| Conditions | 1 |
| Total Lines | 216 |
| Code Lines | 86 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | """ |
||
| 256 | )["demand_mw_regio_cts_ind"].values[0] |
||
| 257 | |||
| 258 | input_hh = db.select_dataframe( |
||
| 259 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_regio_hh |
||
| 260 | FROM demand.egon_demandregio_hh |
||
| 261 | WHERE scenario= 'eGon2035' |
||
| 262 | AND year IN ('2035') |
||
| 263 | GROUP BY (scenario); |
||
| 264 | """, |
||
| 265 | warning=False, |
||
| 266 | )["demand_mw_regio_hh"].values[0] |
||
| 267 | |||
| 268 | input_demand = input_hh + input_cts_ind |
||
| 269 | |||
| 270 | e = round((output_demand - input_demand) / input_demand, 2) * 100 |
||
| 271 | |||
| 272 | print(f"electricity demand: {e} %") |
||
| 273 | |||
| 274 | |||
| 275 | def etrago_eGon2035_heat(): |
||
| 276 | """Execute basic sanity checks. |
||
| 277 | |||
| 278 | Returns print statements as sanity checks for the heat sector in |
||
| 279 | the eGon2035 scenario. |
||
| 280 | |||
| 281 | Parameters |
||
| 282 | ---------- |
||
| 283 | None |
||
| 284 | |||
| 285 | Returns |
||
| 286 | ------- |
||
| 287 | None |
||
| 288 | """ |
||
| 289 | |||
| 290 | # Check input and output values for the carriers "other_non_renewable", |
||
| 291 | # "other_renewable", "reservoir", "run_of_river" and "oil" |
||
| 292 | |||
| 293 | scn = "eGon2035" |
||
| 294 | |||
| 295 | # Section to check generator capacities |
||
| 296 | print(f"Sanity checks for scenario {scn}") |
||
| 297 | print( |
||
| 298 | "For German heat demands the following deviations between the inputs" |
||
| 299 | " and outputs can be observed:" |
||
| 300 | ) |
||
| 301 | |||
| 302 | # Sanity checks for heat demand |
||
| 303 | |||
| 304 | output_heat_demand = db.select_dataframe( |
||
| 305 | """SELECT a.scn_name, |
||
| 306 | (SUM( |
||
| 307 | (SELECT SUM(p) FROM UNNEST(b.p_set) p))/1000000)::numeric as load_twh |
||
| 308 | FROM grid.egon_etrago_load a |
||
| 309 | JOIN grid.egon_etrago_load_timeseries b |
||
| 310 | ON (a.load_id = b.load_id) |
||
| 311 | JOIN grid.egon_etrago_bus c |
||
| 312 | ON (a.bus=c.bus_id) |
||
| 313 | AND b.scn_name = 'eGon2035' |
||
| 314 | AND a.scn_name = 'eGon2035' |
||
| 315 | AND c.scn_name= 'eGon2035' |
||
| 316 | AND c.country='DE' |
||
| 317 | AND a.carrier IN ('rural_heat', 'central_heat') |
||
| 318 | GROUP BY (a.scn_name); |
||
| 319 | """, |
||
| 320 | warning=False, |
||
| 321 | )["load_twh"].values[0] |
||
| 322 | |||
| 323 | input_heat_demand = db.select_dataframe( |
||
| 324 | """SELECT scenario, SUM(demand::numeric/1000000) as demand_mw_peta_heat |
||
| 325 | FROM demand.egon_peta_heat |
||
| 326 | WHERE scenario= 'eGon2035' |
||
| 327 | GROUP BY (scenario); |
||
| 328 | """, |
||
| 329 | warning=False, |
||
| 330 | )["demand_mw_peta_heat"].values[0] |
||
| 331 | |||
| 332 | e_demand = ( |
||
| 333 | round((output_heat_demand - input_heat_demand) / input_heat_demand, 2) |
||
| 334 | * 100 |
||
| 335 | ) |
||
| 336 | |||
| 337 | print(f"heat demand: {e_demand} %") |
||
| 338 | |||
| 339 | # Sanity checks for heat supply |
||
| 340 | |||
| 341 | print( |
||
| 342 | "For German heat supplies the following deviations between the inputs " |
||
| 343 | "and outputs can be observed:" |
||
| 344 | ) |
||
| 345 | |||
| 346 | # Comparison for central heat pumps |
||
| 347 | heat_pump_input = db.select_dataframe( |
||
| 348 | """SELECT carrier, SUM(capacity::numeric) as Urban_central_heat_pump_mw |
||
| 349 | FROM supply.egon_scenario_capacities |
||
| 350 | WHERE carrier= 'urban_central_heat_pump' |
||
| 351 | AND scenario_name IN ('eGon2035') |
||
| 352 | GROUP BY (carrier); |
||
| 353 | """, |
||
| 354 | warning=False, |
||
| 355 | )["urban_central_heat_pump_mw"].values[0] |
||
| 356 | |||
| 357 | heat_pump_output = db.select_dataframe( |
||
| 358 | """SELECT carrier, SUM(p_nom::numeric) as Central_heat_pump_mw |
||
| 359 | FROM grid.egon_etrago_link |
||
| 360 | WHERE carrier= 'central_heat_pump' |
||
| 361 | AND scn_name IN ('eGon2035') |
||
| 362 | GROUP BY (carrier); |
||
| 363 | """, |
||
| 364 | warning=False, |
||
| 365 | )["central_heat_pump_mw"].values[0] |
||
| 366 | |||
| 367 | e_heat_pump = ( |
||
| 368 | round((heat_pump_output - heat_pump_input) / heat_pump_output, 2) * 100 |
||
| 369 | ) |
||
| 370 | |||
| 371 | print(f"'central_heat_pump': {e_heat_pump} % ") |
||
| 372 | |||
| 373 | # Comparison for residential heat pumps |
||
| 374 | |||
| 375 | input_residential_heat_pump = db.select_dataframe( |
||
| 376 | """SELECT carrier, SUM(capacity::numeric) as residential_heat_pump_mw |
||
| 377 | FROM supply.egon_scenario_capacities |
||
| 378 | WHERE carrier= 'residential_rural_heat_pump' |
||
| 379 | AND scenario_name IN ('eGon2035') |
||
| 380 | GROUP BY (carrier); |
||
| 381 | """, |
||
| 382 | warning=False, |
||
| 383 | )["residential_heat_pump_mw"].values[0] |
||
| 384 | |||
| 385 | output_residential_heat_pump = db.select_dataframe( |
||
| 386 | """SELECT carrier, SUM(p_nom::numeric) as rural_heat_pump_mw |
||
| 387 | FROM grid.egon_etrago_link |
||
| 388 | WHERE carrier= 'rural_heat_pump' |
||
| 389 | AND scn_name IN ('eGon2035') |
||
| 390 | GROUP BY (carrier); |
||
| 391 | """, |
||
| 392 | warning=False, |
||
| 393 | )["rural_heat_pump_mw"].values[0] |
||
| 394 | |||
| 395 | e_residential_heat_pump = ( |
||
| 396 | round( |
||
| 397 | (output_residential_heat_pump - input_residential_heat_pump) |
||
| 398 | / input_residential_heat_pump, |
||
| 399 | 2, |
||
| 400 | ) |
||
| 401 | * 100 |
||
| 402 | ) |
||
| 403 | print(f"'residential heat pumps': {e_residential_heat_pump} %") |
||
| 404 | |||
| 405 | # Comparison for resistive heater |
||
| 406 | resistive_heater_input = db.select_dataframe( |
||
| 407 | """SELECT carrier, |
||
| 408 | SUM(capacity::numeric) as Urban_central_resistive_heater_MW |
||
| 409 | FROM supply.egon_scenario_capacities |
||
| 410 | WHERE carrier= 'urban_central_resistive_heater' |
||
| 411 | AND scenario_name IN ('eGon2035') |
||
| 412 | GROUP BY (carrier); |
||
| 413 | """, |
||
| 414 | warning=False, |
||
| 415 | )["urban_central_resistive_heater_mw"].values[0] |
||
| 416 | |||
| 417 | resistive_heater_output = db.select_dataframe( |
||
| 418 | """SELECT carrier, SUM(p_nom::numeric) as central_resistive_heater_MW |
||
| 419 | FROM grid.egon_etrago_link |
||
| 420 | WHERE carrier= 'central_resistive_heater' |
||
| 421 | AND scn_name IN ('eGon2035') |
||
| 422 | GROUP BY (carrier); |
||
| 423 | """, |
||
| 424 | warning=False, |
||
| 425 | )["central_resistive_heater_mw"].values[0] |
||
| 426 | |||
| 427 | e_resistive_heater = ( |
||
| 428 | round( |
||
| 429 | (resistive_heater_output - resistive_heater_input) |
||
| 430 | / resistive_heater_input, |
||
| 431 | 2, |
||
| 432 | ) |
||
| 433 | * 100 |
||
| 434 | ) |
||
| 435 | |||
| 436 | print(f"'resistive heater': {e_resistive_heater} %") |
||
| 437 | |||
| 438 | # Comparison for solar thermal collectors |
||
| 439 | |||
| 440 | input_solar_thermal = db.select_dataframe( |
||
| 441 | """SELECT carrier, SUM(capacity::numeric) as solar_thermal_collector_mw |
||
| 442 | FROM supply.egon_scenario_capacities |
||
| 443 | WHERE carrier= 'urban_central_solar_thermal_collector' |
||
| 444 | AND scenario_name IN ('eGon2035') |
||
| 445 | GROUP BY (carrier); |
||
| 446 | """, |
||
| 447 | warning=False, |
||
| 448 | )["solar_thermal_collector_mw"].values[0] |
||
| 449 | |||
| 450 | output_solar_thermal = db.select_dataframe( |
||
| 451 | """SELECT carrier, SUM(p_nom::numeric) as solar_thermal_collector_mw |
||
| 452 | FROM grid.egon_etrago_generator |
||
| 453 | WHERE carrier= 'solar_thermal_collector' |
||
| 454 | AND scn_name IN ('eGon2035') |
||
| 455 | GROUP BY (carrier); |
||
| 456 | """, |
||
| 457 | warning=False, |
||
| 458 | )["solar_thermal_collector_mw"].values[0] |
||
| 459 | |||
| 460 | e_solar_thermal = ( |
||
| 461 | round( |
||
| 462 | (output_solar_thermal - input_solar_thermal) / input_solar_thermal, |
||
| 463 | 2, |
||
| 464 | ) |
||
| 465 | * 100 |
||
| 466 | ) |
||
| 467 | print(f"'solar thermal collector': {e_solar_thermal} %") |
||
| 468 | |||
| 469 | # Comparison for geothermal |
||
| 470 | |||
| 471 | input_geo_thermal = db.select_dataframe( |
||
| 472 | """SELECT carrier, |
||
| 575 |