Conditions | 32 |
Total Lines | 807 |
Code Lines | 535 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.pypsaeursec.neighbor_reduction() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with importing data from |
||
270 | def neighbor_reduction(): |
||
271 | |||
272 | network = read_network() |
||
273 | |||
274 | network.links.drop("pipe_retrofit", axis="columns", inplace=True) |
||
275 | |||
276 | wanted_countries = [ |
||
277 | "DE", |
||
278 | "AT", |
||
279 | "CH", |
||
280 | "CZ", |
||
281 | "PL", |
||
282 | "SE", |
||
283 | "NO", |
||
284 | "DK", |
||
285 | "GB", |
||
286 | "NL", |
||
287 | "BE", |
||
288 | "FR", |
||
289 | "LU", |
||
290 | ] |
||
291 | foreign_buses = network.buses[ |
||
292 | ~network.buses.index.str.contains("|".join(wanted_countries)) |
||
293 | ] |
||
294 | network.buses = network.buses.drop( |
||
295 | network.buses.loc[foreign_buses.index].index |
||
296 | ) |
||
297 | |||
298 | # drop foreign lines and links from the 2nd row |
||
299 | |||
300 | network.lines = network.lines.drop( |
||
301 | network.lines[ |
||
302 | (network.lines["bus0"].isin(network.buses.index) == False) |
||
303 | & (network.lines["bus1"].isin(network.buses.index) == False) |
||
304 | ].index |
||
305 | ) |
||
306 | |||
307 | # select all lines which have at bus1 the bus which is kept |
||
308 | lines_cb_1 = network.lines[ |
||
309 | (network.lines["bus0"].isin(network.buses.index) == False) |
||
310 | ] |
||
311 | |||
312 | # create a load at bus1 with the line's hourly loading |
||
313 | for i, k in zip(lines_cb_1.bus1.values, lines_cb_1.index): |
||
314 | network.add( |
||
315 | "Load", |
||
316 | "slack_fix " + i + " " + k, |
||
317 | bus=i, |
||
318 | p_set=network.lines_t.p1[k], |
||
319 | ) |
||
320 | network.loads.carrier.loc[ |
||
321 | "slack_fix " + i + " " + k |
||
322 | ] = lines_cb_1.carrier[k] |
||
323 | |||
324 | # select all lines which have at bus0 the bus which is kept |
||
325 | lines_cb_0 = network.lines[ |
||
326 | (network.lines["bus1"].isin(network.buses.index) == False) |
||
327 | ] |
||
328 | |||
329 | # create a load at bus0 with the line's hourly loading |
||
330 | for i, k in zip(lines_cb_0.bus0.values, lines_cb_0.index): |
||
331 | network.add( |
||
332 | "Load", |
||
333 | "slack_fix " + i + " " + k, |
||
334 | bus=i, |
||
335 | p_set=network.lines_t.p0[k], |
||
336 | ) |
||
337 | network.loads.carrier.loc[ |
||
338 | "slack_fix " + i + " " + k |
||
339 | ] = lines_cb_0.carrier[k] |
||
340 | |||
341 | # do the same for links |
||
342 | |||
343 | network.links = network.links.drop( |
||
344 | network.links[ |
||
345 | (network.links["bus0"].isin(network.buses.index) == False) |
||
346 | & (network.links["bus1"].isin(network.buses.index) == False) |
||
347 | ].index |
||
348 | ) |
||
349 | |||
350 | # select all links which have at bus1 the bus which is kept |
||
351 | links_cb_1 = network.links[ |
||
352 | (network.links["bus0"].isin(network.buses.index) == False) |
||
353 | ] |
||
354 | |||
355 | # create a load at bus1 with the link's hourly loading |
||
356 | for i, k in zip(links_cb_1.bus1.values, links_cb_1.index): |
||
357 | network.add( |
||
358 | "Load", |
||
359 | "slack_fix_links " + i + " " + k, |
||
360 | bus=i, |
||
361 | p_set=network.links_t.p1[k], |
||
362 | ) |
||
363 | network.loads.carrier.loc[ |
||
364 | "slack_fix_links " + i + " " + k |
||
365 | ] = links_cb_1.carrier[k] |
||
366 | |||
367 | # select all links which have at bus0 the bus which is kept |
||
368 | links_cb_0 = network.links[ |
||
369 | (network.links["bus1"].isin(network.buses.index) == False) |
||
370 | ] |
||
371 | |||
372 | # create a load at bus0 with the link's hourly loading |
||
373 | for i, k in zip(links_cb_0.bus0.values, links_cb_0.index): |
||
374 | network.add( |
||
375 | "Load", |
||
376 | "slack_fix_links " + i + " " + k, |
||
377 | bus=i, |
||
378 | p_set=network.links_t.p0[k], |
||
379 | ) |
||
380 | network.loads.carrier.loc[ |
||
381 | "slack_fix_links " + i + " " + k |
||
382 | ] = links_cb_0.carrier[k] |
||
383 | |||
384 | # drop remaining foreign components |
||
385 | |||
386 | network.lines = network.lines.drop( |
||
387 | network.lines[ |
||
388 | (network.lines["bus0"].isin(network.buses.index) == False) |
||
389 | | (network.lines["bus1"].isin(network.buses.index) == False) |
||
390 | ].index |
||
391 | ) |
||
392 | |||
393 | network.links = network.links.drop( |
||
394 | network.links[ |
||
395 | (network.links["bus0"].isin(network.buses.index) == False) |
||
396 | | (network.links["bus1"].isin(network.buses.index) == False) |
||
397 | ].index |
||
398 | ) |
||
399 | |||
400 | network.transformers = network.transformers.drop( |
||
401 | network.transformers[ |
||
402 | (network.transformers["bus0"].isin(network.buses.index) == False) |
||
403 | | (network.transformers["bus1"].isin(network.buses.index) == False) |
||
404 | ].index |
||
405 | ) |
||
406 | network.generators = network.generators.drop( |
||
407 | network.generators[ |
||
408 | (network.generators["bus"].isin(network.buses.index) == False) |
||
409 | ].index |
||
410 | ) |
||
411 | |||
412 | network.loads = network.loads.drop( |
||
413 | network.loads[ |
||
414 | (network.loads["bus"].isin(network.buses.index) == False) |
||
415 | ].index |
||
416 | ) |
||
417 | |||
418 | network.storage_units = network.storage_units.drop( |
||
419 | network.storage_units[ |
||
420 | (network.storage_units["bus"].isin(network.buses.index) == False) |
||
421 | ].index |
||
422 | ) |
||
423 | |||
424 | components = [ |
||
425 | "loads", |
||
426 | "generators", |
||
427 | "lines", |
||
428 | "buses", |
||
429 | "transformers", |
||
430 | "links", |
||
431 | ] |
||
432 | for g in components: # loads_t |
||
433 | h = g + "_t" |
||
434 | nw = getattr(network, h) # network.loads_t |
||
435 | for i in nw.keys(): # network.loads_t.p |
||
436 | cols = [ |
||
437 | j |
||
438 | for j in getattr(nw, i).columns |
||
439 | if j not in getattr(network, g).index |
||
440 | ] |
||
441 | for k in cols: |
||
442 | del getattr(nw, i)[k] |
||
443 | |||
444 | # writing components of neighboring countries to etrago tables |
||
445 | |||
446 | # Set country tag for all buses |
||
447 | network.buses.country = network.buses.index.str[:2] |
||
448 | neighbors = network.buses[network.buses.country != "DE"] |
||
449 | |||
450 | neighbors["new_index"] = ( |
||
451 | db.next_etrago_id("bus") + neighbors.reset_index().index |
||
452 | ) |
||
453 | |||
454 | # lines, the foreign crossborder lines |
||
455 | # (without crossborder lines to Germany!) |
||
456 | |||
457 | neighbor_lines = network.lines[ |
||
458 | network.lines.bus0.isin(neighbors.index) |
||
459 | & network.lines.bus1.isin(neighbors.index) |
||
460 | ] |
||
461 | if not network.lines_t["s_max_pu"].empty: |
||
462 | neighbor_lines_t = network.lines_t["s_max_pu"][neighbor_lines.index] |
||
463 | |||
464 | neighbor_lines.reset_index(inplace=True) |
||
465 | neighbor_lines.bus0 = ( |
||
466 | neighbors.loc[neighbor_lines.bus0, "new_index"].reset_index().new_index |
||
467 | ) |
||
468 | neighbor_lines.bus1 = ( |
||
469 | neighbors.loc[neighbor_lines.bus1, "new_index"].reset_index().new_index |
||
470 | ) |
||
471 | neighbor_lines.index += db.next_etrago_id("line") |
||
472 | |||
473 | if not network.lines_t["s_max_pu"].empty: |
||
474 | for i in neighbor_lines_t.columns: |
||
|
|||
475 | new_index = neighbor_lines[neighbor_lines["name"] == i].index |
||
476 | neighbor_lines_t.rename(columns={i: new_index[0]}, inplace=True) |
||
477 | |||
478 | # links |
||
479 | neighbor_links = network.links[ |
||
480 | network.links.bus0.isin(neighbors.index) |
||
481 | & network.links.bus1.isin(neighbors.index) |
||
482 | ] |
||
483 | |||
484 | neighbor_links.reset_index(inplace=True) |
||
485 | neighbor_links.bus0 = ( |
||
486 | neighbors.loc[neighbor_links.bus0, "new_index"].reset_index().new_index |
||
487 | ) |
||
488 | neighbor_links.bus1 = ( |
||
489 | neighbors.loc[neighbor_links.bus1, "new_index"].reset_index().new_index |
||
490 | ) |
||
491 | neighbor_links.index += db.next_etrago_id("link") |
||
492 | |||
493 | # generators |
||
494 | neighbor_gens = network.generators[ |
||
495 | network.generators.bus.isin(neighbors.index) |
||
496 | ] |
||
497 | neighbor_gens_t = network.generators_t["p_max_pu"][ |
||
498 | neighbor_gens[ |
||
499 | neighbor_gens.index.isin(network.generators_t["p_max_pu"].columns) |
||
500 | ].index |
||
501 | ] |
||
502 | |||
503 | neighbor_gens.reset_index(inplace=True) |
||
504 | neighbor_gens.bus = ( |
||
505 | neighbors.loc[neighbor_gens.bus, "new_index"].reset_index().new_index |
||
506 | ) |
||
507 | neighbor_gens.index += db.next_etrago_id("generator") |
||
508 | |||
509 | for i in neighbor_gens_t.columns: |
||
510 | new_index = neighbor_gens[neighbor_gens["name"] == i].index |
||
511 | neighbor_gens_t.rename(columns={i: new_index[0]}, inplace=True) |
||
512 | |||
513 | # loads |
||
514 | |||
515 | neighbor_loads = network.loads[network.loads.bus.isin(neighbors.index)] |
||
516 | neighbor_loads_t_index = neighbor_loads.index[ |
||
517 | neighbor_loads.index.isin(network.loads_t.p_set.columns) |
||
518 | ] |
||
519 | neighbor_loads_t = network.loads_t["p_set"][neighbor_loads_t_index] |
||
520 | |||
521 | neighbor_loads.reset_index(inplace=True) |
||
522 | neighbor_loads.bus = ( |
||
523 | neighbors.loc[neighbor_loads.bus, "new_index"].reset_index().new_index |
||
524 | ) |
||
525 | neighbor_loads.index += db.next_etrago_id("load") |
||
526 | |||
527 | for i in neighbor_loads_t.columns: |
||
528 | new_index = neighbor_loads[neighbor_loads["index"] == i].index |
||
529 | neighbor_loads_t.rename(columns={i: new_index[0]}, inplace=True) |
||
530 | |||
531 | # stores |
||
532 | neighbor_stores = network.stores[network.stores.bus.isin(neighbors.index)] |
||
533 | neighbor_stores_t_index = neighbor_stores.index[ |
||
534 | neighbor_stores.index.isin(network.stores_t.e_min_pu.columns) |
||
535 | ] |
||
536 | neighbor_stores_t = network.stores_t["e_min_pu"][neighbor_stores_t_index] |
||
537 | |||
538 | neighbor_stores.reset_index(inplace=True) |
||
539 | neighbor_stores.bus = ( |
||
540 | neighbors.loc[neighbor_stores.bus, "new_index"].reset_index().new_index |
||
541 | ) |
||
542 | neighbor_stores.index += db.next_etrago_id("store") |
||
543 | |||
544 | for i in neighbor_stores_t.columns: |
||
545 | new_index = neighbor_stores[neighbor_stores["name"] == i].index |
||
546 | neighbor_stores_t.rename(columns={i: new_index[0]}, inplace=True) |
||
547 | |||
548 | # storage_units |
||
549 | neighbor_storage = network.storage_units[ |
||
550 | network.storage_units.bus.isin(neighbors.index) |
||
551 | ] |
||
552 | neighbor_storage_t_index = neighbor_storage.index[ |
||
553 | neighbor_storage.index.isin(network.storage_units_t.inflow.columns) |
||
554 | ] |
||
555 | neighbor_storage_t = network.storage_units_t["inflow"][ |
||
556 | neighbor_storage_t_index |
||
557 | ] |
||
558 | |||
559 | neighbor_storage.reset_index(inplace=True) |
||
560 | neighbor_storage.bus = ( |
||
561 | neighbors.loc[neighbor_storage.bus, "new_index"] |
||
562 | .reset_index() |
||
563 | .new_index |
||
564 | ) |
||
565 | neighbor_storage.index += db.next_etrago_id("storage") |
||
566 | |||
567 | for i in neighbor_storage_t.columns: |
||
568 | new_index = neighbor_storage[neighbor_storage["name"] == i].index |
||
569 | neighbor_storage_t.rename(columns={i: new_index[0]}, inplace=True) |
||
570 | |||
571 | # Connect to local database |
||
572 | engine = db.engine() |
||
573 | |||
574 | neighbors["scn_name"] = "eGon100RE" |
||
575 | neighbors.index = neighbors["new_index"] |
||
576 | |||
577 | # Correct geometry for non AC buses |
||
578 | carriers = set(neighbors.carrier.to_list()) |
||
579 | carriers = [ |
||
580 | e for e in carriers if e not in ("AC", "biogas", "gas for industry") |
||
581 | ] |
||
582 | non_AC_neighbors = pd.DataFrame() |
||
583 | for c in carriers: |
||
584 | c_neighbors = neighbors[neighbors.carrier == c].set_index( |
||
585 | "location", drop=False |
||
586 | ) |
||
587 | for i in ["x", "y"]: |
||
588 | c_neighbors = c_neighbors.drop(i, axis=1) |
||
589 | coordinates = neighbors[neighbors.carrier == "AC"][ |
||
590 | ["location", "x", "y"] |
||
591 | ].set_index("location") |
||
592 | c_neighbors = pd.concat([coordinates, c_neighbors], axis=1).set_index( |
||
593 | "new_index", drop=False |
||
594 | ) |
||
595 | non_AC_neighbors = non_AC_neighbors.append(c_neighbors) |
||
596 | neighbors = neighbors[neighbors.carrier == "AC"].append(non_AC_neighbors) |
||
597 | |||
598 | for i in ["new_index", "control", "generator", "location", "sub_network"]: |
||
599 | neighbors = neighbors.drop(i, axis=1) |
||
600 | |||
601 | # Add geometry column |
||
602 | neighbors = ( |
||
603 | gpd.GeoDataFrame( |
||
604 | neighbors, geometry=gpd.points_from_xy(neighbors.x, neighbors.y) |
||
605 | ) |
||
606 | .rename_geometry("geom") |
||
607 | .set_crs(4326) |
||
608 | ) |
||
609 | |||
610 | # Unify carrier names |
||
611 | neighbors.carrier = neighbors.carrier.str.replace(" ", "_") |
||
612 | neighbors.carrier.replace( |
||
613 | { |
||
614 | "gas": "CH4", |
||
615 | }, |
||
616 | inplace=True, |
||
617 | ) |
||
618 | |||
619 | neighbors.to_postgis( |
||
620 | "egon_etrago_bus", |
||
621 | engine, |
||
622 | schema="grid", |
||
623 | if_exists="append", |
||
624 | index=True, |
||
625 | index_label="bus_id", |
||
626 | ) |
||
627 | |||
628 | # prepare and write neighboring crossborder lines to etrago tables |
||
629 | def lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE"): |
||
630 | neighbor_lines["scn_name"] = scn |
||
631 | neighbor_lines["cables"] = 3 * neighbor_lines["num_parallel"].astype( |
||
632 | int |
||
633 | ) |
||
634 | neighbor_lines["s_nom"] = neighbor_lines["s_nom_min"] |
||
635 | |||
636 | for i in [ |
||
637 | "name", |
||
638 | "x_pu_eff", |
||
639 | "r_pu_eff", |
||
640 | "sub_network", |
||
641 | "x_pu", |
||
642 | "r_pu", |
||
643 | "g_pu", |
||
644 | "b_pu", |
||
645 | "s_nom_opt", |
||
646 | ]: |
||
647 | neighbor_lines = neighbor_lines.drop(i, axis=1) |
||
648 | |||
649 | # Define geometry and add to lines dataframe as 'topo' |
||
650 | gdf = gpd.GeoDataFrame(index=neighbor_lines.index) |
||
651 | gdf["geom_bus0"] = neighbors.geom[neighbor_lines.bus0].values |
||
652 | gdf["geom_bus1"] = neighbors.geom[neighbor_lines.bus1].values |
||
653 | gdf["geometry"] = gdf.apply( |
||
654 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
655 | ) |
||
656 | |||
657 | neighbor_lines = ( |
||
658 | gpd.GeoDataFrame(neighbor_lines, geometry=gdf["geometry"]) |
||
659 | .rename_geometry("topo") |
||
660 | .set_crs(4326) |
||
661 | ) |
||
662 | |||
663 | neighbor_lines["lifetime"] = get_sector_parameters("electricity", scn)[ |
||
664 | "lifetime" |
||
665 | ]["ac_ehv_overhead_line"] |
||
666 | |||
667 | neighbor_lines.to_postgis( |
||
668 | "egon_etrago_line", |
||
669 | engine, |
||
670 | schema="grid", |
||
671 | if_exists="append", |
||
672 | index=True, |
||
673 | index_label="line_id", |
||
674 | ) |
||
675 | |||
676 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE") |
||
677 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon2035") |
||
678 | |||
679 | def links_to_etrago(neighbor_links, scn="eGon100RE", extendable=True): |
||
680 | """Prepare and write neighboring crossborder links to eTraGo table |
||
681 | |||
682 | This function prepare the neighboring crossborder links |
||
683 | generated the PyPSA-eur-sec (p-e-s) run by: |
||
684 | * Delete the useless columns |
||
685 | * If extendable is false only (non default case): |
||
686 | * Replace p_nom = 0 with the p_nom_op values (arrising |
||
687 | from the p-e-s optimisation) |
||
688 | * Setting p_nom_extendable to false |
||
689 | * Add geomtry to the links: 'geom' and 'topo' columns |
||
690 | * Change the name of the carriers to have the consistent in |
||
691 | eGon-data |
||
692 | |||
693 | The function insert then the link to the eTraGo table and has |
||
694 | no return. |
||
695 | |||
696 | Parameters |
||
697 | ---------- |
||
698 | neighbor_links : pandas.DataFrame |
||
699 | Dataframe containing the neighboring crossborder links |
||
700 | scn_name : str |
||
701 | Name of the scenario |
||
702 | extendable : bool |
||
703 | Boolean expressing if the links should be extendable or not |
||
704 | |||
705 | Returns |
||
706 | ------- |
||
707 | None |
||
708 | |||
709 | """ |
||
710 | neighbor_links["scn_name"] = scn |
||
711 | |||
712 | if extendable is True: |
||
713 | neighbor_links = neighbor_links.drop( |
||
714 | columns=[ |
||
715 | "name", |
||
716 | "geometry", |
||
717 | "tags", |
||
718 | "under_construction", |
||
719 | "underground", |
||
720 | "underwater_fraction", |
||
721 | "bus2", |
||
722 | "bus3", |
||
723 | "bus4", |
||
724 | "efficiency2", |
||
725 | "efficiency3", |
||
726 | "efficiency4", |
||
727 | "lifetime", |
||
728 | "p_nom_opt", |
||
729 | "pipe_retrofit", |
||
730 | ], |
||
731 | errors="ignore", |
||
732 | ) |
||
733 | |||
734 | elif extendable is False: |
||
735 | neighbor_links = neighbor_links.drop( |
||
736 | columns=[ |
||
737 | "name", |
||
738 | "geometry", |
||
739 | "tags", |
||
740 | "under_construction", |
||
741 | "underground", |
||
742 | "underwater_fraction", |
||
743 | "bus2", |
||
744 | "bus3", |
||
745 | "bus4", |
||
746 | "efficiency2", |
||
747 | "efficiency3", |
||
748 | "efficiency4", |
||
749 | "lifetime", |
||
750 | "p_nom", |
||
751 | "p_nom_extendable", |
||
752 | "pipe_retrofit", |
||
753 | ], |
||
754 | errors="ignore", |
||
755 | ) |
||
756 | neighbor_links = neighbor_links.rename( |
||
757 | columns={"p_nom_opt": "p_nom"} |
||
758 | ) |
||
759 | neighbor_links["p_nom_extendable"] = False |
||
760 | |||
761 | # Define geometry and add to lines dataframe as 'topo' |
||
762 | gdf = gpd.GeoDataFrame(index=neighbor_links.index) |
||
763 | gdf["geom_bus0"] = neighbors.geom[neighbor_links.bus0].values |
||
764 | gdf["geom_bus1"] = neighbors.geom[neighbor_links.bus1].values |
||
765 | gdf["geometry"] = gdf.apply( |
||
766 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
767 | ) |
||
768 | |||
769 | neighbor_links = ( |
||
770 | gpd.GeoDataFrame(neighbor_links, geometry=gdf["geometry"]) |
||
771 | .rename_geometry("topo") |
||
772 | .set_crs(4326) |
||
773 | ) |
||
774 | |||
775 | # Unify carrier names |
||
776 | neighbor_links.carrier = neighbor_links.carrier.str.replace(" ", "_") |
||
777 | |||
778 | neighbor_links.carrier.replace( |
||
779 | { |
||
780 | "H2_Electrolysis": "power_to_H2", |
||
781 | "H2_Fuel_Cell": "H2_to_power", |
||
782 | "H2_pipeline_retrofitted": "H2_retrofit", |
||
783 | "SMR": "CH4_to_H2", |
||
784 | "Sabatier": "H2_to_CH4", |
||
785 | "gas_pipeline": "CH4", |
||
786 | }, |
||
787 | inplace=True, |
||
788 | ) |
||
789 | |||
790 | neighbor_links.to_postgis( |
||
791 | "egon_etrago_link", |
||
792 | engine, |
||
793 | schema="grid", |
||
794 | if_exists="append", |
||
795 | index=True, |
||
796 | index_label="link_id", |
||
797 | ) |
||
798 | |||
799 | non_extendable_links_carriers = [ |
||
800 | "H2 pipeline retrofitted", |
||
801 | "gas pipeline", |
||
802 | ] |
||
803 | |||
804 | map_CH4_for_ind_buses = neighbor_links[ |
||
805 | neighbor_links.carrier == "gas for industry" |
||
806 | ].set_index("bus1")["bus0"] |
||
807 | map_biogas_to_gas = neighbor_links[ |
||
808 | neighbor_links.carrier == "biogas to gas" |
||
809 | ].set_index("bus0")["bus1"] |
||
810 | |||
811 | # delete unwanted carriers for eTraGo |
||
812 | excluded_carriers = [ |
||
813 | "gas for industry", |
||
814 | "gas for industry CC", |
||
815 | "SMR CC", |
||
816 | "biogas to gas", |
||
817 | ] |
||
818 | neighbor_links = neighbor_links[ |
||
819 | ~neighbor_links.carrier.isin(excluded_carriers) |
||
820 | ] |
||
821 | |||
822 | links_to_etrago( |
||
823 | neighbor_links[ |
||
824 | ~neighbor_links.carrier.isin(non_extendable_links_carriers) |
||
825 | ], |
||
826 | "eGon100RE", |
||
827 | ) |
||
828 | links_to_etrago( |
||
829 | neighbor_links[ |
||
830 | neighbor_links.carrier.isin(non_extendable_links_carriers) |
||
831 | ], |
||
832 | "eGon100RE", |
||
833 | extendable=False, |
||
834 | ) |
||
835 | |||
836 | links_to_etrago(neighbor_links[neighbor_links.carrier == "DC"], "eGon2035") |
||
837 | |||
838 | # prepare neighboring generators for etrago tables |
||
839 | neighbor_gens["scn_name"] = "eGon100RE" |
||
840 | neighbor_gens["p_nom"] = neighbor_gens["p_nom_opt"] |
||
841 | neighbor_gens["p_nom_extendable"] = False |
||
842 | |||
843 | # Unify carrier names |
||
844 | neighbor_gens.carrier = neighbor_gens.carrier.str.replace(" ", "_") |
||
845 | |||
846 | neighbor_gens.carrier.replace( |
||
847 | { |
||
848 | "onwind": "wind_onshore", |
||
849 | "ror": "run_of_river", |
||
850 | "offwind-ac": "wind_offshore", |
||
851 | "offwind-dc": "wind_offshore", |
||
852 | "urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
||
853 | "residential_rural_solar_thermal": "residential_rural_solar_thermal_collector", |
||
854 | "services_rural_solar_thermal": "services_rural_solar_thermal_collector", |
||
855 | }, |
||
856 | inplace=True, |
||
857 | ) |
||
858 | |||
859 | for i in ["name", "weight", "lifetime", "p_set", "q_set", "p_nom_opt"]: |
||
860 | neighbor_gens = neighbor_gens.drop(i, axis=1) |
||
861 | |||
862 | neighbor_gens.to_sql( |
||
863 | "egon_etrago_generator", |
||
864 | engine, |
||
865 | schema="grid", |
||
866 | if_exists="append", |
||
867 | index=True, |
||
868 | index_label="generator_id", |
||
869 | ) |
||
870 | |||
871 | # prepare neighboring loads for etrago tables |
||
872 | neighbor_loads["scn_name"] = "eGon100RE" |
||
873 | |||
874 | # Unify carrier names |
||
875 | neighbor_loads.carrier = neighbor_loads.carrier.str.replace(" ", "_") |
||
876 | |||
877 | neighbor_loads.carrier.replace( |
||
878 | { |
||
879 | "electricity": "AC", |
||
880 | "DC": "AC", |
||
881 | "industry_electricity": "AC", |
||
882 | "H2_pipeline_retrofitted": "H2_system_boundary", |
||
883 | "gas_pipeline": "CH4_system_boundary", |
||
884 | "gas_for_industry": "CH4_for_industry", |
||
885 | }, |
||
886 | inplace=True, |
||
887 | ) |
||
888 | |||
889 | # Attribute CH4 bus to CH4_for_industry loads |
||
890 | neighbor_loads["bus"] = neighbor_loads["bus"].replace( |
||
891 | map_CH4_for_ind_buses |
||
892 | ) |
||
893 | |||
894 | neighbor_loads = neighbor_loads.drop( |
||
895 | columns=["index"], |
||
896 | errors="ignore", |
||
897 | ) |
||
898 | |||
899 | neighbor_loads.to_sql( |
||
900 | "egon_etrago_load", |
||
901 | engine, |
||
902 | schema="grid", |
||
903 | if_exists="append", |
||
904 | index=True, |
||
905 | index_label="load_id", |
||
906 | ) |
||
907 | |||
908 | # prepare neighboring stores for etrago tables |
||
909 | neighbor_stores["scn_name"] = "eGon100RE" |
||
910 | |||
911 | # Unify carrier names |
||
912 | neighbor_stores.carrier = neighbor_stores.carrier.str.replace(" ", "_") |
||
913 | |||
914 | neighbor_stores.carrier.replace( |
||
915 | { |
||
916 | "Li_ion": "battery", |
||
917 | "gas": "CH4", |
||
918 | }, |
||
919 | inplace=True, |
||
920 | ) |
||
921 | neighbor_stores.loc[ |
||
922 | ( |
||
923 | (neighbor_stores.e_nom_max <= 1e9) |
||
924 | & (neighbor_stores.carrier == "H2") |
||
925 | ), |
||
926 | "carrier", |
||
927 | ] = "H2_underground" |
||
928 | neighbor_stores.loc[ |
||
929 | ( |
||
930 | (neighbor_stores.e_nom_max > 1e9) |
||
931 | & (neighbor_stores.carrier == "H2") |
||
932 | ), |
||
933 | "carrier", |
||
934 | ] = "H2_overground" |
||
935 | |||
936 | for i in ["name", "p_set", "q_set", "e_nom_opt", "lifetime"]: |
||
937 | neighbor_stores = neighbor_stores.drop(i, axis=1) |
||
938 | |||
939 | # Attribute CH4 bus to CH4_for_industry loads |
||
940 | neighbor_stores["bus"] = neighbor_stores["bus"].replace(map_biogas_to_gas) |
||
941 | |||
942 | neighbor_stores.to_sql( |
||
943 | "egon_etrago_store", |
||
944 | engine, |
||
945 | schema="grid", |
||
946 | if_exists="append", |
||
947 | index=True, |
||
948 | index_label="store_id", |
||
949 | ) |
||
950 | |||
951 | # prepare neighboring storage_units for etrago tables |
||
952 | neighbor_storage["scn_name"] = "eGon100RE" |
||
953 | |||
954 | # Unify carrier names |
||
955 | neighbor_storage.carrier = neighbor_storage.carrier.str.replace(" ", "_") |
||
956 | |||
957 | neighbor_storage.carrier.replace( |
||
958 | {"PHS": "pumped_hydro", "hydro": "reservoir"}, inplace=True |
||
959 | ) |
||
960 | |||
961 | for i in ["name", "p_nom_opt"]: |
||
962 | neighbor_storage = neighbor_storage.drop(i, axis=1) |
||
963 | |||
964 | neighbor_storage.to_sql( |
||
965 | "egon_etrago_storage", |
||
966 | engine, |
||
967 | schema="grid", |
||
968 | if_exists="append", |
||
969 | index=True, |
||
970 | index_label="storage_id", |
||
971 | ) |
||
972 | |||
973 | # writing neighboring loads_t p_sets to etrago tables |
||
974 | |||
975 | neighbor_loads_t_etrago = pd.DataFrame( |
||
976 | columns=["scn_name", "temp_id", "p_set"], |
||
977 | index=neighbor_loads_t.columns, |
||
978 | ) |
||
979 | neighbor_loads_t_etrago["scn_name"] = "eGon100RE" |
||
980 | neighbor_loads_t_etrago["temp_id"] = 1 |
||
981 | for i in neighbor_loads_t.columns: |
||
982 | neighbor_loads_t_etrago["p_set"][i] = neighbor_loads_t[ |
||
983 | i |
||
984 | ].values.tolist() |
||
985 | |||
986 | neighbor_loads_t_etrago.to_sql( |
||
987 | "egon_etrago_load_timeseries", |
||
988 | engine, |
||
989 | schema="grid", |
||
990 | if_exists="append", |
||
991 | index=True, |
||
992 | index_label="load_id", |
||
993 | ) |
||
994 | |||
995 | # writing neighboring generator_t p_max_pu to etrago tables |
||
996 | neighbor_gens_t_etrago = pd.DataFrame( |
||
997 | columns=["scn_name", "temp_id", "p_max_pu"], |
||
998 | index=neighbor_gens_t.columns, |
||
999 | ) |
||
1000 | neighbor_gens_t_etrago["scn_name"] = "eGon100RE" |
||
1001 | neighbor_gens_t_etrago["temp_id"] = 1 |
||
1002 | for i in neighbor_gens_t.columns: |
||
1003 | neighbor_gens_t_etrago["p_max_pu"][i] = neighbor_gens_t[ |
||
1004 | i |
||
1005 | ].values.tolist() |
||
1006 | |||
1007 | neighbor_gens_t_etrago.to_sql( |
||
1008 | "egon_etrago_generator_timeseries", |
||
1009 | engine, |
||
1010 | schema="grid", |
||
1011 | if_exists="append", |
||
1012 | index=True, |
||
1013 | index_label="generator_id", |
||
1014 | ) |
||
1015 | |||
1016 | # writing neighboring stores_t e_min_pu to etrago tables |
||
1017 | neighbor_stores_t_etrago = pd.DataFrame( |
||
1018 | columns=["scn_name", "temp_id", "e_min_pu"], |
||
1019 | index=neighbor_stores_t.columns, |
||
1020 | ) |
||
1021 | neighbor_stores_t_etrago["scn_name"] = "eGon100RE" |
||
1022 | neighbor_stores_t_etrago["temp_id"] = 1 |
||
1023 | for i in neighbor_stores_t.columns: |
||
1024 | neighbor_stores_t_etrago["e_min_pu"][i] = neighbor_stores_t[ |
||
1025 | i |
||
1026 | ].values.tolist() |
||
1027 | |||
1028 | neighbor_stores_t_etrago.to_sql( |
||
1029 | "egon_etrago_store_timeseries", |
||
1030 | engine, |
||
1031 | schema="grid", |
||
1032 | if_exists="append", |
||
1033 | index=True, |
||
1034 | index_label="store_id", |
||
1035 | ) |
||
1036 | |||
1037 | # writing neighboring storage_units inflow to etrago tables |
||
1038 | neighbor_storage_t_etrago = pd.DataFrame( |
||
1039 | columns=["scn_name", "temp_id", "inflow"], |
||
1040 | index=neighbor_storage_t.columns, |
||
1041 | ) |
||
1042 | neighbor_storage_t_etrago["scn_name"] = "eGon100RE" |
||
1043 | neighbor_storage_t_etrago["temp_id"] = 1 |
||
1044 | for i in neighbor_storage_t.columns: |
||
1045 | neighbor_storage_t_etrago["inflow"][i] = neighbor_storage_t[ |
||
1046 | i |
||
1047 | ].values.tolist() |
||
1048 | |||
1049 | neighbor_storage_t_etrago.to_sql( |
||
1050 | "egon_etrago_storage_timeseries", |
||
1051 | engine, |
||
1052 | schema="grid", |
||
1053 | if_exists="append", |
||
1054 | index=True, |
||
1055 | index_label="storage_id", |
||
1056 | ) |
||
1057 | |||
1058 | # writing neighboring lines_t s_max_pu to etrago tables |
||
1059 | if not network.lines_t["s_max_pu"].empty: |
||
1060 | neighbor_lines_t_etrago = pd.DataFrame( |
||
1061 | columns=["scn_name", "s_max_pu"], index=neighbor_lines_t.columns |
||
1062 | ) |
||
1063 | neighbor_lines_t_etrago["scn_name"] = "eGon100RE" |
||
1064 | |||
1065 | for i in neighbor_lines_t.columns: |
||
1066 | neighbor_lines_t_etrago["s_max_pu"][i] = neighbor_lines_t[ |
||
1067 | i |
||
1068 | ].values.tolist() |
||
1069 | |||
1070 | neighbor_lines_t_etrago.to_sql( |
||
1071 | "egon_etrago_line_timeseries", |
||
1072 | engine, |
||
1073 | schema="grid", |
||
1074 | if_exists="append", |
||
1075 | index=True, |
||
1076 | index_label="line_id", |
||
1077 | ) |
||
1197 |