected=rtol, |
|
92
|
|
|
message=f"Demand mismatch: max deviation {max_diff:.4%} exceeds tolerance {rtol:.4%}. {len(violations)} NUTS-3 regions have mismatches.", |
|
93
|
|
|
severity=Severity.ERROR, |
|
94
|
|
|
schema=self.schema, |
|
95
|
|
|
table_name=self.table_name, |
|
96
|
|
|
rule_class=self.__class__.__name__ |
|
97
|
|
|
) |
|
98
|
|
|
|
|
99
|
|
|
|
|
100
|
|
View Code Duplication |
class ResidentialElectricityHhRefinement(DataFrameRule): |
|
|
|
|
|
|
101
|
|
|
"""Validate aggregated household types after refinement match original census values. |
|
102
|
|
|
|
|
103
|
|
|
Checks sum of aggregated household types after refinement method |
|
104
|
|
|
was applied and compares it to the original census values. |
|
105
|
|
|
|
|
106
|
|
|
Args: |
|
107
|
|
|
table: Primary table being validated (society.egon_destatis_zensus_household_per_ha_refined) |
|
108
|
|
|
rule_id: Unique identifier for this validation rule |
|
109
|
|
|
rtol: Relative tolerance for comparison (default: 1e-5 = 0.001%) |
|
110
|
|
|
|
|
111
|
|
|
Example: |
|
112
|
|
|
>>> validation = { |
|
113
|
|
|
... "data_quality": [ |
|
114
|
|
|
... ResidentialElectricityHhRefinement( |
|
115
|
|
|
... table="society.egon_destatis_zensus_household_per_ha_refined", |
|
116
|
|
|
... rule_id="SANITY_RESIDENTIAL_HH_REFINEMENT", |
|
117
|
|
|
... rtol=1e-5 |
|
118
|
|
|
... ) |
|
119
|
|
|
... ] |
|
120
|
|
|
... } |
|
121
|
|
|
""" |
|
122
|
|
|
|
|
123
|
|
|
def __init__(self, table: str, rule_id: str, rtol: float = 1e-5, **kwargs): |
|
124
|
|
|
super().__init__(rule_id=rule_id, table=table, rtol=rtol, **kwargs) |
|
125
|
|
|
self.kind = "sanity" |
|
126
|
|
|
|
|
127
|
|
|
def get_query(self, ctx): |
|
128
|
|
|
return """ |
|
129
|
|
|
SELECT refined.nuts3, refined.characteristics_code, |
|
130
|
|
|
refined.sum_refined::int, census.sum_census::int |
|
131
|
|
|
FROM( |
|
132
|
|
|
SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined |
|
133
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
|
134
|
|
|
GROUP BY nuts3, characteristics_code) |
|
135
|
|
|
AS refined |
|
136
|
|
|
JOIN( |
|
137
|
|
|
SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census |
|
138
|
|
|
FROM( |
|
139
|
|
|
SELECT nuts3, cell_id, characteristics_code, |
|
140
|
|
|
sum(DISTINCT(hh_5types))as orig |
|
141
|
|
|
FROM society.egon_destatis_zensus_household_per_ha_refined |
|
142
|
|
|
GROUP BY cell_id, characteristics_code, nuts3) AS t |
|
143
|
|
|
GROUP BY t.nuts3, t.characteristics_code ) AS census |
|
144
|
|
|
ON refined.nuts3 = census.nuts3 |
|
145
|
|
|
AND refined.characteristics_code = census.characteristics_code |
|
146
|
|
|
""" |
|
147
|
|
|
|
|
148
|
|
|
def evaluate_df(self, df, ctx): |
|
149
|
|
|
rtol = self.params.get("rtol", 1e-5) |
|
150
|
|
|
|
|
151
|
|
|
try: |
|
152
|
|
|
np.testing.assert_allclose( |
|
153
|
|
|
actual=df["sum_refined"], |
|
154
|
|
|
desired=df["sum_census"], |
|
155
|
|
|
rtol=rtol, |
|
156
|
|
|
verbose=False, |
|
157
|
|
|
) |
|
158
|
|
|
|
|
159
|
|
|
max_diff = ((df["sum_refined"] - df["sum_census"]) / df["sum_census"]).abs().max() |
|
160
|
|
|
|
|
161
|
|
|
return RuleResult( |
|
162
|
|
|
rule_id=self.rule_id, |
|
163
|
|
|
task=self.task, |
|
164
|
|
|
table=self.table, |
|
165
|
|
|
kind=self.kind, |
|
166
|
|
|
success=True, |
|
167
|
|
|
observed=float(max_diff), |
|
168
|
|
|
expected=rtol, |
|
169
|
|
|
message=f"All aggregated household types match at NUTS-3 (max deviation: {max_diff:.6%}, tolerance: {rtol:.6%})", |
|
170
|
|
|
schema=self.schema, |
|
171
|
|
|
table_name=self.table_name, |
|
172
|
|
|
rule_class=self.__class__.__name__ |
|
173
|
|
|
) |
|
174
|
|
|
except AssertionError: |
|
175
|
|
|
max_diff = ((df["sum_refined"] - df["sum_census"]) / df["sum_census"]).abs().max() |
|
176
|
|
|
violations = df[~np.isclose(df["sum_refined"], df["sum_census"], rtol=rtol)] |
|
177
|
|
|
|
|
178
|
|
|
return RuleResult( |
|
179
|
|
|
rule_id=self.rule_id, |
|
180
|
|
|
task=self.task, |
|
181
|
|
|
table=self.table, |
|
182
|
|
|
kind=self.kind, |
|
183
|
|
|
success=False, |
|
184
|
|
|
observed=float(max_diff), |
|
185
|
|
|
expected=rtol, |
|
186
|
|
|
message=f"Household refinement mismatch: max deviation {max_diff:.6%} exceeds tolerance {rtol:.6%}. {len(violations)} NUTS-3/characteristic combinations have mismatches.", |
|
187
|
|
|
severity=Severity.ERROR, |
|
188
|
|
|
schema=self.schema, |
|
189
|
|
|
table_name=self.table_name, |
|
190
|
|
|
rule_class=self.__class__.__name__ |
|
191
|
|
|
) |
|
192
|
|
|
|