1
|
|
|
# -*- coding: utf-8 -*-
|
2
|
|
|
"""
|
3
|
|
|
The central module containing all code dealing with importing gas industrial demand
|
4
|
|
|
"""
|
5
|
|
|
from pathlib import Path
|
6
|
|
|
import os
|
7
|
|
|
|
8
|
|
|
from geoalchemy2.types import Geometry
|
9
|
|
|
from shapely import wkt
|
10
|
|
|
import numpy as np
|
11
|
|
|
import pandas as pd
|
12
|
|
|
import requests
|
13
|
|
|
|
14
|
|
|
from egon.data import db
|
15
|
|
|
from egon.data.config import settings
|
16
|
|
|
from egon.data.datasets import Dataset
|
17
|
|
|
from egon.data.datasets.etrago_helpers import (
|
18
|
|
|
finalize_bus_insertion,
|
19
|
|
|
initialise_bus_insertion,
|
20
|
|
|
)
|
21
|
|
|
from egon.data.datasets.etrago_setup import link_geom_from_buses
|
22
|
|
|
from egon.data.datasets.pypsaeursec import read_network
|
23
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters
|
24
|
|
|
|
25
|
|
|
|
26
|
|
|
class IndustrialGasDemand(Dataset):
|
27
|
|
|
def __init__(self, dependencies):
|
28
|
|
|
super().__init__(
|
29
|
|
|
name="IndustrialGasDemand",
|
30
|
|
|
version="0.0.3",
|
31
|
|
|
dependencies=dependencies,
|
32
|
|
|
tasks=(download_industrial_gas_demand),
|
33
|
|
|
)
|
34
|
|
|
|
35
|
|
|
|
36
|
|
|
class IndustrialGasDemandeGon2035(Dataset):
|
37
|
|
|
def __init__(self, dependencies):
|
38
|
|
|
super().__init__(
|
39
|
|
|
name="IndustrialGasDemandeGon2035",
|
40
|
|
|
version="0.0.2",
|
41
|
|
|
dependencies=dependencies,
|
42
|
|
|
tasks=(insert_industrial_gas_demand_egon2035),
|
43
|
|
|
)
|
44
|
|
|
|
45
|
|
|
|
46
|
|
|
class IndustrialGasDemandeGon100RE(Dataset):
|
47
|
|
|
def __init__(self, dependencies):
|
48
|
|
|
super().__init__(
|
49
|
|
|
name="IndustrialGasDemandeGon100RE",
|
50
|
|
|
version="0.0.2",
|
51
|
|
|
dependencies=dependencies,
|
52
|
|
|
tasks=(insert_industrial_gas_demand_egon100RE),
|
53
|
|
|
)
|
54
|
|
|
|
55
|
|
|
|
56
|
|
|
def read_industrial_demand(scn_name, carrier):
|
57
|
|
|
"""Read the gas demand data
|
58
|
|
|
|
59
|
|
|
Parameters
|
60
|
|
|
----------
|
61
|
|
|
scn_name : str
|
62
|
|
|
Name of the scenario
|
63
|
|
|
carrier : str
|
64
|
|
|
Name of the gas carrier
|
65
|
|
|
|
66
|
|
|
Returns
|
67
|
|
|
-------
|
68
|
|
|
df : pandas.core.frame.DataFrame
|
69
|
|
|
Dataframe containing the industrial demand
|
70
|
|
|
|
71
|
|
|
"""
|
72
|
|
|
target_file = Path(".") / "datasets/gas_data/demand/region_corr.json"
|
73
|
|
|
df_corr = pd.read_json(target_file)
|
74
|
|
|
df_corr = df_corr.loc[:, ["id_region", "name_short"]]
|
75
|
|
|
df_corr.set_index("id_region", inplace=True)
|
76
|
|
|
|
77
|
|
|
target_file = (
|
78
|
|
|
Path(".")
|
79
|
|
|
/ "datasets/gas_data/demand"
|
80
|
|
|
/ (carrier + "_" + scn_name + ".json")
|
81
|
|
|
)
|
82
|
|
|
industrial_loads = pd.read_json(target_file)
|
83
|
|
|
industrial_loads = industrial_loads.loc[:, ["id_region", "values"]]
|
84
|
|
|
industrial_loads.set_index("id_region", inplace=True)
|
85
|
|
|
|
86
|
|
|
# Match the id_region to obtain the NUT3 region names
|
87
|
|
|
industrial_loads_list = pd.concat(
|
88
|
|
|
[industrial_loads, df_corr], axis=1, join="inner"
|
89
|
|
|
)
|
90
|
|
|
industrial_loads_list["NUTS0"] = (industrial_loads_list["name_short"].str)[
|
91
|
|
|
0:2
|
92
|
|
|
]
|
93
|
|
|
industrial_loads_list["NUTS1"] = (industrial_loads_list["name_short"].str)[
|
94
|
|
|
0:3
|
95
|
|
|
]
|
96
|
|
|
industrial_loads_list = industrial_loads_list[
|
97
|
|
|
industrial_loads_list["NUTS0"].str.match("DE")
|
98
|
|
|
]
|
99
|
|
|
|
100
|
|
|
# Cut data to federal state if in testmode
|
101
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"]
|
102
|
|
|
if boundary != "Everything":
|
103
|
|
|
map_states = {
|
104
|
|
|
"Baden-Württemberg": "DE1",
|
105
|
|
|
"Nordrhein-Westfalen": "DEA",
|
106
|
|
|
"Hessen": "DE7",
|
107
|
|
|
"Brandenburg": "DE4",
|
108
|
|
|
"Bremen": "DE5",
|
109
|
|
|
"Rheinland-Pfalz": "DEB",
|
110
|
|
|
"Sachsen-Anhalt": "DEE",
|
111
|
|
|
"Schleswig-Holstein": "DEF",
|
112
|
|
|
"Mecklenburg-Vorpommern": "DE8",
|
113
|
|
|
"Thüringen": "DEG",
|
114
|
|
|
"Niedersachsen": "DE9",
|
115
|
|
|
"Sachsen": "DED",
|
116
|
|
|
"Hamburg": "DE6",
|
117
|
|
|
"Saarland": "DEC",
|
118
|
|
|
"Berlin": "DE3",
|
119
|
|
|
"Bayern": "DE2",
|
120
|
|
|
}
|
121
|
|
|
|
122
|
|
|
industrial_loads_list = industrial_loads_list[
|
123
|
|
|
industrial_loads_list["NUTS1"].isin([map_states[boundary], np.nan])
|
124
|
|
|
]
|
125
|
|
|
|
126
|
|
|
industrial_loads_list = industrial_loads_list.rename(
|
127
|
|
|
columns={"name_short": "nuts3", "values": "p_set"}
|
128
|
|
|
)
|
129
|
|
|
industrial_loads_list = industrial_loads_list.set_index("nuts3")
|
130
|
|
|
|
131
|
|
|
# Add the centroid point to each NUTS3 area
|
132
|
|
|
sql_vg250 = """SELECT nuts as nuts3, geometry as geom
|
133
|
|
|
FROM boundaries.vg250_krs
|
134
|
|
|
WHERE gf = 4 ;"""
|
135
|
|
|
gdf_vg250 = db.select_geodataframe(sql_vg250, epsg=4326)
|
136
|
|
|
|
137
|
|
|
point = []
|
138
|
|
|
for index, row in gdf_vg250.iterrows():
|
139
|
|
|
point.append(wkt.loads(str(row["geom"])).centroid)
|
140
|
|
|
gdf_vg250["point"] = point
|
141
|
|
|
gdf_vg250 = gdf_vg250.set_index("nuts3")
|
142
|
|
|
gdf_vg250 = gdf_vg250.drop(columns=["geom"])
|
143
|
|
|
|
144
|
|
|
# Match the load to the NUTS3 points
|
145
|
|
|
industrial_loads_list = pd.concat(
|
146
|
|
|
[industrial_loads_list, gdf_vg250], axis=1, join="inner"
|
147
|
|
|
)
|
148
|
|
|
return industrial_loads_list.rename(
|
149
|
|
|
columns={"point": "geom"}
|
150
|
|
|
).set_geometry("geom", crs=4326)
|
151
|
|
|
|
152
|
|
|
|
153
|
|
|
def read_and_process_demand(scn_name="eGon2035", carrier=None, grid_carrier=None):
|
154
|
|
|
"""Assign the industrial demand in Germany to buses
|
155
|
|
|
|
156
|
|
|
Parameters
|
157
|
|
|
----------
|
158
|
|
|
scn_name : str
|
159
|
|
|
Name of the scenario
|
160
|
|
|
|
161
|
|
|
carrier : str
|
162
|
|
|
Name of the carrier, the demand should hold
|
163
|
|
|
|
164
|
|
|
grid_carrier : str
|
165
|
|
|
Carrier name of the buses, the demand should be assigned to
|
166
|
|
|
|
167
|
|
|
Returns
|
168
|
|
|
-------
|
169
|
|
|
industrial_demand :
|
170
|
|
|
Dataframe containing the industrial demand in Germany
|
171
|
|
|
|
172
|
|
|
"""
|
173
|
|
|
if grid_carrier is None:
|
174
|
|
|
grid_carrier = carrier
|
175
|
|
|
industrial_loads_list = read_industrial_demand(scn_name, carrier)
|
176
|
|
|
number_loads = len(industrial_loads_list)
|
177
|
|
|
|
178
|
|
|
# Match to associated gas bus
|
179
|
|
|
industrial_loads_list = db.assign_gas_bus_id(
|
180
|
|
|
industrial_loads_list, scn_name, grid_carrier
|
181
|
|
|
)
|
182
|
|
|
|
183
|
|
|
# Add carrier
|
184
|
|
|
industrial_loads_list["carrier"] = carrier
|
185
|
|
|
|
186
|
|
|
# Remove useless columns
|
187
|
|
|
industrial_loads_list = industrial_loads_list.drop(
|
188
|
|
|
columns=["geom", "NUTS0", "NUTS1", "bus_id"], errors="ignore"
|
189
|
|
|
)
|
190
|
|
|
|
191
|
|
|
msg = (
|
192
|
|
|
"The number of load changed when assigning to the respective buses."
|
193
|
|
|
f"It should be {number_loads} loads, but only"
|
194
|
|
|
f"{len(industrial_loads_list)} got assigned to buses."
|
195
|
|
|
f"scn_name: {scn_name}, load carrier: {carrier}, carrier of buses to"
|
196
|
|
|
f"connect loads to: {grid_carrier}"
|
197
|
|
|
)
|
198
|
|
|
assert len(industrial_loads_list) == number_loads, msg
|
199
|
|
|
|
200
|
|
|
return industrial_loads_list
|
201
|
|
|
|
202
|
|
|
|
203
|
|
|
def delete_old_entries(scn_name):
|
204
|
|
|
"""
|
205
|
|
|
Delete loads and load timeseries.
|
206
|
|
|
|
207
|
|
|
Parameters
|
208
|
|
|
----------
|
209
|
|
|
scn_name : str
|
210
|
|
|
Name of the scenario.
|
211
|
|
|
"""
|
212
|
|
|
# Clean tables
|
213
|
|
|
db.execute_sql(
|
214
|
|
|
f"""
|
215
|
|
|
DELETE FROM grid.egon_etrago_load_timeseries
|
216
|
|
|
WHERE "load_id" IN (
|
217
|
|
|
SELECT load_id FROM grid.egon_etrago_load
|
218
|
|
|
WHERE "carrier" IN ('CH4', 'H2') AND
|
219
|
|
|
scn_name = '{scn_name}' AND bus not IN (
|
220
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus
|
221
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE'
|
222
|
|
|
)
|
223
|
|
|
);
|
224
|
|
|
"""
|
225
|
|
|
)
|
226
|
|
|
|
227
|
|
|
db.execute_sql(
|
228
|
|
|
f"""
|
229
|
|
|
DELETE FROM grid.egon_etrago_load
|
230
|
|
|
WHERE "load_id" IN (
|
231
|
|
|
SELECT load_id FROM grid.egon_etrago_load
|
232
|
|
|
WHERE "carrier" IN ('CH4', 'H2') AND
|
233
|
|
|
scn_name = '{scn_name}' AND bus not IN (
|
234
|
|
|
SELECT bus_id FROM grid.egon_etrago_bus
|
235
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE'
|
236
|
|
|
)
|
237
|
|
|
);
|
238
|
|
|
"""
|
239
|
|
|
)
|
240
|
|
|
|
241
|
|
|
|
242
|
|
|
def insert_new_entries(industrial_gas_demand, scn_name):
|
243
|
|
|
"""
|
244
|
|
|
Insert loads.
|
245
|
|
|
|
246
|
|
|
Parameters
|
247
|
|
|
----------
|
248
|
|
|
industrial_gas_demand : pandas.DataFrame
|
249
|
|
|
Load data to insert.
|
250
|
|
|
scn_name : str
|
251
|
|
|
Name of the scenario.
|
252
|
|
|
"""
|
253
|
|
|
|
254
|
|
|
new_id = db.next_etrago_id("load")
|
255
|
|
|
industrial_gas_demand["load_id"] = range(
|
256
|
|
|
new_id, new_id + len(industrial_gas_demand)
|
257
|
|
|
)
|
258
|
|
|
|
259
|
|
|
# Add missing columns
|
260
|
|
|
c = {"scn_name": scn_name, "sign": -1}
|
261
|
|
|
industrial_gas_demand = industrial_gas_demand.assign(**c)
|
262
|
|
|
|
263
|
|
|
industrial_gas_demand = industrial_gas_demand.reset_index(drop=True)
|
264
|
|
|
|
265
|
|
|
# Remove useless columns
|
266
|
|
|
egon_etrago_load_gas = industrial_gas_demand.drop(columns=["p_set"])
|
267
|
|
|
|
268
|
|
|
engine = db.engine()
|
269
|
|
|
# Insert data to db
|
270
|
|
|
egon_etrago_load_gas.to_sql(
|
271
|
|
|
"egon_etrago_load",
|
272
|
|
|
engine,
|
273
|
|
|
schema="grid",
|
274
|
|
|
index=False,
|
275
|
|
|
if_exists="append",
|
276
|
|
|
)
|
277
|
|
|
|
278
|
|
|
return industrial_gas_demand
|
279
|
|
|
|
280
|
|
|
|
281
|
|
|
def insert_industrial_gas_demand_egon2035():
|
282
|
|
|
"""Insert list of industrial gas demand (one per NUTS3) in database
|
283
|
|
|
|
284
|
|
|
Parameters
|
285
|
|
|
----------
|
286
|
|
|
scn_name : str
|
287
|
|
|
Name of the scenario
|
288
|
|
|
|
289
|
|
|
Returns
|
290
|
|
|
-------
|
291
|
|
|
industrial_gas_demand : Dataframe containing the industrial gas demand
|
292
|
|
|
in Germany
|
293
|
|
|
"""
|
294
|
|
|
scn_name = "eGon2035"
|
295
|
|
|
delete_old_entries(scn_name)
|
296
|
|
|
|
297
|
|
|
industrial_gas_demand = pd.concat(
|
298
|
|
|
[
|
299
|
|
|
read_and_process_demand(scn_name=scn_name, carrier="CH4"),
|
300
|
|
|
read_and_process_demand(
|
301
|
|
|
scn_name=scn_name, carrier="H2", grid_carrier="H2_grid"
|
302
|
|
|
),
|
303
|
|
|
]
|
304
|
|
|
)
|
305
|
|
|
|
306
|
|
|
industrial_gas_demand = (
|
307
|
|
|
industrial_gas_demand.groupby(["bus", "carrier"])["p_set"]
|
308
|
|
|
.apply(lambda x: [sum(y) for y in zip(*x)])
|
309
|
|
|
.reset_index(drop=False)
|
310
|
|
|
)
|
311
|
|
|
|
312
|
|
|
industrial_gas_demand = insert_new_entries(industrial_gas_demand, scn_name)
|
313
|
|
|
insert_industrial_gas_demand_time_series(industrial_gas_demand)
|
314
|
|
|
|
315
|
|
|
|
316
|
|
|
def insert_industrial_gas_demand_egon100RE():
|
317
|
|
|
"""Insert list of industrial gas demand (one per NUTS3) in database
|
318
|
|
|
|
319
|
|
|
Parameters
|
320
|
|
|
----------
|
321
|
|
|
scn_name : str
|
322
|
|
|
Name of the scenario
|
323
|
|
|
|
324
|
|
|
Returns
|
325
|
|
|
-------
|
326
|
|
|
industrial_gas_demand : Dataframe containing the industrial gas demand
|
327
|
|
|
in Germany
|
328
|
|
|
"""
|
329
|
|
|
scn_name = "eGon100RE"
|
330
|
|
|
delete_old_entries(scn_name)
|
331
|
|
|
|
332
|
|
|
# read demands
|
333
|
|
|
industrial_gas_demand_CH4 = read_and_process_demand(
|
334
|
|
|
scn_name=scn_name, carrier="CH4"
|
335
|
|
|
)
|
336
|
|
|
industrial_gas_demand_H2 = read_and_process_demand(
|
337
|
|
|
scn_name=scn_name, carrier="H2", grid_carrier="H2_grid"
|
338
|
|
|
)
|
339
|
|
|
|
340
|
|
|
# adjust H2 and CH4 total demands (values from PES)
|
341
|
|
|
# CH4 demand = 0 in 100RE, therefore scale H2 ts
|
342
|
|
|
# fallback values see https://github.com/openego/eGon-data/issues/626
|
343
|
|
|
n = read_network()
|
344
|
|
|
|
345
|
|
|
try:
|
346
|
|
|
H2_total_PES = (
|
347
|
|
|
n.loads[n.loads["carrier"] == "H2 for industry"].loc[
|
348
|
|
|
"DE0 0 H2 for industry", "p_set"
|
349
|
|
|
]
|
350
|
|
|
* 8760
|
351
|
|
|
)
|
352
|
|
|
except KeyError:
|
353
|
|
|
H2_total_PES = 42090000
|
354
|
|
|
print("Could not find data from PES-run, assigning fallback number.")
|
355
|
|
|
|
356
|
|
|
try:
|
357
|
|
|
CH4_total_PES = (
|
358
|
|
|
n.loads[n.loads["carrier"] == "gas for industry"].loc[
|
359
|
|
|
"DE0 0 gas for industry", "p_set"
|
360
|
|
|
]
|
361
|
|
|
* 8760
|
362
|
|
|
)
|
363
|
|
|
except KeyError:
|
364
|
|
|
CH4_total_PES = 105490000
|
365
|
|
|
print("Could not find data from PES-run, assigning fallback number.")
|
366
|
|
|
|
367
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"]
|
368
|
|
|
if boundary != "Everything":
|
369
|
|
|
# modify values for test mode
|
370
|
|
|
# the values are obtained by evaluating the share of H2 demand in
|
371
|
|
|
# test region (NUTS1: DEF, Schleswig-Holstein) with respect to the H2
|
372
|
|
|
# demand in full Germany model (NUTS0: DE). The task has been outsourced
|
373
|
|
|
# to save processing cost
|
374
|
|
|
H2_total_PES *= 0.01855683050330346
|
375
|
|
|
CH4_total_PES *= 0.01855683050330346
|
376
|
|
|
|
377
|
|
|
H2_total = industrial_gas_demand_H2["p_set"].apply(sum).astype(float).sum()
|
378
|
|
|
|
379
|
|
|
industrial_gas_demand_CH4["p_set"] = industrial_gas_demand_H2[
|
380
|
|
|
"p_set"
|
381
|
|
|
].apply(lambda x: [val / H2_total * CH4_total_PES for val in x])
|
382
|
|
|
industrial_gas_demand_H2["p_set"] = industrial_gas_demand_H2[
|
383
|
|
|
"p_set"
|
384
|
|
|
].apply(lambda x: [val / H2_total * H2_total_PES for val in x])
|
385
|
|
|
|
386
|
|
|
# consistency check
|
387
|
|
|
total_CH4_distributed = sum(
|
388
|
|
|
[sum(x) for x in industrial_gas_demand_CH4["p_set"].to_list()]
|
389
|
|
|
)
|
390
|
|
|
total_H2_distributed = sum(
|
391
|
|
|
[sum(x) for x in industrial_gas_demand_H2["p_set"].to_list()]
|
392
|
|
|
)
|
393
|
|
|
|
394
|
|
|
print(
|
395
|
|
|
f"Total amount of industrial H2 demand distributed is "
|
396
|
|
|
f"{total_H2_distributed} MWh. Total amount of industrial CH4 demand "
|
397
|
|
|
f"distributed is {total_CH4_distributed} MWh."
|
398
|
|
|
)
|
399
|
|
|
msg = (
|
400
|
|
|
f"Total amount of industrial H2 demand from P-E-S is equal to "
|
401
|
|
|
f"{H2_total_PES}, which should be identical to the distributed amount "
|
402
|
|
|
f"of {total_H2_distributed}, but it is not."
|
403
|
|
|
)
|
404
|
|
|
assert round(H2_total_PES) == round(total_H2_distributed), msg
|
405
|
|
|
|
406
|
|
|
msg = (
|
407
|
|
|
f"Total amount of industrial CH4 demand from P-E-S is equal to "
|
408
|
|
|
f"{CH4_total_PES}, which should be identical to the distributed amount "
|
409
|
|
|
f"of {total_CH4_distributed}, but it is not."
|
410
|
|
|
)
|
411
|
|
|
assert round(CH4_total_PES) == round(total_CH4_distributed), msg
|
412
|
|
|
|
413
|
|
|
industrial_gas_demand = pd.concat(
|
414
|
|
|
[
|
415
|
|
|
industrial_gas_demand_CH4,
|
416
|
|
|
industrial_gas_demand_H2,
|
417
|
|
|
]
|
418
|
|
|
)
|
419
|
|
|
industrial_gas_demand = (
|
420
|
|
|
industrial_gas_demand.groupby(["bus", "carrier"])["p_set"]
|
421
|
|
|
.apply(lambda x: [sum(y) for y in zip(*x)])
|
422
|
|
|
.reset_index(drop=False)
|
423
|
|
|
)
|
424
|
|
|
|
425
|
|
|
industrial_gas_demand = insert_new_entries(industrial_gas_demand, scn_name)
|
426
|
|
|
insert_industrial_gas_demand_time_series(industrial_gas_demand)
|
427
|
|
|
|
428
|
|
|
|
429
|
|
|
def insert_industrial_gas_demand_time_series(egon_etrago_load_gas):
|
430
|
|
|
"""
|
431
|
|
|
Insert list of industrial gas demand time series (one per NUTS3)
|
432
|
|
|
"""
|
433
|
|
|
egon_etrago_load_gas_timeseries = egon_etrago_load_gas
|
434
|
|
|
|
435
|
|
|
# Connect to local database
|
436
|
|
|
engine = db.engine()
|
437
|
|
|
|
438
|
|
|
# Adjust columns
|
439
|
|
|
egon_etrago_load_gas_timeseries = egon_etrago_load_gas_timeseries.drop(
|
440
|
|
|
columns=["carrier", "bus", "sign"]
|
441
|
|
|
)
|
442
|
|
|
egon_etrago_load_gas_timeseries["temp_id"] = 1
|
443
|
|
|
|
444
|
|
|
# Insert data to db
|
445
|
|
|
egon_etrago_load_gas_timeseries.to_sql(
|
446
|
|
|
"egon_etrago_load_timeseries",
|
447
|
|
|
engine,
|
448
|
|
|
schema="grid",
|
449
|
|
|
index=False,
|
450
|
|
|
if_exists="append",
|
451
|
|
|
)
|
452
|
|
|
|
453
|
|
|
|
454
|
|
|
def download_industrial_gas_demand():
|
455
|
|
|
"""Download the industrial gas demand data from opendata.ffe database."""
|
456
|
|
|
correspondance_url = (
|
457
|
|
|
"http://opendata.ffe.de:3000/region?id_region_type=eq.38"
|
458
|
|
|
)
|
459
|
|
|
|
460
|
|
|
# Read and save data
|
461
|
|
|
result_corr = requests.get(correspondance_url)
|
462
|
|
|
target_file = Path(".") / "datasets/gas_data/demand/region_corr.json"
|
463
|
|
|
os.makedirs(os.path.dirname(target_file), exist_ok=True)
|
464
|
|
|
pd.read_json(result_corr.content).to_json(target_file)
|
465
|
|
|
|
466
|
|
|
carriers = {"H2": "2,162", "CH4": "2,11"}
|
467
|
|
|
url = "http://opendata.ffe.de:3000/opendata?id_opendata=eq.66&&year=eq."
|
468
|
|
|
|
469
|
|
|
for scn_name in ["eGon2035", "eGon100RE"]:
|
470
|
|
|
year = str(
|
471
|
|
|
get_sector_parameters("global", scn_name)["population_year"]
|
472
|
|
|
)
|
473
|
|
|
|
474
|
|
|
for carrier, internal_id in carriers.items():
|
475
|
|
|
# Download the data
|
476
|
|
|
datafilter = "&&internal_id=eq.{" + internal_id + "}"
|
477
|
|
|
request = url + year + datafilter
|
478
|
|
|
|
479
|
|
|
# Read and save data
|
480
|
|
|
result = requests.get(request)
|
481
|
|
|
target_file = (
|
482
|
|
|
Path(".")
|
483
|
|
|
/ "datasets/gas_data/demand"
|
484
|
|
|
/ (carrier + "_" + scn_name + ".json")
|
485
|
|
|
)
|
486
|
|
|
pd.read_json(result.content).to_json(target_file)
|
487
|
|
|
|