Conditions | 16 |
Total Lines | 230 |
Code Lines | 97 |
Lines | 64 |
Ratio | 27.83 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.sanity_checks.sanitycheck_eGon2035_electricity() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """ |
||
24 | residential_electricity_annual_sum, |
||
25 | residential_electricity_hh_refinement, |
||
26 | }, |
||
27 | ) |
||
28 | |||
29 | |||
30 | def etrago_eGon2035_electricity(): |
||
31 | """Execute basic sanity checks. |
||
32 | |||
33 | Returns print statements as sanity checks for the electricity sector in |
||
34 | the eGon2035 scenario. |
||
35 | |||
36 | Parameters |
||
37 | ---------- |
||
38 | None |
||
39 | |||
40 | Returns |
||
41 | ------- |
||
42 | None |
||
43 | """ |
||
44 | |||
45 | scn = "eGon2035" |
||
46 | |||
47 | # Section to check generator capacities |
||
48 | print(f"Sanity checks for scenario {scn}") |
||
49 | print( |
||
50 | "For German electricity generators the following deviations between " |
||
51 | "the inputs and outputs can be observed:" |
||
52 | ) |
||
53 | |||
54 | carriers_electricity = [ |
||
55 | "other_non_renewable", |
||
56 | "other_renewable", |
||
57 | "reservoir", |
||
58 | "run_of_river", |
||
59 | "oil", |
||
60 | "wind_onshore", |
||
61 | "wind_offshore", |
||
62 | "solar", |
||
63 | "solar_rooftop", |
||
64 | "biomass", |
||
65 | ] |
||
66 | |||
67 | for carrier in carriers_electricity: |
||
68 | |||
69 | if carrier == "biomass": |
||
70 | sum_output = db.select_dataframe( |
||
71 | """SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
72 | FROM grid.egon_etrago_generator |
||
73 | WHERE bus IN ( |
||
74 | SELECT bus_id FROM grid.egon_etrago_bus |
||
75 | WHERE scn_name = 'eGon2035' |
||
76 | AND country = 'DE') |
||
77 | AND carrier IN ('biomass', 'industrial_biomass_CHP', |
||
78 | 'central_biomass_CHP') |
||
79 | GROUP BY (scn_name); |
||
80 | """, |
||
81 | warning=False, |
||
82 | ) |
||
83 | |||
84 | else: |
||
85 | sum_output = db.select_dataframe( |
||
86 | f"""SELECT scn_name, |
||
87 | SUM(p_nom::numeric) as output_capacity_mw |
||
88 | FROM grid.egon_etrago_generator |
||
89 | WHERE scn_name = '{scn}' |
||
90 | AND carrier IN ('{carrier}') |
||
91 | AND bus IN |
||
92 | (SELECT bus_id |
||
93 | FROM grid.egon_etrago_bus |
||
94 | WHERE scn_name = 'eGon2035' |
||
95 | AND country = 'DE') |
||
96 | GROUP BY (scn_name); |
||
97 | """, |
||
98 | warning=False, |
||
99 | ) |
||
100 | |||
101 | sum_input = db.select_dataframe( |
||
102 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
103 | FROM supply.egon_scenario_capacities |
||
104 | WHERE carrier= '{carrier}' |
||
105 | AND scenario_name ='{scn}' |
||
106 | GROUP BY (carrier); |
||
107 | """, |
||
108 | warning=False, |
||
109 | ) |
||
110 | |||
111 | View Code Duplication | if ( |
|
|
|||
112 | sum_output.output_capacity_mw.sum() == 0 |
||
113 | and sum_input.input_capacity_mw.sum() == 0 |
||
114 | ): |
||
115 | print( |
||
116 | f"No capacity for carrier '{carrier}' needed to be" |
||
117 | f" distributed. Everything is fine" |
||
118 | ) |
||
119 | |||
120 | elif ( |
||
121 | sum_input.input_capacity_mw.sum() > 0 |
||
122 | and sum_output.output_capacity_mw.sum() == 0 |
||
123 | ): |
||
124 | print( |
||
125 | f"Error: Capacity for carrier '{carrier}' was not distributed " |
||
126 | f"at all!" |
||
127 | ) |
||
128 | |||
129 | elif ( |
||
130 | sum_output.output_capacity_mw.sum() > 0 |
||
131 | and sum_input.input_capacity_mw.sum() == 0 |
||
132 | ): |
||
133 | print( |
||
134 | f"Error: Eventhough no input capacity was provided for carrier" |
||
135 | f"'{carrier}' a capacity got distributed!" |
||
136 | ) |
||
137 | |||
138 | else: |
||
139 | sum_input["error"] = ( |
||
140 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
141 | / sum_input.input_capacity_mw |
||
142 | ) * 100 |
||
143 | g = sum_input["error"].values[0] |
||
144 | |||
145 | print(f"{carrier}: " + str(round(g, 2)) + " %") |
||
146 | |||
147 | # Section to check storage units |
||
148 | |||
149 | print(f"Sanity checks for scenario {scn}") |
||
150 | print( |
||
151 | "For German electrical storage units the following deviations between" |
||
152 | "the inputs and outputs can be observed:" |
||
153 | ) |
||
154 | |||
155 | carriers_electricity = ["pumped_hydro"] |
||
156 | |||
157 | for carrier in carriers_electricity: |
||
158 | |||
159 | sum_output = db.select_dataframe( |
||
160 | f"""SELECT scn_name, SUM(p_nom::numeric) as output_capacity_mw |
||
161 | FROM grid.egon_etrago_storage |
||
162 | WHERE scn_name = '{scn}' |
||
163 | AND carrier IN ('{carrier}') |
||
164 | AND bus IN |
||
165 | (SELECT bus_id |
||
166 | FROM grid.egon_etrago_bus |
||
167 | WHERE scn_name = 'eGon2035' |
||
168 | AND country = 'DE') |
||
169 | GROUP BY (scn_name); |
||
170 | """, |
||
171 | warning=False, |
||
172 | ) |
||
173 | |||
174 | sum_input = db.select_dataframe( |
||
175 | f"""SELECT carrier, SUM(capacity::numeric) as input_capacity_mw |
||
176 | FROM supply.egon_scenario_capacities |
||
177 | WHERE carrier= '{carrier}' |
||
178 | AND scenario_name ='{scn}' |
||
179 | GROUP BY (carrier); |
||
180 | """, |
||
181 | warning=False, |
||
182 | ) |
||
183 | |||
184 | View Code Duplication | if ( |
|
185 | sum_output.output_capacity_mw.sum() == 0 |
||
186 | and sum_input.input_capacity_mw.sum() == 0 |
||
187 | ): |
||
188 | print( |
||
189 | f"No capacity for carrier '{carrier}' needed to be " |
||
190 | f"distributed. Everything is fine" |
||
191 | ) |
||
192 | |||
193 | elif ( |
||
194 | sum_input.input_capacity_mw.sum() > 0 |
||
195 | and sum_output.output_capacity_mw.sum() == 0 |
||
196 | ): |
||
197 | print( |
||
198 | f"Error: Capacity for carrier '{carrier}' was not distributed" |
||
199 | f" at all!" |
||
200 | ) |
||
201 | |||
202 | elif ( |
||
203 | sum_output.output_capacity_mw.sum() > 0 |
||
204 | and sum_input.input_capacity_mw.sum() == 0 |
||
205 | ): |
||
206 | print( |
||
207 | f"Error: Eventhough no input capacity was provided for carrier" |
||
208 | f" '{carrier}' a capacity got distributed!" |
||
209 | ) |
||
210 | |||
211 | else: |
||
212 | sum_input["error"] = ( |
||
213 | (sum_output.output_capacity_mw - sum_input.input_capacity_mw) |
||
214 | / sum_input.input_capacity_mw |
||
215 | ) * 100 |
||
216 | g = sum_input["error"].values[0] |
||
217 | |||
218 | print(f"{carrier}: " + str(round(g, 2)) + " %") |
||
219 | |||
220 | # Section to check loads |
||
221 | |||
222 | print( |
||
223 | "For German electricity loads the following deviations between the" |
||
224 | " input and output can be observed:" |
||
225 | ) |
||
226 | |||
227 | output_demand = db.select_dataframe( |
||
228 | """SELECT a.scn_name, a.carrier, SUM((SELECT SUM(p) |
||
229 | FROM UNNEST(b.p_set) p))/1000000::numeric as load_twh |
||
230 | FROM grid.egon_etrago_load a |
||
231 | JOIN grid.egon_etrago_load_timeseries b |
||
232 | ON (a.load_id = b.load_id) |
||
233 | JOIN grid.egon_etrago_bus c |
||
234 | ON (a.bus=c.bus_id) |
||
235 | AND b.scn_name = 'eGon2035' |
||
236 | AND a.scn_name = 'eGon2035' |
||
237 | AND a.carrier = 'AC' |
||
238 | AND c.scn_name= 'eGon2035' |
||
239 | AND c.country='DE' |
||
240 | GROUP BY (a.scn_name, a.carrier); |
||
241 | |||
242 | """, |
||
243 | warning=False, |
||
244 | )["load_twh"].values[0] |
||
245 | |||
246 | input_cts_ind = db.select_dataframe( |
||
247 | """SELECT scenario, |
||
248 | SUM(demand::numeric/1000000) as demand_mw_regio_cts_ind |
||
249 | FROM demand.egon_demandregio_cts_ind |
||
250 | WHERE scenario= 'eGon2035' |
||
251 | AND year IN ('2035') |
||
252 | GROUP BY (scenario); |
||
253 | |||
254 | """, |
||
575 |