| Total Complexity | 53 |
| Total Lines | 1261 |
| Duplicated Lines | 5.15 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electricity_demand_timeseries.cts_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | import logging |
||
| 2 | |||
| 3 | from geoalchemy2 import Geometry |
||
| 4 | from geoalchemy2.shape import to_shape |
||
| 5 | from sqlalchemy import REAL, Column, Integer, String, func |
||
| 6 | from sqlalchemy.ext.declarative import declarative_base |
||
| 7 | import geopandas as gpd |
||
| 8 | import numpy as np |
||
| 9 | import pandas as pd |
||
| 10 | import saio |
||
| 11 | |||
| 12 | from egon.data import db |
||
| 13 | from egon.data.datasets import Dataset |
||
| 14 | from egon.data.datasets.electricity_demand import ( |
||
| 15 | EgonDemandRegioZensusElectricity, |
||
| 16 | ) |
||
| 17 | from egon.data.datasets.electricity_demand.temporal import ( |
||
| 18 | EgonEtragoElectricityCts, |
||
| 19 | calc_load_curves_cts, |
||
| 20 | ) |
||
| 21 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
| 22 | BuildingPeakLoads, |
||
| 23 | OsmBuildingsSynthetic, |
||
| 24 | ) |
||
| 25 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
| 26 | random_ints_until_sum, |
||
| 27 | random_point_in_square, |
||
| 28 | specific_int_until_sum, |
||
| 29 | write_table_to_postgis, |
||
| 30 | write_table_to_postgres, |
||
| 31 | ) |
||
| 32 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
| 33 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
| 34 | from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
||
| 35 | |||
| 36 | engine = db.engine() |
||
| 37 | Base = declarative_base() |
||
| 38 | |||
| 39 | # import db tables |
||
| 40 | saio.register_schema("openstreetmap", engine=engine) |
||
| 41 | saio.register_schema("boundaries", engine=engine) |
||
| 42 | |||
| 43 | |||
| 44 | class EgonCtsElectricityDemandBuildingShare(Base): |
||
| 45 | __tablename__ = "egon_cts_electricity_demand_building_share" |
||
| 46 | __table_args__ = {"schema": "demand"} |
||
| 47 | |||
| 48 | id = Column(Integer, primary_key=True) |
||
| 49 | scenario = Column(String, primary_key=True) |
||
| 50 | bus_id = Column(Integer, index=True) |
||
| 51 | profile_share = Column(REAL) |
||
| 52 | |||
| 53 | |||
| 54 | class EgonCtsHeatDemandBuildingShare(Base): |
||
| 55 | __tablename__ = "egon_cts_heat_demand_building_share" |
||
| 56 | __table_args__ = {"schema": "demand"} |
||
| 57 | |||
| 58 | id = Column(Integer, primary_key=True) |
||
| 59 | scenario = Column(String, primary_key=True) |
||
| 60 | bus_id = Column(Integer, index=True) |
||
| 61 | profile_share = Column(REAL) |
||
| 62 | |||
| 63 | |||
| 64 | class CtsBuildings(Base): |
||
| 65 | __tablename__ = "egon_cts_buildings" |
||
| 66 | __table_args__ = {"schema": "openstreetmap"} |
||
| 67 | |||
| 68 | serial = Column(Integer, primary_key=True) |
||
| 69 | id = Column(Integer, index=True) |
||
| 70 | zensus_population_id = Column(Integer, index=True) |
||
| 71 | geom_building = Column(Geometry("Polygon", 3035)) |
||
| 72 | n_amenities_inside = Column(Integer) |
||
| 73 | source = Column(String) |
||
| 74 | |||
| 75 | |||
| 76 | def start_logging(): |
||
| 77 | """Start logging into console""" |
||
| 78 | log = logging.getLogger() |
||
| 79 | log.setLevel(logging.INFO) |
||
| 80 | logformat = logging.Formatter( |
||
| 81 | "%(asctime)s %(message)s", "%m/%d/%Y %H:%M:%S" |
||
| 82 | ) |
||
| 83 | sh = logging.StreamHandler() |
||
| 84 | sh.setFormatter(logformat) |
||
| 85 | log.addHandler(sh) |
||
| 86 | return log |
||
| 87 | |||
| 88 | |||
| 89 | def amenities_without_buildings(): |
||
| 90 | """ |
||
| 91 | Amenities which have no buildings assigned and are in |
||
| 92 | a cell with cts demand are determined. |
||
| 93 | |||
| 94 | Returns |
||
| 95 | ------- |
||
| 96 | pd.DataFrame |
||
| 97 | Table of amenities without buildings |
||
| 98 | """ |
||
| 99 | from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
||
| 100 | |||
| 101 | with db.session_scope() as session: |
||
| 102 | cells_query = ( |
||
| 103 | session.query( |
||
| 104 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 105 | # TODO can be used for square around amenity |
||
| 106 | # (1 geom_amenity: 1 geom_building) |
||
| 107 | # not unique amenity_ids yet |
||
| 108 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
| 109 | osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
||
| 110 | # EgonDemandRegioZensusElectricity.demand, |
||
| 111 | # # TODO can be used to generate n random buildings |
||
| 112 | # # (n amenities : 1 randombuilding) |
||
| 113 | # func.count( |
||
| 114 | # osm_amenities_not_in_buildings_filtered.egon_amenity_id |
||
| 115 | # ).label("n_amenities_inside"), |
||
| 116 | # DestatisZensusPopulationPerHa.geom, |
||
| 117 | ) |
||
| 118 | .filter( |
||
| 119 | func.st_within( |
||
| 120 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
| 121 | DestatisZensusPopulationPerHa.geom, |
||
| 122 | ) |
||
| 123 | ) |
||
| 124 | .filter( |
||
| 125 | DestatisZensusPopulationPerHa.id |
||
| 126 | == EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 127 | ) |
||
| 128 | .filter( |
||
| 129 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 130 | EgonDemandRegioZensusElectricity.scenario == "eGon2035" |
||
| 131 | # ).group_by( |
||
| 132 | # EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 133 | # DestatisZensusPopulationPerHa.geom, |
||
| 134 | ) |
||
| 135 | ) |
||
| 136 | # # TODO can be used to generate n random buildings |
||
| 137 | # df_cells_with_amenities_not_in_buildings = gpd.read_postgis( |
||
| 138 | # cells_query.statement, cells_query.session.bind, geom_col="geom" |
||
| 139 | # ) |
||
| 140 | # |
||
| 141 | |||
| 142 | # # TODO can be used for square around amenity |
||
| 143 | df_amenities_without_buildings = gpd.read_postgis( |
||
| 144 | cells_query.statement, |
||
| 145 | cells_query.session.bind, |
||
| 146 | geom_col="geom_amenity", |
||
| 147 | ) |
||
| 148 | return df_amenities_without_buildings |
||
| 149 | |||
| 150 | |||
| 151 | def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
||
| 152 | """ |
||
| 153 | Building centroids are placed randomly within census cells. |
||
| 154 | The Number of buildings is derived from n_amenity_inside, the selected |
||
| 155 | method and number of amenities per building. |
||
| 156 | |||
| 157 | Returns |
||
| 158 | ------- |
||
| 159 | df: gpd.GeoDataFrame |
||
| 160 | Table of buildings centroids |
||
| 161 | """ |
||
| 162 | if isinstance(max_amenities, int): |
||
| 163 | # amount of amenities is randomly generated within bounds |
||
| 164 | # (max_amenities, amenities per cell) |
||
| 165 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
| 166 | random_ints_until_sum, args=[max_amenities] |
||
| 167 | ) |
||
| 168 | if isinstance(amenities, int): |
||
| 169 | # Specific amount of amenities per building |
||
| 170 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
| 171 | specific_int_until_sum, args=[amenities] |
||
| 172 | ) |
||
| 173 | |||
| 174 | # Unnest each building |
||
| 175 | df = df.explode(column="n_amenities_inside") |
||
| 176 | |||
| 177 | # building count per cell |
||
| 178 | df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
||
| 179 | |||
| 180 | # generate random synthetic buildings |
||
| 181 | edge_length = 5 |
||
| 182 | # create random points within census cells |
||
| 183 | points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
||
| 184 | |||
| 185 | df.reset_index(drop=True, inplace=True) |
||
| 186 | # Store center of polygon |
||
| 187 | df["geom_point"] = points |
||
| 188 | # Drop geometry of census cell |
||
| 189 | df = df.drop(columns=["geom"]) |
||
| 190 | |||
| 191 | return df |
||
| 192 | |||
| 193 | |||
| 194 | def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
||
| 195 | """ |
||
| 196 | Synthetic buildings are generated around points. |
||
| 197 | |||
| 198 | Parameters |
||
| 199 | ---------- |
||
| 200 | df: pd.DataFrame |
||
| 201 | Table of census cells |
||
| 202 | points: gpd.GeoSeries or str |
||
| 203 | List of points to place buildings around or column name of df |
||
| 204 | crs: str |
||
| 205 | CRS of result table |
||
| 206 | |||
| 207 | Returns |
||
| 208 | ------- |
||
| 209 | df: gpd.GeoDataFrame |
||
| 210 | Synthetic buildings |
||
| 211 | """ |
||
| 212 | |||
| 213 | if isinstance(points, str) and points in df.columns: |
||
| 214 | points = df[points] |
||
| 215 | elif isinstance(points, gpd.GeoSeries): |
||
| 216 | pass |
||
| 217 | else: |
||
| 218 | raise ValueError("Points are of the wrong type") |
||
| 219 | |||
| 220 | # Create building using a square around point |
||
| 221 | edge_length = 5 |
||
| 222 | df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
||
| 223 | |||
| 224 | if "geom_point" not in df.columns: |
||
| 225 | df["geom_point"] = df["geom_building"].centroid |
||
| 226 | |||
| 227 | # TODO Check CRS |
||
| 228 | df = gpd.GeoDataFrame( |
||
| 229 | df, |
||
| 230 | crs=crs, |
||
| 231 | geometry="geom_building", |
||
| 232 | ) |
||
| 233 | |||
| 234 | # TODO remove after implementation of egon_building_id |
||
| 235 | df.rename(columns={"id": "egon_building_id"}, inplace=True) |
||
| 236 | |||
| 237 | # get max number of building ids from synthetic residential table |
||
| 238 | with db.session_scope() as session: |
||
| 239 | max_synth_residential_id = session.execute( |
||
| 240 | func.max(OsmBuildingsSynthetic.id) |
||
| 241 | ).scalar() |
||
| 242 | max_synth_residential_id = int(max_synth_residential_id) |
||
| 243 | |||
| 244 | # create sequential ids |
||
| 245 | df["egon_building_id"] = range( |
||
| 246 | max_synth_residential_id + 1, |
||
| 247 | max_synth_residential_id + df.shape[0] + 1, |
||
| 248 | ) |
||
| 249 | |||
| 250 | df["area"] = df["geom_building"].area |
||
| 251 | # set building type of synthetic building |
||
| 252 | df["building"] = "cts" |
||
| 253 | # TODO remove in #772 |
||
| 254 | df = df.rename( |
||
| 255 | columns={ |
||
| 256 | # "zensus_population_id": "cell_id", |
||
| 257 | "egon_building_id": "id", |
||
| 258 | } |
||
| 259 | ) |
||
| 260 | return df |
||
| 261 | |||
| 262 | |||
| 263 | def buildings_with_amenities(): |
||
| 264 | """ |
||
| 265 | Amenities which are assigned to buildings are determined |
||
| 266 | and grouped per building and zensus cell. Buildings |
||
| 267 | covering multiple cells therefore exists multiple times |
||
| 268 | but in different zensus cells. This is necessary to cover |
||
| 269 | all cells with a cts demand. If buildings exist in multiple |
||
| 270 | substations, their amenities are summed and assigned and kept in |
||
| 271 | one substation only. If as a result, a census cell is uncovered, |
||
| 272 | a synthetic amenity is placed. The buildings are aggregated |
||
| 273 | afterwards during the calculation of the profile_share. |
||
| 274 | |||
| 275 | Returns |
||
| 276 | ------- |
||
| 277 | df_buildings_with_amenities: gpd.GeoDataFrame |
||
| 278 | Contains all buildings with amenities per zensus cell. |
||
| 279 | df_lost_cells: gpd.GeoDataFrame |
||
| 280 | Contains synthetic amenities in lost cells. Might be empty |
||
| 281 | """ |
||
| 282 | |||
| 283 | from saio.openstreetmap import osm_amenities_in_buildings_filtered |
||
| 284 | |||
| 285 | with db.session_scope() as session: |
||
| 286 | cells_query = ( |
||
| 287 | session.query( |
||
| 288 | osm_amenities_in_buildings_filtered, |
||
| 289 | MapZensusGridDistricts.bus_id, |
||
| 290 | ) |
||
| 291 | .filter( |
||
| 292 | MapZensusGridDistricts.zensus_population_id |
||
| 293 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
| 294 | ) |
||
| 295 | .filter( |
||
| 296 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 297 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
| 298 | ) |
||
| 299 | .filter( |
||
| 300 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 301 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
| 302 | ) |
||
| 303 | ) |
||
| 304 | df_amenities_in_buildings = pd.read_sql( |
||
| 305 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 306 | ) |
||
| 307 | |||
| 308 | df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
||
| 309 | "geom_building" |
||
| 310 | ].apply(to_shape) |
||
| 311 | df_amenities_in_buildings["geom_amenity"] = df_amenities_in_buildings[ |
||
| 312 | "geom_amenity" |
||
| 313 | ].apply(to_shape) |
||
| 314 | |||
| 315 | df_amenities_in_buildings["n_amenities_inside"] = 1 |
||
| 316 | |||
| 317 | # add identifier column for buildings in multiple substations |
||
| 318 | df_amenities_in_buildings[ |
||
| 319 | "duplicate_identifier" |
||
| 320 | ] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
||
| 321 | "n_amenities_inside" |
||
| 322 | ].transform( |
||
| 323 | "cumsum" |
||
| 324 | ) |
||
| 325 | df_amenities_in_buildings = df_amenities_in_buildings.sort_values( |
||
| 326 | ["id", "duplicate_identifier"] |
||
| 327 | ) |
||
| 328 | # sum amenities of buildings with multiple substations |
||
| 329 | df_amenities_in_buildings[ |
||
| 330 | "n_amenities_inside" |
||
| 331 | ] = df_amenities_in_buildings.groupby(["id", "duplicate_identifier"])[ |
||
| 332 | "n_amenities_inside" |
||
| 333 | ].transform( |
||
| 334 | "sum" |
||
| 335 | ) |
||
| 336 | |||
| 337 | # create column to always go for bus_id with max amenities |
||
| 338 | df_amenities_in_buildings[ |
||
| 339 | "max_amenities" |
||
| 340 | ] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
||
| 341 | "n_amenities_inside" |
||
| 342 | ].transform( |
||
| 343 | "sum" |
||
| 344 | ) |
||
| 345 | # sort to go for |
||
| 346 | df_amenities_in_buildings.sort_values( |
||
| 347 | ["id", "max_amenities"], ascending=False, inplace=True |
||
| 348 | ) |
||
| 349 | |||
| 350 | # identify lost zensus cells |
||
| 351 | df_lost_cells = df_amenities_in_buildings.loc[ |
||
| 352 | df_amenities_in_buildings.duplicated( |
||
| 353 | subset=["id", "duplicate_identifier"], keep="first" |
||
| 354 | ) |
||
| 355 | ] |
||
| 356 | df_lost_cells.drop_duplicates( |
||
| 357 | subset=["zensus_population_id"], inplace=True |
||
| 358 | ) |
||
| 359 | |||
| 360 | # drop buildings with multiple substation and lower max amenity |
||
| 361 | df_amenities_in_buildings.drop_duplicates( |
||
| 362 | subset=["id", "duplicate_identifier"], keep="first", inplace=True |
||
| 363 | ) |
||
| 364 | |||
| 365 | # check if lost zensus cells are already covered |
||
| 366 | if not df_lost_cells.empty: |
||
| 367 | if not ( |
||
| 368 | df_amenities_in_buildings["zensus_population_id"] |
||
| 369 | .isin(df_lost_cells["zensus_population_id"]) |
||
| 370 | .empty |
||
| 371 | ): |
||
| 372 | # query geom data for cell if not |
||
| 373 | with db.session_scope() as session: |
||
| 374 | cells_query = session.query( |
||
| 375 | DestatisZensusPopulationPerHa.id, |
||
| 376 | DestatisZensusPopulationPerHa.geom, |
||
| 377 | ).filter( |
||
| 378 | DestatisZensusPopulationPerHa.id.in_( |
||
| 379 | df_lost_cells["zensus_population_id"] |
||
| 380 | ) |
||
| 381 | ) |
||
| 382 | |||
| 383 | df_lost_cells = gpd.read_postgis( |
||
| 384 | cells_query.statement, |
||
| 385 | cells_query.session.bind, |
||
| 386 | geom_col="geom", |
||
| 387 | ) |
||
| 388 | # TODO maybe adapt method |
||
| 389 | # place random amenity in cell |
||
| 390 | df_lost_cells["n_amenities_inside"] = 1 |
||
| 391 | df_lost_cells.rename( |
||
| 392 | columns={ |
||
| 393 | "id": "zensus_population_id", |
||
| 394 | }, |
||
| 395 | inplace=True, |
||
| 396 | ) |
||
| 397 | df_lost_cells = place_buildings_with_amenities( |
||
| 398 | df_lost_cells, amenities=1 |
||
| 399 | ) |
||
| 400 | df_lost_cells.rename( |
||
| 401 | columns={ |
||
| 402 | # "id": "zensus_population_id", |
||
| 403 | "geom_point": "geom_amenity", |
||
| 404 | }, |
||
| 405 | inplace=True, |
||
| 406 | ) |
||
| 407 | df_lost_cells.drop( |
||
| 408 | columns=["building_count", "n_amenities_inside"], inplace=True |
||
| 409 | ) |
||
| 410 | else: |
||
| 411 | df_lost_cells = None |
||
| 412 | else: |
||
| 413 | df_lost_cells = None |
||
| 414 | |||
| 415 | # drop helper columns |
||
| 416 | df_amenities_in_buildings.drop( |
||
| 417 | columns=["duplicate_identifier"], inplace=True |
||
| 418 | ) |
||
| 419 | |||
| 420 | # sum amenities per building and cell |
||
| 421 | df_amenities_in_buildings[ |
||
| 422 | "n_amenities_inside" |
||
| 423 | ] = df_amenities_in_buildings.groupby(["zensus_population_id", "id"])[ |
||
| 424 | "n_amenities_inside" |
||
| 425 | ].transform( |
||
| 426 | "sum" |
||
| 427 | ) |
||
| 428 | # drop duplicated buildings |
||
| 429 | df_buildings_with_amenities = df_amenities_in_buildings.drop_duplicates( |
||
| 430 | ["id", "zensus_population_id"] |
||
| 431 | ) |
||
| 432 | df_buildings_with_amenities.reset_index(inplace=True, drop=True) |
||
| 433 | |||
| 434 | df_buildings_with_amenities = df_buildings_with_amenities[ |
||
| 435 | ["id", "zensus_population_id", "geom_building", "n_amenities_inside"] |
||
| 436 | ] |
||
| 437 | df_buildings_with_amenities.rename( |
||
| 438 | columns={ |
||
| 439 | # "zensus_population_id": "cell_id", |
||
| 440 | "egon_building_id": "id" |
||
| 441 | }, |
||
| 442 | inplace=True, |
||
| 443 | ) |
||
| 444 | |||
| 445 | return df_buildings_with_amenities, df_lost_cells |
||
| 446 | |||
| 447 | |||
| 448 | def buildings_without_amenities(): |
||
| 449 | """ |
||
| 450 | Buildings (filtered and synthetic) in cells with |
||
| 451 | cts demand but no amenities are determined. |
||
| 452 | |||
| 453 | Returns |
||
| 454 | ------- |
||
| 455 | df_buildings_without_amenities: gpd.GeoDataFrame |
||
| 456 | Table of buildings without amenities in zensus cells |
||
| 457 | with cts demand. |
||
| 458 | """ |
||
| 459 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
| 460 | from saio.openstreetmap import ( |
||
| 461 | osm_amenities_shops_filtered, |
||
| 462 | osm_buildings_filtered, |
||
| 463 | osm_buildings_synthetic, |
||
| 464 | ) |
||
| 465 | |||
| 466 | # buildings_filtered in cts-demand-cells without amenities |
||
| 467 | with db.session_scope() as session: |
||
| 468 | |||
| 469 | # Synthetic Buildings |
||
| 470 | q_synth_buildings = session.query( |
||
| 471 | osm_buildings_synthetic.cell_id.cast(Integer).label( |
||
| 472 | "zensus_population_id" |
||
| 473 | ), |
||
| 474 | osm_buildings_synthetic.id.cast(Integer).label("id"), |
||
| 475 | osm_buildings_synthetic.area.label("area"), |
||
| 476 | osm_buildings_synthetic.geom_building.label("geom_building"), |
||
| 477 | osm_buildings_synthetic.geom_point.label("geom_point"), |
||
| 478 | ) |
||
| 479 | |||
| 480 | # Buildings filtered |
||
| 481 | q_buildings_filtered = session.query( |
||
| 482 | egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
| 483 | osm_buildings_filtered.id, |
||
| 484 | osm_buildings_filtered.area, |
||
| 485 | osm_buildings_filtered.geom_building, |
||
| 486 | osm_buildings_filtered.geom_point, |
||
| 487 | ).filter( |
||
| 488 | osm_buildings_filtered.id |
||
| 489 | == egon_map_zensus_buildings_filtered_all.id |
||
| 490 | ) |
||
| 491 | |||
| 492 | # Amenities + zensus_population_id |
||
| 493 | q_amenities = ( |
||
| 494 | session.query( |
||
| 495 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 496 | ) |
||
| 497 | .filter( |
||
| 498 | func.st_within( |
||
| 499 | osm_amenities_shops_filtered.geom_amenity, |
||
| 500 | DestatisZensusPopulationPerHa.geom, |
||
| 501 | ) |
||
| 502 | ) |
||
| 503 | .distinct(DestatisZensusPopulationPerHa.id) |
||
| 504 | ) |
||
| 505 | |||
| 506 | # Cells with CTS demand but without amenities |
||
| 507 | q_cts_without_amenities = ( |
||
| 508 | session.query( |
||
| 509 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 510 | ) |
||
| 511 | .filter( |
||
| 512 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 513 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
| 514 | ) |
||
| 515 | .filter( |
||
| 516 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
| 517 | q_amenities |
||
| 518 | ) |
||
| 519 | ) |
||
| 520 | .distinct() |
||
| 521 | ) |
||
| 522 | |||
| 523 | # Buildings filtered + synthetic buildings residential in |
||
| 524 | # cells with CTS demand but without amenities |
||
| 525 | cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
||
| 526 | egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
||
| 527 | q_cts_without_amenities |
||
| 528 | ) |
||
| 529 | ) |
||
| 530 | |||
| 531 | # df_buildings_without_amenities = pd.read_sql( |
||
| 532 | # cells_query.statement, cells_query.session.bind, index_col=None) |
||
| 533 | df_buildings_without_amenities = gpd.read_postgis( |
||
| 534 | cells_query.statement, |
||
| 535 | cells_query.session.bind, |
||
| 536 | geom_col="geom_building", |
||
| 537 | ) |
||
| 538 | |||
| 539 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
| 540 | columns={ |
||
| 541 | # "zensus_population_id": "cell_id", |
||
| 542 | "egon_building_id": "id", |
||
| 543 | } |
||
| 544 | ) |
||
| 545 | |||
| 546 | return df_buildings_without_amenities |
||
| 547 | |||
| 548 | |||
| 549 | def select_cts_buildings(df_buildings_wo_amenities, max_n): |
||
| 550 | """ |
||
| 551 | N Buildings (filtered and synthetic) in each cell with |
||
| 552 | cts demand are selected. Only the first n buildings |
||
| 553 | are taken for each cell. The buildings are sorted by surface |
||
| 554 | area. |
||
| 555 | |||
| 556 | Returns |
||
| 557 | ------- |
||
| 558 | df_buildings_with_cts_demand: gpd.GeoDataFrame |
||
| 559 | Table of buildings |
||
| 560 | """ |
||
| 561 | |||
| 562 | df_buildings_wo_amenities.sort_values( |
||
| 563 | "area", ascending=False, inplace=True |
||
| 564 | ) |
||
| 565 | # select first n ids each census cell if available |
||
| 566 | df_buildings_with_cts_demand = ( |
||
| 567 | df_buildings_wo_amenities.groupby("zensus_population_id") |
||
| 568 | .nth(list(range(max_n))) |
||
| 569 | .reset_index() |
||
| 570 | ) |
||
| 571 | df_buildings_with_cts_demand.reset_index(drop=True, inplace=True) |
||
| 572 | |||
| 573 | return df_buildings_with_cts_demand |
||
| 574 | |||
| 575 | |||
| 576 | def cells_with_cts_demand_only(df_buildings_without_amenities): |
||
| 577 | """ |
||
| 578 | Cells with cts demand but no amenities or buildilngs |
||
| 579 | are determined. |
||
| 580 | |||
| 581 | Returns |
||
| 582 | ------- |
||
| 583 | df_cells_only_cts_demand: gpd.GeoDataFrame |
||
| 584 | Table of cells with cts demand but no amenities or buildings |
||
| 585 | """ |
||
| 586 | from saio.openstreetmap import osm_amenities_shops_filtered |
||
| 587 | |||
| 588 | # cells mit amenities |
||
| 589 | with db.session_scope() as session: |
||
| 590 | sub_query = ( |
||
| 591 | session.query( |
||
| 592 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 593 | ) |
||
| 594 | .filter( |
||
| 595 | func.st_within( |
||
| 596 | osm_amenities_shops_filtered.geom_amenity, |
||
| 597 | DestatisZensusPopulationPerHa.geom, |
||
| 598 | ) |
||
| 599 | ) |
||
| 600 | .distinct(DestatisZensusPopulationPerHa.id) |
||
| 601 | ) |
||
| 602 | |||
| 603 | cells_query = ( |
||
| 604 | session.query( |
||
| 605 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 606 | EgonDemandRegioZensusElectricity.scenario, |
||
| 607 | EgonDemandRegioZensusElectricity.sector, |
||
| 608 | EgonDemandRegioZensusElectricity.demand, |
||
| 609 | DestatisZensusPopulationPerHa.geom, |
||
| 610 | ) |
||
| 611 | .filter( |
||
| 612 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 613 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
| 614 | ) |
||
| 615 | .filter( |
||
| 616 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
| 617 | sub_query |
||
| 618 | ) |
||
| 619 | ) |
||
| 620 | .filter( |
||
| 621 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 622 | == DestatisZensusPopulationPerHa.id |
||
| 623 | ) |
||
| 624 | ) |
||
| 625 | |||
| 626 | df_cts_cell_without_amenities = gpd.read_postgis( |
||
| 627 | cells_query.statement, |
||
| 628 | cells_query.session.bind, |
||
| 629 | geom_col="geom", |
||
| 630 | index_col=None, |
||
| 631 | ) |
||
| 632 | |||
| 633 | # TODO maybe remove |
||
| 634 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
| 635 | columns={"cell_id": "zensus_population_id"} |
||
| 636 | ) |
||
| 637 | |||
| 638 | # Census cells with only cts demand |
||
| 639 | df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
||
| 640 | ~df_cts_cell_without_amenities["zensus_population_id"].isin( |
||
| 641 | df_buildings_without_amenities["zensus_population_id"].unique() |
||
| 642 | ) |
||
| 643 | ] |
||
| 644 | |||
| 645 | df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
||
| 646 | |||
| 647 | return df_cells_only_cts_demand |
||
| 648 | |||
| 649 | |||
| 650 | def calc_census_cell_share(scenario="eGon2035", sector="electricity"): |
||
| 651 | """ |
||
| 652 | The profile share for each census cell is calculated by it's |
||
| 653 | share of annual demand per substation bus. The annual demand |
||
| 654 | per cell is defined by DemandRegio/Peta5. The share is for both |
||
| 655 | scenarios identical as the annual demand is linearly scaled. |
||
| 656 | |||
| 657 | Parameters |
||
| 658 | ---------- |
||
| 659 | scenario: str |
||
| 660 | Scenario for which the share is calculated. |
||
| 661 | sector: str |
||
| 662 | Scenario for which the share is calculated. |
||
| 663 | |||
| 664 | Returns |
||
| 665 | ------- |
||
| 666 | df_census_share: pd.DataFrame |
||
| 667 | """ |
||
| 668 | if sector == "electricity": |
||
| 669 | demand_table = EgonDemandRegioZensusElectricity |
||
| 670 | elif sector == "heat": |
||
| 671 | demand_table = EgonPetaHeat |
||
| 672 | |||
| 673 | with db.session_scope() as session: |
||
| 674 | cells_query = ( |
||
| 675 | session.query(demand_table, MapZensusGridDistricts.bus_id) |
||
|
|
|||
| 676 | .filter(demand_table.sector == "service") |
||
| 677 | .filter(demand_table.scenario == scenario) |
||
| 678 | .filter( |
||
| 679 | demand_table.zensus_population_id |
||
| 680 | == MapZensusGridDistricts.zensus_population_id |
||
| 681 | ) |
||
| 682 | ) |
||
| 683 | |||
| 684 | df_demand = pd.read_sql( |
||
| 685 | cells_query.statement, |
||
| 686 | cells_query.session.bind, |
||
| 687 | index_col="zensus_population_id", |
||
| 688 | ) |
||
| 689 | |||
| 690 | # get demand share of cell per bus |
||
| 691 | df_census_share = df_demand["demand"] / df_demand.groupby("bus_id")[ |
||
| 692 | "demand" |
||
| 693 | ].transform("sum") |
||
| 694 | df_census_share = df_census_share.rename("cell_share") |
||
| 695 | |||
| 696 | df_census_share = pd.concat( |
||
| 697 | [ |
||
| 698 | df_census_share, |
||
| 699 | df_demand[["bus_id", "scenario"]], |
||
| 700 | ], |
||
| 701 | axis=1, |
||
| 702 | ) |
||
| 703 | |||
| 704 | df_census_share.reset_index(inplace=True) |
||
| 705 | return df_census_share |
||
| 706 | |||
| 707 | |||
| 708 | def calc_building_demand_profile_share( |
||
| 709 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
| 710 | ): |
||
| 711 | """ |
||
| 712 | Share of cts electricity demand profile per bus for every selected building |
||
| 713 | is calculated. Building-amenity share is multiplied with census cell share |
||
| 714 | to get the substation bus profile share for each building. The share is |
||
| 715 | grouped and aggregated per building as some buildings exceed the shape of |
||
| 716 | census cells and have amenities assigned from multiple cells. Building |
||
| 717 | therefore get the amenity share of all census cells. |
||
| 718 | |||
| 719 | Parameters |
||
| 720 | ---------- |
||
| 721 | df_cts_buildings: gpd.GeoDataFrame |
||
| 722 | Table of all buildings with cts demand assigned |
||
| 723 | scenario: str |
||
| 724 | Scenario for which the share is calculated. |
||
| 725 | sector: str |
||
| 726 | Sector for which the share is calculated. |
||
| 727 | |||
| 728 | Returns |
||
| 729 | ------- |
||
| 730 | df_building_share: pd.DataFrame |
||
| 731 | Table of bus profile share per building |
||
| 732 | |||
| 733 | """ |
||
| 734 | |||
| 735 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
| 736 | |||
| 737 | def calc_building_amenity_share(df_cts_buildings): |
||
| 738 | """ |
||
| 739 | Calculate the building share by the number amenities per building |
||
| 740 | within a census cell. Building ids can exist multiple time but with |
||
| 741 | different zensus_population_ids. |
||
| 742 | """ |
||
| 743 | df_building_amenity_share = df_cts_buildings[ |
||
| 744 | "n_amenities_inside" |
||
| 745 | ] / df_cts_buildings.groupby("zensus_population_id")[ |
||
| 746 | "n_amenities_inside" |
||
| 747 | ].transform( |
||
| 748 | "sum" |
||
| 749 | ) |
||
| 750 | df_building_amenity_share = pd.concat( |
||
| 751 | [ |
||
| 752 | df_building_amenity_share.rename("building_amenity_share"), |
||
| 753 | df_cts_buildings[["zensus_population_id", "id"]], |
||
| 754 | ], |
||
| 755 | axis=1, |
||
| 756 | ) |
||
| 757 | return df_building_amenity_share |
||
| 758 | |||
| 759 | df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
||
| 760 | |||
| 761 | df_census_cell_share = calc_census_cell_share( |
||
| 762 | scenario=scenario, sector=sector |
||
| 763 | ) |
||
| 764 | |||
| 765 | df_demand_share = pd.merge( |
||
| 766 | left=df_building_amenity_share, |
||
| 767 | right=df_census_cell_share, |
||
| 768 | left_on="zensus_population_id", |
||
| 769 | right_on="zensus_population_id", |
||
| 770 | ) |
||
| 771 | df_demand_share["profile_share"] = df_demand_share[ |
||
| 772 | "building_amenity_share" |
||
| 773 | ].multiply(df_demand_share["cell_share"]) |
||
| 774 | |||
| 775 | # TODO bus_id fix |
||
| 776 | # df_demand_share = df_demand_share[ |
||
| 777 | # ["id", "bus_id", "scenario", "profile_share"] |
||
| 778 | # ] |
||
| 779 | df_demand_share = df_demand_share[["id", "scenario", "profile_share"]] |
||
| 780 | |||
| 781 | with db.session_scope() as session: |
||
| 782 | cells_query = session.query( |
||
| 783 | egon_map_zensus_buildings_filtered_all.id, |
||
| 784 | egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
| 785 | MapZensusGridDistricts.bus_id, |
||
| 786 | ).filter( |
||
| 787 | MapZensusGridDistricts.zensus_population_id |
||
| 788 | == egon_map_zensus_buildings_filtered_all.zensus_population_id |
||
| 789 | ) |
||
| 790 | |||
| 791 | df_egon_map_zensus_buildings_buses = pd.read_sql( |
||
| 792 | cells_query.statement, |
||
| 793 | cells_query.session.bind, |
||
| 794 | index_col=None, |
||
| 795 | ) |
||
| 796 | df_demand_share = pd.merge( |
||
| 797 | left=df_demand_share, right=df_egon_map_zensus_buildings_buses, on="id" |
||
| 798 | ) |
||
| 799 | |||
| 800 | # TODO adapt groupby? |
||
| 801 | # Group and aggregate per building for multi cell buildings |
||
| 802 | df_demand_share = ( |
||
| 803 | df_demand_share.groupby(["scenario", "id", "bus_id"]) |
||
| 804 | .sum() |
||
| 805 | .reset_index() |
||
| 806 | ) |
||
| 807 | if df_demand_share.duplicated("id", keep=False).any(): |
||
| 808 | print( |
||
| 809 | df_demand_share.loc[df_demand_share.duplicated("id", keep=False)] |
||
| 810 | ) |
||
| 811 | return df_demand_share |
||
| 812 | |||
| 813 | |||
| 814 | def calc_building_profiles( |
||
| 815 | egon_building_id=None, |
||
| 816 | bus_id=None, |
||
| 817 | scenario="eGon2035", |
||
| 818 | sector="electricity", |
||
| 819 | ): |
||
| 820 | """ |
||
| 821 | Calculate the demand profile for each building. The profile is |
||
| 822 | calculated by the demand share of the building per substation bus. |
||
| 823 | |||
| 824 | Parameters |
||
| 825 | ---------- |
||
| 826 | egon_building_id: int |
||
| 827 | Id of the building for which the profile is calculated. |
||
| 828 | If not given, the profiles are calculated for all buildings. |
||
| 829 | bus_id: int |
||
| 830 | Id of the substation for which the all profiles are calculated. |
||
| 831 | If not given, the profiles are calculated for all buildings. |
||
| 832 | scenario: str |
||
| 833 | Scenario for which the share is calculated. |
||
| 834 | sector: str |
||
| 835 | Sector for which the share is calculated. |
||
| 836 | |||
| 837 | Returns |
||
| 838 | ------- |
||
| 839 | df_building_profiles: pd.DataFrame |
||
| 840 | Table of demand profile per building |
||
| 841 | """ |
||
| 842 | if sector == "electricity": |
||
| 843 | with db.session_scope() as session: |
||
| 844 | cells_query = session.query( |
||
| 845 | EgonCtsElectricityDemandBuildingShare, |
||
| 846 | ).filter( |
||
| 847 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
| 848 | ) |
||
| 849 | |||
| 850 | df_demand_share = pd.read_sql( |
||
| 851 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 852 | ) |
||
| 853 | |||
| 854 | # TODO maybe use demand.egon_etrago_electricity_cts |
||
| 855 | # with db.session_scope() as session: |
||
| 856 | # cells_query = ( |
||
| 857 | # session.query( |
||
| 858 | # EgonEtragoElectricityCts |
||
| 859 | # ).filter( |
||
| 860 | # EgonEtragoElectricityCts.scn_name == scenario) |
||
| 861 | # ) |
||
| 862 | # |
||
| 863 | # df_cts_profiles = pd.read_sql( |
||
| 864 | # cells_query.statement, |
||
| 865 | # cells_query.session.bind, |
||
| 866 | # ) |
||
| 867 | # df_cts_profiles = pd.DataFrame.from_dict( |
||
| 868 | # df_cts_profiles.set_index('bus_id')['p_set'].to_dict(), |
||
| 869 | # orient="index") |
||
| 870 | df_cts_profiles = calc_load_curves_cts(scenario) |
||
| 871 | |||
| 872 | elif sector == "heat": |
||
| 873 | with db.session_scope() as session: |
||
| 874 | cells_query = session.query( |
||
| 875 | EgonCtsHeatDemandBuildingShare, |
||
| 876 | ).filter(EgonCtsHeatDemandBuildingShare.scenario == scenario) |
||
| 877 | |||
| 878 | df_demand_share = pd.read_sql( |
||
| 879 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 880 | ) |
||
| 881 | |||
| 882 | # TODO cts heat substation profiles missing |
||
| 883 | |||
| 884 | # get demand share of selected building id |
||
| 885 | if isinstance(egon_building_id, int): |
||
| 886 | if egon_building_id in df_demand_share["id"]: |
||
| 887 | df_demand_share = df_demand_share.loc[ |
||
| 888 | df_demand_share["id"] == egon_building_id |
||
| 889 | ] |
||
| 890 | else: |
||
| 891 | raise KeyError(f"Building with id {egon_building_id} not found") |
||
| 892 | # TODO maybe add list |
||
| 893 | # elif isinstance(egon_building_id, list): |
||
| 894 | |||
| 895 | # get demand share of all buildings for selected bus id |
||
| 896 | if isinstance(bus_id, int): |
||
| 897 | if bus_id in df_demand_share["bus_id"]: |
||
| 898 | df_demand_share = df_demand_share.loc[ |
||
| 899 | df_demand_share["bus_id"] == bus_id |
||
| 900 | ] |
||
| 901 | else: |
||
| 902 | raise KeyError(f"Bus with id {bus_id} not found") |
||
| 903 | |||
| 904 | # get demand profile for all buildings for selected demand share |
||
| 905 | # TODO takes a few seconds per iteration |
||
| 906 | df_building_profiles = pd.DataFrame() |
||
| 907 | for bus_id, df in df_demand_share.groupby("bus_id"): |
||
| 908 | shares = df.set_index("id", drop=True)["profile_share"] |
||
| 909 | profile = df_cts_profiles.loc[:, bus_id] |
||
| 910 | # building_profiles = profile.apply(lambda x: x * shares) |
||
| 911 | building_profiles = np.outer(profile, shares) |
||
| 912 | building_profiles = pd.DataFrame( |
||
| 913 | building_profiles, index=profile.index, columns=shares.index |
||
| 914 | ) |
||
| 915 | df_building_profiles = pd.concat( |
||
| 916 | [df_building_profiles, building_profiles], axis=1 |
||
| 917 | ) |
||
| 918 | |||
| 919 | return df_building_profiles |
||
| 920 | |||
| 921 | |||
| 922 | def delete_synthetic_cts_buildings(): |
||
| 923 | """ |
||
| 924 | All synthetic cts buildings are deleted from the DB. This is necessary if |
||
| 925 | the task is run multiple times as the existing synthetic buildings |
||
| 926 | influence the results. |
||
| 927 | """ |
||
| 928 | # import db tables |
||
| 929 | from saio.openstreetmap import osm_buildings_synthetic |
||
| 930 | |||
| 931 | # cells mit amenities |
||
| 932 | with db.session_scope() as session: |
||
| 933 | session.query(osm_buildings_synthetic).filter( |
||
| 934 | osm_buildings_synthetic.building == "cts" |
||
| 935 | ).delete() |
||
| 936 | |||
| 937 | |||
| 938 | def cts_buildings(): |
||
| 939 | """ |
||
| 940 | Assigns CTS demand to buildings and calculates the respective demand |
||
| 941 | profiles. The demand profile per substation are disaggregated per |
||
| 942 | annual demand share of each census cell and by the number of amenities |
||
| 943 | per building within the cell. If no building data is available, |
||
| 944 | synthetic buildings are generated around the amenities. If no amenities |
||
| 945 | but cts demand is available, buildings are randomly selected. If no |
||
| 946 | building nor amenity is available, random synthetic buildings are |
||
| 947 | generated. The demand share is stored in the database. |
||
| 948 | |||
| 949 | Note: |
||
| 950 | ----- |
||
| 951 | Cells with CTS demand, amenities and buildings do not change within |
||
| 952 | the scenarios, only the demand itself. Therefore scenario eGon2035 |
||
| 953 | can be used universally to determine the cts buildings but not for |
||
| 954 | he demand share. |
||
| 955 | """ |
||
| 956 | |||
| 957 | log = start_logging() |
||
| 958 | log.info("Start logging!") |
||
| 959 | # Buildings with amenities |
||
| 960 | df_buildings_with_amenities, df_lost_cells = buildings_with_amenities() |
||
| 961 | log.info("Buildings with amenities selected!") |
||
| 962 | |||
| 963 | # Median number of amenities per cell |
||
| 964 | median_n_amenities = int( |
||
| 965 | df_buildings_with_amenities.groupby("zensus_population_id")[ |
||
| 966 | "n_amenities_inside" |
||
| 967 | ] |
||
| 968 | .sum() |
||
| 969 | .median() |
||
| 970 | ) |
||
| 971 | # TODO remove |
||
| 972 | print(f"Median amenity value: {median_n_amenities}") |
||
| 973 | |||
| 974 | # Remove synthetic CTS buildings if existing |
||
| 975 | delete_synthetic_cts_buildings() |
||
| 976 | log.info("Old synthetic cts buildings deleted!") |
||
| 977 | |||
| 978 | # Amenities not assigned to buildings |
||
| 979 | df_amenities_without_buildings = amenities_without_buildings() |
||
| 980 | log.info("Amenities without buildlings selected!") |
||
| 981 | |||
| 982 | # Append lost cells due to duplicated ids, to cover all demand cells |
||
| 983 | if not df_lost_cells.empty: |
||
| 984 | |||
| 985 | df_lost_cells["amenities"] = median_n_amenities |
||
| 986 | # create row for every amenity |
||
| 987 | df_lost_cells["amenities"] = ( |
||
| 988 | df_lost_cells["amenities"].astype(int).apply(range) |
||
| 989 | ) |
||
| 990 | df_lost_cells = df_lost_cells.explode("amenities") |
||
| 991 | df_lost_cells.drop(columns="amenities", inplace=True) |
||
| 992 | df_amenities_without_buildings = df_amenities_without_buildings.append( |
||
| 993 | df_lost_cells, ignore_index=True |
||
| 994 | ) |
||
| 995 | log.info("Lost cells due to substation intersection appended!") |
||
| 996 | |||
| 997 | # One building per amenity |
||
| 998 | df_amenities_without_buildings["n_amenities_inside"] = 1 |
||
| 999 | # Create synthetic buildings for amenites without buildings |
||
| 1000 | df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
||
| 1001 | df_amenities_without_buildings, points="geom_amenity" |
||
| 1002 | ) |
||
| 1003 | log.info("Synthetic buildings created!") |
||
| 1004 | |||
| 1005 | # TODO write to DB and remove renaming |
||
| 1006 | write_table_to_postgis( |
||
| 1007 | df_synthetic_buildings_with_amenities.rename( |
||
| 1008 | columns={ |
||
| 1009 | "zensus_population_id": "cell_id", |
||
| 1010 | "egon_building_id": "id", |
||
| 1011 | } |
||
| 1012 | ), |
||
| 1013 | OsmBuildingsSynthetic, |
||
| 1014 | drop=False, |
||
| 1015 | ) |
||
| 1016 | log.info("Synthetic buildings exported to DB!") |
||
| 1017 | |||
| 1018 | # Cells without amenities but CTS demand and buildings |
||
| 1019 | df_buildings_without_amenities = buildings_without_amenities() |
||
| 1020 | log.info("Buildings without amenities in demand cells identified!") |
||
| 1021 | |||
| 1022 | # TODO Fix Adhoc Bugfix duplicated buildings |
||
| 1023 | # drop building ids which have already been used |
||
| 1024 | mask = df_buildings_without_amenities.loc[ |
||
| 1025 | df_buildings_without_amenities["id"].isin( |
||
| 1026 | df_buildings_with_amenities["id"] |
||
| 1027 | ) |
||
| 1028 | ].index |
||
| 1029 | df_buildings_without_amenities = df_buildings_without_amenities.drop( |
||
| 1030 | index=mask |
||
| 1031 | ).reset_index(drop=True) |
||
| 1032 | log.info(f"{len(mask)} duplicated ids removed!") |
||
| 1033 | |||
| 1034 | # select median n buildings per cell |
||
| 1035 | df_buildings_without_amenities = select_cts_buildings( |
||
| 1036 | df_buildings_without_amenities, max_n=median_n_amenities |
||
| 1037 | ) |
||
| 1038 | df_buildings_without_amenities["n_amenities_inside"] = 1 |
||
| 1039 | log.info(f"{median_n_amenities} buildings per cell selected!") |
||
| 1040 | |||
| 1041 | # Create synthetic amenities and buildings in cells with only CTS demand |
||
| 1042 | df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
||
| 1043 | df_buildings_without_amenities |
||
| 1044 | ) |
||
| 1045 | log.info("Cells with only demand identified!") |
||
| 1046 | |||
| 1047 | # Median n Amenities per cell |
||
| 1048 | df_cells_with_cts_demand_only["amenities"] = median_n_amenities |
||
| 1049 | # create row for every amenity |
||
| 1050 | df_cells_with_cts_demand_only["amenities"] = ( |
||
| 1051 | df_cells_with_cts_demand_only["amenities"].astype(int).apply(range) |
||
| 1052 | ) |
||
| 1053 | df_cells_with_cts_demand_only = df_cells_with_cts_demand_only.explode( |
||
| 1054 | "amenities" |
||
| 1055 | ) |
||
| 1056 | df_cells_with_cts_demand_only.drop(columns="amenities", inplace=True) |
||
| 1057 | |||
| 1058 | # Only 1 Amenity per Building |
||
| 1059 | df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
||
| 1060 | df_cells_with_cts_demand_only = place_buildings_with_amenities( |
||
| 1061 | df_cells_with_cts_demand_only, amenities=1 |
||
| 1062 | ) |
||
| 1063 | df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
||
| 1064 | df_cells_with_cts_demand_only, points="geom_point" |
||
| 1065 | ) |
||
| 1066 | log.info(f"{median_n_amenities} synthetic buildings per cell created") |
||
| 1067 | |||
| 1068 | # TODO write to DB and remove (backup) renaming |
||
| 1069 | write_table_to_postgis( |
||
| 1070 | df_synthetic_buildings_without_amenities.rename( |
||
| 1071 | columns={ |
||
| 1072 | "zensus_population_id": "cell_id", |
||
| 1073 | "egon_building_id": "id", |
||
| 1074 | } |
||
| 1075 | ), |
||
| 1076 | OsmBuildingsSynthetic, |
||
| 1077 | drop=False, |
||
| 1078 | ) |
||
| 1079 | log.info("Synthetic buildings exported to DB") |
||
| 1080 | |||
| 1081 | # Concat all buildings |
||
| 1082 | columns = [ |
||
| 1083 | "zensus_population_id", |
||
| 1084 | "id", |
||
| 1085 | "geom_building", |
||
| 1086 | "n_amenities_inside", |
||
| 1087 | "source", |
||
| 1088 | ] |
||
| 1089 | |||
| 1090 | df_buildings_with_amenities["source"] = "bwa" |
||
| 1091 | df_synthetic_buildings_with_amenities["source"] = "sbwa" |
||
| 1092 | df_buildings_without_amenities["source"] = "bwoa" |
||
| 1093 | df_synthetic_buildings_without_amenities["source"] = "sbwoa" |
||
| 1094 | |||
| 1095 | df_cts_buildings = pd.concat( |
||
| 1096 | [ |
||
| 1097 | df_buildings_with_amenities[columns], |
||
| 1098 | df_synthetic_buildings_with_amenities[columns], |
||
| 1099 | df_buildings_without_amenities[columns], |
||
| 1100 | df_synthetic_buildings_without_amenities[columns], |
||
| 1101 | ], |
||
| 1102 | axis=0, |
||
| 1103 | ignore_index=True, |
||
| 1104 | ) |
||
| 1105 | # TODO maybe remove after #772 |
||
| 1106 | df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
||
| 1107 | |||
| 1108 | # Write table to db for debugging |
||
| 1109 | # TODO remove later |
||
| 1110 | df_cts_buildings = gpd.GeoDataFrame( |
||
| 1111 | df_cts_buildings, geometry="geom_building", crs=3035 |
||
| 1112 | ) |
||
| 1113 | df_cts_buildings = df_cts_buildings.reset_index().rename( |
||
| 1114 | columns={"index": "serial"} |
||
| 1115 | ) |
||
| 1116 | write_table_to_postgis( |
||
| 1117 | df_cts_buildings, |
||
| 1118 | CtsBuildings, |
||
| 1119 | drop=True, |
||
| 1120 | ) |
||
| 1121 | log.info("CTS buildings exported to DB!") |
||
| 1122 | |||
| 1123 | |||
| 1124 | View Code Duplication | def cts_electricity(): |
|
| 1125 | """ |
||
| 1126 | Calculate cts electricity demand share of hvmv substation profile |
||
| 1127 | for buildings. |
||
| 1128 | """ |
||
| 1129 | log = start_logging() |
||
| 1130 | log.info("Start logging!") |
||
| 1131 | with db.session_scope() as session: |
||
| 1132 | cells_query = session.query(CtsBuildings) |
||
| 1133 | |||
| 1134 | df_cts_buildings = pd.read_sql( |
||
| 1135 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1136 | ) |
||
| 1137 | log.info("CTS buildings from DB imported!") |
||
| 1138 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
| 1139 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
| 1140 | ) |
||
| 1141 | log.info("Profile share for egon2035 calculated!") |
||
| 1142 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
| 1143 | df_cts_buildings, scenario="eGon100RE", sector="electricity" |
||
| 1144 | ) |
||
| 1145 | log.info("Profile share for egon100RE calculated!") |
||
| 1146 | df_demand_share = pd.concat( |
||
| 1147 | [df_demand_share_2035, df_demand_share_100RE], |
||
| 1148 | axis=0, |
||
| 1149 | ignore_index=True, |
||
| 1150 | ) |
||
| 1151 | |||
| 1152 | write_table_to_postgres( |
||
| 1153 | df_demand_share, EgonCtsElectricityDemandBuildingShare, drop=True |
||
| 1154 | ) |
||
| 1155 | log.info("Profile share exported to DB!") |
||
| 1156 | |||
| 1157 | |||
| 1158 | View Code Duplication | def cts_heat(): |
|
| 1159 | """ |
||
| 1160 | Calculate cts electricity demand share of hvmv substation profile |
||
| 1161 | for buildings. |
||
| 1162 | """ |
||
| 1163 | log = start_logging() |
||
| 1164 | log.info("Start logging!") |
||
| 1165 | with db.session_scope() as session: |
||
| 1166 | cells_query = session.query(CtsBuildings) |
||
| 1167 | |||
| 1168 | df_cts_buildings = pd.read_sql( |
||
| 1169 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1170 | ) |
||
| 1171 | log.info("CTS buildings from DB imported!") |
||
| 1172 | |||
| 1173 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
| 1174 | df_cts_buildings, scenario="eGon2035", sector="heat" |
||
| 1175 | ) |
||
| 1176 | log.info("Profile share for egon2035 calculated!") |
||
| 1177 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
| 1178 | df_cts_buildings, scenario="eGon100RE", sector="heat" |
||
| 1179 | ) |
||
| 1180 | log.info("Profile share for egon100RE calculated!") |
||
| 1181 | df_demand_share = pd.concat( |
||
| 1182 | [df_demand_share_2035, df_demand_share_100RE], |
||
| 1183 | axis=0, |
||
| 1184 | ignore_index=True, |
||
| 1185 | ) |
||
| 1186 | |||
| 1187 | write_table_to_postgres( |
||
| 1188 | df_demand_share, EgonCtsHeatDemandBuildingShare, drop=True |
||
| 1189 | ) |
||
| 1190 | log.info("Profile share exported to DB!") |
||
| 1191 | |||
| 1192 | |||
| 1193 | def get_cts_electricity_peak_load(): |
||
| 1194 | """ |
||
| 1195 | Get peak load of all CTS buildings for both scenarios and store in DB. |
||
| 1196 | """ |
||
| 1197 | log = start_logging() |
||
| 1198 | log.info("Start logging!") |
||
| 1199 | # Delete rows with cts demand |
||
| 1200 | with db.session_scope() as session: |
||
| 1201 | session.query(BuildingPeakLoads).filter( |
||
| 1202 | BuildingPeakLoads.sector == "cts" |
||
| 1203 | ).delete() |
||
| 1204 | log.info("CTS Peak load removed from DB!") |
||
| 1205 | |||
| 1206 | for scenario in ["eGon2035", "eGon100RE"]: |
||
| 1207 | |||
| 1208 | with db.session_scope() as session: |
||
| 1209 | cells_query = session.query( |
||
| 1210 | EgonCtsElectricityDemandBuildingShare |
||
| 1211 | ).filter( |
||
| 1212 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
| 1213 | ) |
||
| 1214 | |||
| 1215 | df_demand_share = pd.read_sql( |
||
| 1216 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1217 | ) |
||
| 1218 | |||
| 1219 | df_cts_profiles = calc_load_curves_cts(scenario=scenario) |
||
| 1220 | |||
| 1221 | df_peak_load = pd.merge( |
||
| 1222 | left=df_cts_profiles.max(axis=0).astype(float).rename("max"), |
||
| 1223 | right=df_demand_share, |
||
| 1224 | left_on="bus_id", |
||
| 1225 | right_on="bus_id", |
||
| 1226 | ) |
||
| 1227 | |||
| 1228 | # Convert unit from MWh to W |
||
| 1229 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
| 1230 | df_peak_load["peak_load_in_w"] = ( |
||
| 1231 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
| 1232 | ) |
||
| 1233 | log.info(f"Peak load for {scenario} determined!") |
||
| 1234 | |||
| 1235 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1236 | df_peak_load["sector"] = "cts" |
||
| 1237 | |||
| 1238 | df_peak_load = df_peak_load[ |
||
| 1239 | ["building_id", "sector", "scenario", "peak_load_in_w"] |
||
| 1240 | ] |
||
| 1241 | |||
| 1242 | # Write peak loads into db |
||
| 1243 | with db.session_scope() as session: |
||
| 1244 | session.bulk_insert_mappings( |
||
| 1245 | BuildingPeakLoads, |
||
| 1246 | df_peak_load.to_dict(orient="records"), |
||
| 1247 | ) |
||
| 1248 | log.info(f"Peak load for {scenario} exported to DB!") |
||
| 1249 | |||
| 1250 | |||
| 1251 | class CtsElectricityBuildings(Dataset): |
||
| 1252 | def __init__(self, dependencies): |
||
| 1253 | super().__init__( |
||
| 1254 | name="CtsElectricityBuildings", |
||
| 1255 | version="0.0.0", |
||
| 1256 | dependencies=dependencies, |
||
| 1257 | tasks=( |
||
| 1258 | cts_buildings, |
||
| 1259 | {cts_electricity, cts_heat}, |
||
| 1260 | get_cts_electricity_peak_load, |
||
| 1261 | ), |
||
| 1263 |