1
|
|
|
# -*- coding: utf-8 -*-
|
2
|
|
|
"""
|
3
|
|
|
The central module containing code dealing with importing CH4 production data for eGon2035.
|
4
|
|
|
|
5
|
|
|
For eGon2035, the gas produced in Germany can be natural gas or biogas.
|
6
|
|
|
The source productions are geolocalised potentials described as PyPSA
|
7
|
|
|
generators. These generators are not extendable and their overall
|
8
|
|
|
production over the year is limited directly in eTraGo by values from
|
9
|
|
|
the Netzentwicklungsplan Gas 2020–2030 (36 TWh natural gas and 10 TWh
|
10
|
|
|
biogas), also stored in the table
|
11
|
|
|
:py:class:`scenario.egon_scenario_parameters <egon.data.datasets.scenario_parameters.EgonScenario>`.
|
12
|
|
|
|
13
|
|
|
"""
|
14
|
|
|
from pathlib import Path
|
15
|
|
|
from urllib.request import urlretrieve
|
16
|
|
|
import ast
|
17
|
|
|
import json
|
18
|
|
|
|
19
|
|
|
import geopandas as gpd
|
20
|
|
|
import numpy as np
|
21
|
|
|
import pandas as pd
|
22
|
|
|
|
23
|
|
|
from egon.data import config, db
|
24
|
|
|
from egon.data.config import settings
|
25
|
|
|
from egon.data.datasets import Dataset
|
26
|
|
|
from egon.data.datasets.pypsaeursec import read_network
|
27
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters
|
28
|
|
|
|
29
|
|
|
|
30
|
|
|
class CH4Production(Dataset):
|
31
|
|
|
"""
|
32
|
|
|
Insert the CH4 productions into the database for eGon2035
|
33
|
|
|
|
34
|
|
|
Insert the CH4 productions into the database for eGon2035 by using
|
35
|
|
|
the function :py:func:`import_gas_generators`.
|
36
|
|
|
|
37
|
|
|
*Dependencies*
|
38
|
|
|
* :py:class:`GasAreaseGon2035 <egon.data.datasets.gas_areas.GasAreaseGon2035>`
|
39
|
|
|
* :py:class:`GasNodesAndPipes <egon.data.datasets.gas_grid.GasNodesAndPipes>`
|
40
|
|
|
|
41
|
|
|
*Resulting tables*
|
42
|
|
|
* :py:class:`grid.egon_etrago_generator <egon.data.datasets.etrago_setup.EgonPfHvGenerator>` is extended
|
43
|
|
|
|
44
|
|
|
"""
|
45
|
|
|
|
46
|
|
|
#:
|
47
|
|
|
name: str = "CH4Production"
|
48
|
|
|
#:
|
49
|
|
|
|
50
|
|
|
version: str = "0.0.8"
|
51
|
|
|
|
52
|
|
|
def __init__(self, dependencies):
|
53
|
|
|
super().__init__(
|
54
|
|
|
name=self.name,
|
55
|
|
|
version=self.version,
|
56
|
|
|
dependencies=dependencies,
|
57
|
|
|
tasks=(insert_ch4_generators),
|
58
|
|
|
)
|
59
|
|
|
|
60
|
|
|
|
61
|
|
|
def load_NG_generators(scn_name="eGon2035"):
|
62
|
|
|
"""
|
63
|
|
|
Define the fossil CH4 production units in Germany
|
64
|
|
|
|
65
|
|
|
This function reads from the SciGRID_gas dataset the fossil CH4
|
66
|
|
|
production units in Germany, adjuts and returns them.
|
67
|
|
|
Natural gas production reference: SciGRID_gas dataset (datasets/gas_data/data/IGGIELGN_Production.csv
|
68
|
|
|
downloaded in :func:`download_SciGRID_gas_data <egon.data.datasets.gas_grid.download_SciGRID_gas_data>`).
|
69
|
|
|
For more information on these data, refer to the
|
70
|
|
|
`SciGRID_gas IGGIELGN documentation <https://zenodo.org/record/4767098>`_.
|
71
|
|
|
|
72
|
|
|
Parameters
|
73
|
|
|
----------
|
74
|
|
|
scn_name : str
|
75
|
|
|
Name of the scenario.
|
76
|
|
|
|
77
|
|
|
Returns
|
78
|
|
|
-------
|
79
|
|
|
CH4_generators_list : pandas.DataFrame
|
80
|
|
|
Dataframe containing the natural gas production units in Germany
|
81
|
|
|
|
82
|
|
|
"""
|
83
|
|
|
# read carrier information from scnario parameter data
|
84
|
|
|
scn_params = get_sector_parameters("gas", scn_name)
|
85
|
|
|
|
86
|
|
|
target_file = (
|
87
|
|
|
Path(".")
|
88
|
|
|
/ "datasets"
|
89
|
|
|
/ "gas_data"
|
90
|
|
|
/ "data"
|
91
|
|
|
/ "IGGIELGN_Productions.csv"
|
92
|
|
|
)
|
93
|
|
|
|
94
|
|
|
NG_generators_list = pd.read_csv(
|
95
|
|
|
target_file,
|
96
|
|
|
delimiter=";",
|
97
|
|
|
decimal=".",
|
98
|
|
|
usecols=["lat", "long", "country_code", "param"],
|
99
|
|
|
)
|
100
|
|
|
|
101
|
|
|
NG_generators_list = NG_generators_list[
|
102
|
|
|
NG_generators_list["country_code"].str.match("DE")
|
103
|
|
|
]
|
104
|
|
|
|
105
|
|
|
# Cut data to federal state if in testmode
|
106
|
|
|
NUTS1 = []
|
107
|
|
|
for index, row in NG_generators_list.iterrows():
|
108
|
|
|
param = ast.literal_eval(row["param"])
|
109
|
|
|
NUTS1.append(param["nuts_id_1"])
|
110
|
|
|
NG_generators_list = NG_generators_list.assign(NUTS1=NUTS1)
|
111
|
|
|
|
112
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"]
|
113
|
|
|
if boundary != "Everything":
|
114
|
|
|
map_states = {
|
115
|
|
|
"Baden-Württemberg": "DE1",
|
116
|
|
|
"Nordrhein-Westfalen": "DEA",
|
117
|
|
|
"Hessen": "DE7",
|
118
|
|
|
"Brandenburg": "DE4",
|
119
|
|
|
"Bremen": "DE5",
|
120
|
|
|
"Rheinland-Pfalz": "DEB",
|
121
|
|
|
"Sachsen-Anhalt": "DEE",
|
122
|
|
|
"Schleswig-Holstein": "DEF",
|
123
|
|
|
"Mecklenburg-Vorpommern": "DE8",
|
124
|
|
|
"Thüringen": "DEG",
|
125
|
|
|
"Niedersachsen": "DE9",
|
126
|
|
|
"Sachsen": "DED",
|
127
|
|
|
"Hamburg": "DE6",
|
128
|
|
|
"Saarland": "DEC",
|
129
|
|
|
"Berlin": "DE3",
|
130
|
|
|
"Bayern": "DE2",
|
131
|
|
|
}
|
132
|
|
|
|
133
|
|
|
NG_generators_list = NG_generators_list[
|
134
|
|
|
NG_generators_list["NUTS1"].isin([map_states[boundary], np.nan])
|
135
|
|
|
]
|
136
|
|
|
|
137
|
|
|
NG_generators_list = NG_generators_list.rename(
|
138
|
|
|
columns={"lat": "y", "long": "x"}
|
139
|
|
|
)
|
140
|
|
|
NG_generators_list = gpd.GeoDataFrame(
|
141
|
|
|
NG_generators_list,
|
142
|
|
|
geometry=gpd.points_from_xy(
|
143
|
|
|
NG_generators_list["x"], NG_generators_list["y"]
|
144
|
|
|
),
|
145
|
|
|
)
|
146
|
|
|
NG_generators_list = NG_generators_list.rename(
|
147
|
|
|
columns={"geometry": "geom"}
|
148
|
|
|
).set_geometry("geom", crs=4326)
|
149
|
|
|
|
150
|
|
|
# Insert p_nom
|
151
|
|
|
p_nom = []
|
152
|
|
|
for index, row in NG_generators_list.iterrows():
|
153
|
|
|
param = ast.literal_eval(row["param"])
|
154
|
|
|
p_nom.append(param["max_supply_M_m3_per_d"])
|
155
|
|
|
|
156
|
|
|
conversion_factor = 437.5 # MCM/day to MWh/h
|
157
|
|
|
NG_generators_list["p_nom"] = [i * conversion_factor for i in p_nom]
|
158
|
|
|
|
159
|
|
|
# Add missing columns
|
160
|
|
|
NG_generators_list["marginal_cost"] = scn_params["marginal_cost"]["CH4"]
|
161
|
|
|
|
162
|
|
|
# Remove useless columns
|
163
|
|
|
NG_generators_list = NG_generators_list.drop(
|
164
|
|
|
columns=["x", "y", "param", "country_code", "NUTS1"]
|
165
|
|
|
)
|
166
|
|
|
|
167
|
|
|
return NG_generators_list
|
168
|
|
|
|
169
|
|
|
|
170
|
|
|
def download_biogas_data():
|
171
|
|
|
"""Download the biogas production units data in Germany
|
172
|
|
|
|
173
|
|
|
Parameters
|
174
|
|
|
----------
|
175
|
|
|
None
|
176
|
|
|
|
177
|
|
|
Returns
|
178
|
|
|
-------
|
179
|
|
|
None
|
180
|
|
|
|
181
|
|
|
"""
|
182
|
|
|
basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx"
|
183
|
|
|
url = (
|
184
|
|
|
"https://www.biogaspartner.de/fileadmin/Biogaspartner/Dokumente/Einspeiseatlas/"
|
185
|
|
|
+ basename
|
186
|
|
|
)
|
187
|
|
|
target_file = Path(".") / "datasets" / "gas_data" / basename
|
188
|
|
|
|
189
|
|
|
urlretrieve(url, target_file)
|
190
|
|
|
|
191
|
|
|
|
192
|
|
|
def load_biogas_generators(scn_name):
|
193
|
|
|
"""
|
194
|
|
|
Define the biogas production units in Germany
|
195
|
|
|
|
196
|
|
|
This function download the Biogaspartner Einspeiseatlas into
|
197
|
|
|
(datasets/gas_data/Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx),
|
198
|
|
|
reads the biogas production units in Germany data, adjuts and
|
199
|
|
|
returns them.
|
200
|
|
|
For more information on these data refer, to the
|
201
|
|
|
`Einspeiseatlas website <https://www.biogaspartner.de/einspeiseatlas/>`_.
|
202
|
|
|
|
203
|
|
|
Parameters
|
204
|
|
|
----------
|
205
|
|
|
scn_name : str
|
206
|
|
|
Name of the scenario
|
207
|
|
|
|
208
|
|
|
Returns
|
209
|
|
|
-------
|
210
|
|
|
CH4_generators_list : pandas.DataFrame
|
211
|
|
|
Dataframe containing the biogas production units in Germany
|
212
|
|
|
|
213
|
|
|
"""
|
214
|
|
|
# read carrier information from scnario parameter data
|
215
|
|
|
scn_params = get_sector_parameters("gas", scn_name)
|
216
|
|
|
|
217
|
|
|
basename = "Biogaspartner_Einspeiseatlas_Deutschland_2021.xlsx"
|
218
|
|
|
target_file = Path(".") / "datasets" / "gas_data" / basename
|
219
|
|
|
|
220
|
|
|
# Read-in data from csv-file
|
221
|
|
|
biogas_generators_list = pd.read_excel(
|
222
|
|
|
target_file,
|
223
|
|
|
usecols=["Koordinaten", "Einspeisung Biomethan [(N*m^3)/h)]"],
|
224
|
|
|
)
|
225
|
|
|
|
226
|
|
|
x = []
|
227
|
|
|
y = []
|
228
|
|
|
for index, row in biogas_generators_list.iterrows():
|
229
|
|
|
coordinates = row["Koordinaten"].split(",")
|
230
|
|
|
y.append(coordinates[0])
|
231
|
|
|
x.append(coordinates[1])
|
232
|
|
|
biogas_generators_list["x"] = x
|
233
|
|
|
biogas_generators_list["y"] = y
|
234
|
|
|
|
235
|
|
|
biogas_generators_list = gpd.GeoDataFrame(
|
236
|
|
|
biogas_generators_list,
|
237
|
|
|
geometry=gpd.points_from_xy(
|
238
|
|
|
biogas_generators_list["x"], biogas_generators_list["y"]
|
239
|
|
|
),
|
240
|
|
|
)
|
241
|
|
|
biogas_generators_list = biogas_generators_list.rename(
|
242
|
|
|
columns={"geometry": "geom"}
|
243
|
|
|
).set_geometry("geom", crs=4326)
|
244
|
|
|
|
245
|
|
|
# Connect to local database
|
246
|
|
|
engine = db.engine()
|
247
|
|
|
|
248
|
|
|
# Cut data to federal state if in testmode
|
249
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"]
|
250
|
|
|
if boundary != "Everything":
|
251
|
|
|
db.execute_sql(
|
252
|
|
|
"""
|
253
|
|
|
DROP TABLE IF EXISTS grid.egon_biogas_generator CASCADE;
|
254
|
|
|
"""
|
255
|
|
|
)
|
256
|
|
|
biogas_generators_list.to_postgis(
|
257
|
|
|
"egon_biogas_generator",
|
258
|
|
|
engine,
|
259
|
|
|
schema="grid",
|
260
|
|
|
index=False,
|
261
|
|
|
if_exists="replace",
|
262
|
|
|
)
|
263
|
|
|
|
264
|
|
|
sql = """SELECT *
|
265
|
|
|
FROM grid.egon_biogas_generator, boundaries.vg250_sta_union as vg
|
266
|
|
|
WHERE ST_Transform(vg.geometry,4326) && egon_biogas_generator.geom
|
267
|
|
|
AND ST_Contains(ST_Transform(vg.geometry,4326), egon_biogas_generator.geom)"""
|
268
|
|
|
|
269
|
|
|
biogas_generators_list = gpd.GeoDataFrame.from_postgis(
|
270
|
|
|
sql, con=engine, geom_col="geom", crs=4326
|
271
|
|
|
)
|
272
|
|
|
biogas_generators_list = biogas_generators_list.drop(
|
273
|
|
|
columns=["id", "bez", "area_ha", "geometry"]
|
274
|
|
|
)
|
275
|
|
|
db.execute_sql(
|
276
|
|
|
"""
|
277
|
|
|
DROP TABLE IF EXISTS grid.egon_biogas_generator CASCADE;
|
278
|
|
|
"""
|
279
|
|
|
)
|
280
|
|
|
|
281
|
|
|
# Insert p_nom
|
282
|
|
|
conversion_factor = 0.01083 # m^3/h to MWh/h
|
283
|
|
|
biogas_generators_list["p_nom"] = [
|
284
|
|
|
i * conversion_factor
|
285
|
|
|
for i in biogas_generators_list["Einspeisung Biomethan [(N*m^3)/h)]"]
|
286
|
|
|
]
|
287
|
|
|
|
288
|
|
|
# Add missing columns
|
289
|
|
|
biogas_generators_list["marginal_cost"] = scn_params["marginal_cost"][
|
290
|
|
|
"biogas"
|
291
|
|
|
]
|
292
|
|
|
|
293
|
|
|
# Remove useless columns
|
294
|
|
|
biogas_generators_list = biogas_generators_list.drop(
|
295
|
|
|
columns=["x", "y", "Koordinaten", "Einspeisung Biomethan [(N*m^3)/h)]"]
|
296
|
|
|
)
|
297
|
|
|
return biogas_generators_list
|
298
|
|
|
|
299
|
|
|
|
300
|
|
|
def import_gas_generators(scn_name):
|
301
|
|
|
"""
|
302
|
|
|
Insert list of gas production units into the database
|
303
|
|
|
|
304
|
|
|
To insert the gas production units into the database, the following
|
305
|
|
|
steps are followed:
|
306
|
|
|
|
307
|
|
|
* cleaning of the database table grid.egon_etrago_generator of the
|
308
|
|
|
CH4 generators of the specific scenario (eGon2035),
|
309
|
|
|
* call of the functions :py:func:`load_NG_generators` and
|
310
|
|
|
:py:func:`load_biogas_generators` that respectively return
|
311
|
|
|
dataframes containing the natural- an bio-gas production units
|
312
|
|
|
in Germany,
|
313
|
|
|
* attribution of the bus_id to which each generator is connected
|
314
|
|
|
(call the function :func:`assign_gas_bus_id <egon.data.db.assign_gas_bus_id>`
|
315
|
|
|
from :py:mod:`egon.data.db <egon.data.db>`),
|
316
|
|
|
* aggregation of the CH4 productions with same properties at the
|
317
|
|
|
same bus. The properties that should be the same in order that
|
318
|
|
|
different generators are aggregated are:
|
319
|
|
|
* scenario
|
320
|
|
|
* carrier
|
321
|
|
|
* marginal cost: this parameter differentiates the natural gas
|
322
|
|
|
generators from the biogas generators,
|
323
|
|
|
* addition of the missing columns: scn_name, carrier and
|
324
|
|
|
generator_id,
|
325
|
|
|
* insertion of the generators into the database.
|
326
|
|
|
|
327
|
|
|
Parameters
|
328
|
|
|
----------
|
329
|
|
|
scn_name : str
|
330
|
|
|
Name of the scenario.
|
331
|
|
|
|
332
|
|
|
Returns
|
333
|
|
|
-------
|
334
|
|
|
None
|
335
|
|
|
|
336
|
|
|
"""
|
337
|
|
|
carrier = "CH4"
|
338
|
|
|
|
339
|
|
|
# Connect to local database
|
340
|
|
|
engine = db.engine()
|
341
|
|
|
|
342
|
|
|
# Select source and target from dataset configuration
|
343
|
|
|
source = config.datasets()["gas_prod"]["source"]
|
344
|
|
|
target = config.datasets()["gas_prod"]["target"]
|
345
|
|
|
|
346
|
|
|
# Clean table
|
347
|
|
|
db.execute_sql(
|
348
|
|
|
f"""
|
349
|
|
|
DELETE FROM {target['stores']['schema']}.{target['stores']['table']}
|
350
|
|
|
WHERE "carrier" = '{carrier}' AND
|
351
|
|
|
scn_name = '{scn_name}' AND bus not IN (
|
352
|
|
|
SELECT bus_id FROM {source['buses']['schema']}.{source['buses']['table']}
|
353
|
|
|
WHERE scn_name = '{scn_name}' AND country != 'DE'
|
354
|
|
|
);
|
355
|
|
|
"""
|
356
|
|
|
)
|
357
|
|
|
|
358
|
|
|
if scn_name == "eGon2035":
|
359
|
|
|
CH4_generators_list = pd.concat(
|
360
|
|
|
[load_NG_generators(scn_name), load_biogas_generators(scn_name)]
|
361
|
|
|
)
|
362
|
|
|
|
363
|
|
|
elif scn_name == "eGon100RE":
|
364
|
|
|
CH4_generators_list = load_biogas_generators(scn_name)
|
365
|
|
|
overwrite_max_gas_generation_overtheyear(scn_name)
|
366
|
|
|
|
367
|
|
|
# Add missing columns
|
368
|
|
|
c = {"scn_name": scn_name, "carrier": carrier}
|
369
|
|
|
CH4_generators_list = CH4_generators_list.assign(**c)
|
|
|
|
|
370
|
|
|
|
371
|
|
|
# Match to associated CH4 bus
|
372
|
|
|
CH4_generators_list = db.assign_gas_bus_id(
|
373
|
|
|
CH4_generators_list, scn_name, carrier
|
374
|
|
|
)
|
375
|
|
|
|
376
|
|
|
# Remove useless columns
|
377
|
|
|
CH4_generators_list = CH4_generators_list.drop(columns=["geom", "bus_id"])
|
378
|
|
|
|
379
|
|
|
# Aggregate ch4 productions with same properties at the same bus
|
380
|
|
|
CH4_generators_list = (
|
381
|
|
|
CH4_generators_list.groupby(
|
382
|
|
|
["bus", "carrier", "scn_name", "marginal_cost"]
|
383
|
|
|
)
|
384
|
|
|
.agg({"p_nom": "sum"})
|
385
|
|
|
.reset_index(drop=False)
|
386
|
|
|
)
|
387
|
|
|
|
388
|
|
|
new_id = db.next_etrago_id("generator")
|
389
|
|
|
CH4_generators_list["generator_id"] = range(
|
390
|
|
|
new_id, new_id + len(CH4_generators_list)
|
391
|
|
|
)
|
392
|
|
|
|
393
|
|
|
# Insert data to db
|
394
|
|
|
CH4_generators_list.to_sql(
|
395
|
|
|
target["stores"]["table"],
|
396
|
|
|
engine,
|
397
|
|
|
schema=target["stores"]["schema"],
|
398
|
|
|
index=False,
|
399
|
|
|
if_exists="append",
|
400
|
|
|
)
|
401
|
|
|
|
402
|
|
|
|
403
|
|
|
def overwrite_max_gas_generation_overtheyear(scn_name):
|
404
|
|
|
"""Overright max_gas_generation_overtheyear in scenario parameter table
|
405
|
|
|
|
406
|
|
|
Overright max_gas_generation_overtheyear in scenario parameter
|
407
|
|
|
table if the value of this parameter has changed in the p-e-s run.
|
408
|
|
|
|
409
|
|
|
Parameters
|
410
|
|
|
----------
|
411
|
|
|
scn_name : str
|
412
|
|
|
Name of the scenario
|
413
|
|
|
|
414
|
|
|
"""
|
415
|
|
|
execute_pypsa_eur_sec = True # False
|
416
|
|
|
|
417
|
|
|
# Select source and target from dataset configuration
|
418
|
|
|
target = config.datasets()["gas_prod"]["target"]
|
419
|
|
|
|
420
|
|
|
if execute_pypsa_eur_sec:
|
421
|
|
|
n = read_network()
|
422
|
|
|
max_value = n.stores[n.stores["carrier"] == "biogas"].loc[
|
423
|
|
|
"DE0 0 biogas", "e_initial"
|
424
|
|
|
]
|
425
|
|
|
|
426
|
|
|
parameters = db.select_dataframe(
|
427
|
|
|
f"""
|
428
|
|
|
SELECT *
|
429
|
|
|
FROM {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']}
|
430
|
|
|
WHERE name = '{scn_name}'
|
431
|
|
|
"""
|
432
|
|
|
)
|
433
|
|
|
|
434
|
|
|
gas_param = parameters.loc[0, "gas_parameters"]
|
435
|
|
|
gas_param["max_gas_generation_overtheyear"] = {"biogas": max_value}
|
436
|
|
|
gas_param = json.dumps(gas_param)
|
437
|
|
|
|
438
|
|
|
# Update data in db
|
439
|
|
|
db.execute_sql(
|
440
|
|
|
f"""
|
441
|
|
|
UPDATE {target['scenario_parameters']['schema']}.{target['scenario_parameters']['table']}
|
442
|
|
|
SET gas_parameters = '{gas_param}'
|
443
|
|
|
WHERE name = '{scn_name}';
|
444
|
|
|
"""
|
445
|
|
|
)
|
446
|
|
|
|
447
|
|
|
|
448
|
|
|
def insert_ch4_generators():
|
449
|
|
|
"""Insert gas production units in database for both scenarios
|
450
|
|
|
|
451
|
|
|
Parameters
|
452
|
|
|
----------
|
453
|
|
|
None
|
454
|
|
|
|
455
|
|
|
Returns
|
456
|
|
|
-------
|
457
|
|
|
None
|
458
|
|
|
"""
|
459
|
|
|
import_gas_generators("eGon2035")
|
460
|
|
|
import_gas_generators("eGon100RE")
|
461
|
|
|
|