| Total Complexity | 60 |
| Total Lines | 1498 |
| Duplicated Lines | 4.21 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electricity_demand_timeseries.cts_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """ |
||
| 2 | CTS electricity and heat demand time series for scenarios in 2035 and 2050 |
||
| 3 | assigned to OSM-buildings. |
||
| 4 | |||
| 5 | Disaggregation of cts heat & electricity demand time series from MV Substation |
||
| 6 | to census cells via annual demand and then to OSM buildings via |
||
| 7 | amenity tags or randomly if no sufficient OSM-data is available in the |
||
| 8 | respective census cell. If no OSM-buildings or synthetic residential buildings |
||
| 9 | are available new synthetic 5x5m buildings are generated. |
||
| 10 | |||
| 11 | The resulting data is stored in separate tables |
||
| 12 | |||
| 13 | * `openstreetmap.osm_buildings_synthetic`: |
||
| 14 | Lists generated synthetic building with id, zensus_population_id and |
||
| 15 | building type. This table is already created within |
||
| 16 | :func:`hh_buildings.map_houseprofiles_to_buildings()` |
||
| 17 | * `openstreetmap.egon_cts_buildings`: |
||
| 18 | Table of all selected cts buildings with id, census cell id, geometry and |
||
| 19 | amenity count in building. This table is created within |
||
| 20 | :func:`cts_buildings()` |
||
| 21 | * `demand.egon_cts_electricity_demand_building_share`: |
||
| 22 | Table including the mv substation electricity profile share of all selected |
||
| 23 | cts buildings for scenario eGon2035 and eGon100RE. This table is created |
||
| 24 | within :func:`cts_electricity()` |
||
| 25 | * `demand.egon_cts_heat_demand_building_share`: |
||
| 26 | Table including the mv substation heat profile share of all selected |
||
| 27 | cts buildings for scenario eGon2035 and eGon100RE. This table is created |
||
| 28 | within :func:`cts_heat()` |
||
| 29 | * `demand.egon_building_peak_loads`: |
||
| 30 | Mapping of demand time series and buildings including cell_id, building |
||
| 31 | area and peak load. This table is already created within |
||
| 32 | :func:`hh_buildings.get_building_peak_loads()` |
||
| 33 | |||
| 34 | **The following datasets from the database are mainly used for creation:** |
||
| 35 | |||
| 36 | * `openstreetmap.osm_buildings_filtered`: |
||
| 37 | Table of OSM-buildings filtered by tags to selecting residential and cts |
||
| 38 | buildings only. |
||
| 39 | * `openstreetmap.osm_amenities_shops_filtered`: |
||
| 40 | Table of OSM-amenities filtered by tags to select cts only. |
||
| 41 | * `openstreetmap.osm_amenities_not_in_buildings_filtered`: |
||
| 42 | Table of amenities which do not intersect with any building from |
||
| 43 | `openstreetmap.osm_buildings_filtered` |
||
| 44 | * `openstreetmap.osm_buildings_synthetic`: |
||
| 45 | Table of synthetic residential buildings |
||
| 46 | * `boundaries.egon_map_zensus_buildings_filtered_all`: |
||
| 47 | Mapping table of census cells and buildings filtered even if population |
||
| 48 | in census cell = 0. |
||
| 49 | * `demand.egon_demandregio_zensus_electricity`: |
||
| 50 | Table of annual electricity load demand for residential and cts at census |
||
| 51 | cell level. Residential load demand is derived from aggregated residential |
||
| 52 | building profiles. DemandRegio CTS load demand at NUTS3 is distributed to |
||
| 53 | census cells linearly to heat demand from peta5. |
||
| 54 | * `demand.egon_peta_heat`: |
||
| 55 | Table of annual heat load demand for residential and cts at census cell |
||
| 56 | level from peta5. |
||
| 57 | * `demand.egon_etrago_electricity_cts`: |
||
| 58 | Scaled cts electricity time series for every MV substation. Derived from |
||
| 59 | DemandRegio SLP for selected economic sectors at nuts3. Scaled with annual |
||
| 60 | demand from `demand.egon_demandregio_zensus_electricity` |
||
| 61 | * `demand.egon_etrago_heat_cts`: |
||
| 62 | Scaled cts heat time series for every MV substation. Derived from |
||
| 63 | DemandRegio SLP Gas for selected economic sectors at nuts3. Scaled with |
||
| 64 | annual demand from `demand.egon_peta_heat`. |
||
| 65 | |||
| 66 | **What is the goal?** |
||
| 67 | |||
| 68 | To disaggregate cts heat and electricity time series from MV substation level |
||
| 69 | to geo-referenced buildings. DemandRegio and Peta5 is used to identify census |
||
| 70 | cells with load demand. Openstreetmap data is used and filtered via tags to |
||
| 71 | identify buildings and count amenities within. The number of amenities serve |
||
| 72 | to assign the appropriate load demand share to the building. |
||
| 73 | |||
| 74 | **What is the challenge?** |
||
| 75 | |||
| 76 | The OSM, DemandRegio and Peta5 dataset differ from each other. The OSM dataset |
||
| 77 | is a community based dataset which is extended throughout and does not claim to |
||
| 78 | be complete. Therefore not all census cells which have a demand assigned by |
||
| 79 | DemandRegio or Peta5 methodology also have buildings with respective tags or no |
||
| 80 | buildings at all. Merging these datasets inconsistencies need |
||
| 81 | to be addressed. For example: not yet tagged buildings or amenities in OSM |
||
| 82 | |||
| 83 | **How are these datasets combined?** |
||
| 84 | |||
| 85 | ------>>>>>> continue |
||
| 86 | |||
| 87 | Firstly, all cts buildings are selected. Buildings which have cts amenities |
||
| 88 | inside. |
||
| 89 | |||
| 90 | |||
| 91 | **What are central assumptions during the data processing?** |
||
| 92 | |||
| 93 | * Mapping census to OSM data is not trivial. Discrepancies are substituted. |
||
| 94 | * Missing OSM buildings are generated by census building count. |
||
| 95 | * If no census building count data is available, the number of buildings is |
||
| 96 | derived by an average rate of households/buildings applied to the number of |
||
| 97 | households. |
||
| 98 | |||
| 99 | **Drawbacks and limitations of the data** |
||
| 100 | |||
| 101 | * Missing OSM buildings in cells without census building count are derived by |
||
| 102 | an average rate of households/buildings applied to the number of households. |
||
| 103 | As only whole houses can exist, the substitute is ceiled to the next higher |
||
| 104 | integer. Ceiling is applied to avoid rounding to amount of 0 buildings. |
||
| 105 | |||
| 106 | * As this datasets is a cascade after profile assignement at census cells |
||
| 107 | also check drawbacks and limitations in hh_profiles.py. |
||
| 108 | |||
| 109 | |||
| 110 | |||
| 111 | Example Query |
||
| 112 | ----- |
||
| 113 | |||
| 114 | |||
| 115 | Notes |
||
| 116 | ----- |
||
| 117 | |||
| 118 | This module docstring is rather a dataset documentation. Once, a decision |
||
| 119 | is made in ... the content of this module docstring needs to be moved to |
||
| 120 | docs attribute of the respective dataset class. |
||
| 121 | """ |
||
| 122 | |||
| 123 | from geoalchemy2 import Geometry |
||
| 124 | from geoalchemy2.shape import to_shape |
||
| 125 | from sqlalchemy import REAL, Column, Integer, String, func |
||
| 126 | from sqlalchemy.ext.declarative import declarative_base |
||
| 127 | import geopandas as gpd |
||
| 128 | import numpy as np |
||
| 129 | import pandas as pd |
||
| 130 | import saio |
||
| 131 | |||
| 132 | from egon.data import db |
||
| 133 | from egon.data import logger as log |
||
| 134 | from egon.data.datasets import Dataset |
||
| 135 | from egon.data.datasets.electricity_demand import ( |
||
| 136 | EgonDemandRegioZensusElectricity, |
||
| 137 | ) |
||
| 138 | from egon.data.datasets.electricity_demand.temporal import ( |
||
| 139 | EgonEtragoElectricityCts, |
||
| 140 | calc_load_curves_cts, |
||
| 141 | ) |
||
| 142 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
| 143 | BuildingPeakLoads, |
||
| 144 | OsmBuildingsSynthetic, |
||
| 145 | ) |
||
| 146 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
| 147 | random_ints_until_sum, |
||
| 148 | random_point_in_square, |
||
| 149 | specific_int_until_sum, |
||
| 150 | write_table_to_postgis, |
||
| 151 | write_table_to_postgres, |
||
| 152 | ) |
||
| 153 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
| 154 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
| 155 | from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
||
| 156 | |||
| 157 | engine = db.engine() |
||
| 158 | Base = declarative_base() |
||
| 159 | |||
| 160 | # import db tables |
||
| 161 | saio.register_schema("openstreetmap", engine=engine) |
||
| 162 | saio.register_schema("boundaries", engine=engine) |
||
| 163 | |||
| 164 | |||
| 165 | class EgonCtsElectricityDemandBuildingShare(Base): |
||
| 166 | __tablename__ = "egon_cts_electricity_demand_building_share" |
||
| 167 | __table_args__ = {"schema": "demand"} |
||
| 168 | |||
| 169 | id = Column(Integer, primary_key=True) |
||
| 170 | scenario = Column(String, primary_key=True) |
||
| 171 | bus_id = Column(Integer, index=True) |
||
| 172 | profile_share = Column(REAL) |
||
| 173 | |||
| 174 | |||
| 175 | class EgonCtsHeatDemandBuildingShare(Base): |
||
| 176 | __tablename__ = "egon_cts_heat_demand_building_share" |
||
| 177 | __table_args__ = {"schema": "demand"} |
||
| 178 | |||
| 179 | id = Column(Integer, primary_key=True) |
||
| 180 | scenario = Column(String, primary_key=True) |
||
| 181 | bus_id = Column(Integer, index=True) |
||
| 182 | profile_share = Column(REAL) |
||
| 183 | |||
| 184 | |||
| 185 | class CtsBuildings(Base): |
||
| 186 | __tablename__ = "egon_cts_buildings" |
||
| 187 | __table_args__ = {"schema": "openstreetmap"} |
||
| 188 | |||
| 189 | serial = Column(Integer, primary_key=True) |
||
| 190 | id = Column(Integer, index=True) |
||
| 191 | zensus_population_id = Column(Integer, index=True) |
||
| 192 | geom_building = Column(Geometry("Polygon", 3035)) |
||
| 193 | n_amenities_inside = Column(Integer) |
||
| 194 | source = Column(String) |
||
| 195 | |||
| 196 | |||
| 197 | class BuildingHeatPeakLoads(Base): |
||
| 198 | __tablename__ = "egon_building_heat_peak_loads" |
||
| 199 | __table_args__ = {"schema": "demand"} |
||
| 200 | |||
| 201 | building_id = Column(Integer, primary_key=True) |
||
| 202 | scenario = Column(String, primary_key=True) |
||
| 203 | sector = Column(String, primary_key=True) |
||
| 204 | peak_load_in_w = Column(REAL) |
||
| 205 | |||
| 206 | |||
| 207 | def amenities_without_buildings(): |
||
| 208 | """ |
||
| 209 | Amenities which have no buildings assigned and are in |
||
| 210 | a cell with cts demand are determined. |
||
| 211 | |||
| 212 | Returns |
||
| 213 | ------- |
||
| 214 | pd.DataFrame |
||
| 215 | Table of amenities without buildings |
||
| 216 | """ |
||
| 217 | from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
||
| 218 | |||
| 219 | with db.session_scope() as session: |
||
| 220 | cells_query = ( |
||
| 221 | session.query( |
||
| 222 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 223 | # TODO can be used for square around amenity |
||
| 224 | # (1 geom_amenity: 1 geom_building) |
||
| 225 | # not unique amenity_ids yet |
||
| 226 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
| 227 | osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
||
| 228 | # EgonDemandRegioZensusElectricity.demand, |
||
| 229 | # # TODO can be used to generate n random buildings |
||
| 230 | # # (n amenities : 1 randombuilding) |
||
| 231 | # func.count( |
||
| 232 | # osm_amenities_not_in_buildings_filtered.egon_amenity_id |
||
| 233 | # ).label("n_amenities_inside"), |
||
| 234 | # DestatisZensusPopulationPerHa.geom, |
||
| 235 | ) |
||
| 236 | .filter( |
||
| 237 | func.st_within( |
||
| 238 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
| 239 | DestatisZensusPopulationPerHa.geom, |
||
| 240 | ) |
||
| 241 | ) |
||
| 242 | .filter( |
||
| 243 | DestatisZensusPopulationPerHa.id |
||
| 244 | == EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 245 | ) |
||
| 246 | .filter( |
||
| 247 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 248 | EgonDemandRegioZensusElectricity.scenario == "eGon2035" |
||
| 249 | # ).group_by( |
||
| 250 | # EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 251 | # DestatisZensusPopulationPerHa.geom, |
||
| 252 | ) |
||
| 253 | ) |
||
| 254 | # # TODO can be used to generate n random buildings |
||
| 255 | # df_cells_with_amenities_not_in_buildings = gpd.read_postgis( |
||
| 256 | # cells_query.statement, cells_query.session.bind, geom_col="geom" |
||
| 257 | # ) |
||
| 258 | # |
||
| 259 | |||
| 260 | # # TODO can be used for square around amenity |
||
| 261 | df_amenities_without_buildings = gpd.read_postgis( |
||
| 262 | cells_query.statement, |
||
| 263 | cells_query.session.bind, |
||
| 264 | geom_col="geom_amenity", |
||
| 265 | ) |
||
| 266 | return df_amenities_without_buildings |
||
| 267 | |||
| 268 | |||
| 269 | def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
||
| 270 | """ |
||
| 271 | Building centroids are placed randomly within census cells. |
||
| 272 | The Number of buildings is derived from n_amenity_inside, the selected |
||
| 273 | method and number of amenities per building. |
||
| 274 | |||
| 275 | Returns |
||
| 276 | ------- |
||
| 277 | df: gpd.GeoDataFrame |
||
| 278 | Table of buildings centroids |
||
| 279 | """ |
||
| 280 | if isinstance(max_amenities, int): |
||
| 281 | # amount of amenities is randomly generated within bounds |
||
| 282 | # (max_amenities, amenities per cell) |
||
| 283 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
| 284 | random_ints_until_sum, args=[max_amenities] |
||
| 285 | ) |
||
| 286 | if isinstance(amenities, int): |
||
| 287 | # Specific amount of amenities per building |
||
| 288 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
| 289 | specific_int_until_sum, args=[amenities] |
||
| 290 | ) |
||
| 291 | |||
| 292 | # Unnest each building |
||
| 293 | df = df.explode(column="n_amenities_inside") |
||
| 294 | |||
| 295 | # building count per cell |
||
| 296 | df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
||
| 297 | |||
| 298 | # generate random synthetic buildings |
||
| 299 | edge_length = 5 |
||
| 300 | # create random points within census cells |
||
| 301 | points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
||
| 302 | |||
| 303 | df.reset_index(drop=True, inplace=True) |
||
| 304 | # Store center of polygon |
||
| 305 | df["geom_point"] = points |
||
| 306 | # Drop geometry of census cell |
||
| 307 | df = df.drop(columns=["geom"]) |
||
| 308 | |||
| 309 | return df |
||
| 310 | |||
| 311 | |||
| 312 | def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
||
| 313 | """ |
||
| 314 | Synthetic buildings are generated around points. |
||
| 315 | |||
| 316 | Parameters |
||
| 317 | ---------- |
||
| 318 | df: pd.DataFrame |
||
| 319 | Table of census cells |
||
| 320 | points: gpd.GeoSeries or str |
||
| 321 | List of points to place buildings around or column name of df |
||
| 322 | crs: str |
||
| 323 | CRS of result table |
||
| 324 | |||
| 325 | Returns |
||
| 326 | ------- |
||
| 327 | df: gpd.GeoDataFrame |
||
| 328 | Synthetic buildings |
||
| 329 | """ |
||
| 330 | |||
| 331 | if isinstance(points, str) and points in df.columns: |
||
| 332 | points = df[points] |
||
| 333 | elif isinstance(points, gpd.GeoSeries): |
||
| 334 | pass |
||
| 335 | else: |
||
| 336 | raise ValueError("Points are of the wrong type") |
||
| 337 | |||
| 338 | # Create building using a square around point |
||
| 339 | edge_length = 5 |
||
| 340 | df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
||
| 341 | |||
| 342 | if "geom_point" not in df.columns: |
||
| 343 | df["geom_point"] = df["geom_building"].centroid |
||
| 344 | |||
| 345 | # TODO Check CRS |
||
| 346 | df = gpd.GeoDataFrame( |
||
| 347 | df, |
||
| 348 | crs=crs, |
||
| 349 | geometry="geom_building", |
||
| 350 | ) |
||
| 351 | |||
| 352 | # TODO remove after implementation of egon_building_id |
||
| 353 | df.rename(columns={"id": "egon_building_id"}, inplace=True) |
||
| 354 | |||
| 355 | # get max number of building ids from synthetic residential table |
||
| 356 | with db.session_scope() as session: |
||
| 357 | max_synth_residential_id = session.execute( |
||
| 358 | func.max(OsmBuildingsSynthetic.id) |
||
| 359 | ).scalar() |
||
| 360 | max_synth_residential_id = int(max_synth_residential_id) |
||
| 361 | |||
| 362 | # create sequential ids |
||
| 363 | df["egon_building_id"] = range( |
||
| 364 | max_synth_residential_id + 1, |
||
| 365 | max_synth_residential_id + df.shape[0] + 1, |
||
| 366 | ) |
||
| 367 | |||
| 368 | df["area"] = df["geom_building"].area |
||
| 369 | # set building type of synthetic building |
||
| 370 | df["building"] = "cts" |
||
| 371 | # TODO remove in #772 |
||
| 372 | df = df.rename( |
||
| 373 | columns={ |
||
| 374 | # "zensus_population_id": "cell_id", |
||
| 375 | "egon_building_id": "id", |
||
| 376 | } |
||
| 377 | ) |
||
| 378 | return df |
||
| 379 | |||
| 380 | |||
| 381 | def buildings_with_amenities(): |
||
| 382 | """ |
||
| 383 | Amenities which are assigned to buildings are determined |
||
| 384 | and grouped per building and zensus cell. Buildings |
||
| 385 | covering multiple cells therefore exists multiple times |
||
| 386 | but in different zensus cells. This is necessary to cover |
||
| 387 | all cells with a cts demand. If buildings exist in multiple |
||
| 388 | substations, their amenities are summed and assigned and kept in |
||
| 389 | one substation only. If as a result, a census cell is uncovered, |
||
| 390 | a synthetic amenity is placed. The buildings are aggregated |
||
| 391 | afterwards during the calculation of the profile_share. |
||
| 392 | |||
| 393 | Returns |
||
| 394 | ------- |
||
| 395 | df_buildings_with_amenities: gpd.GeoDataFrame |
||
| 396 | Contains all buildings with amenities per zensus cell. |
||
| 397 | df_lost_cells: gpd.GeoDataFrame |
||
| 398 | Contains synthetic amenities in lost cells. Might be empty |
||
| 399 | """ |
||
| 400 | |||
| 401 | from saio.openstreetmap import osm_amenities_in_buildings_filtered |
||
| 402 | |||
| 403 | with db.session_scope() as session: |
||
| 404 | cells_query = ( |
||
| 405 | session.query( |
||
| 406 | osm_amenities_in_buildings_filtered, |
||
| 407 | MapZensusGridDistricts.bus_id, |
||
| 408 | ) |
||
| 409 | .filter( |
||
| 410 | MapZensusGridDistricts.zensus_population_id |
||
| 411 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
| 412 | ) |
||
| 413 | .filter( |
||
| 414 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 415 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
| 416 | ) |
||
| 417 | .filter( |
||
| 418 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 419 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
| 420 | ) |
||
| 421 | ) |
||
| 422 | df_amenities_in_buildings = pd.read_sql( |
||
| 423 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 424 | ) |
||
| 425 | |||
| 426 | df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
||
| 427 | "geom_building" |
||
| 428 | ].apply(to_shape) |
||
| 429 | df_amenities_in_buildings["geom_amenity"] = df_amenities_in_buildings[ |
||
| 430 | "geom_amenity" |
||
| 431 | ].apply(to_shape) |
||
| 432 | |||
| 433 | df_amenities_in_buildings["n_amenities_inside"] = 1 |
||
| 434 | |||
| 435 | # add identifier column for buildings in multiple substations |
||
| 436 | df_amenities_in_buildings[ |
||
| 437 | "duplicate_identifier" |
||
| 438 | ] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
||
| 439 | "n_amenities_inside" |
||
| 440 | ].transform( |
||
| 441 | "cumsum" |
||
| 442 | ) |
||
| 443 | df_amenities_in_buildings = df_amenities_in_buildings.sort_values( |
||
| 444 | ["id", "duplicate_identifier"] |
||
| 445 | ) |
||
| 446 | # sum amenities of buildings with multiple substations |
||
| 447 | df_amenities_in_buildings[ |
||
| 448 | "n_amenities_inside" |
||
| 449 | ] = df_amenities_in_buildings.groupby(["id", "duplicate_identifier"])[ |
||
| 450 | "n_amenities_inside" |
||
| 451 | ].transform( |
||
| 452 | "sum" |
||
| 453 | ) |
||
| 454 | |||
| 455 | # create column to always go for bus_id with max amenities |
||
| 456 | df_amenities_in_buildings[ |
||
| 457 | "max_amenities" |
||
| 458 | ] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
||
| 459 | "n_amenities_inside" |
||
| 460 | ].transform( |
||
| 461 | "sum" |
||
| 462 | ) |
||
| 463 | # sort to go for |
||
| 464 | df_amenities_in_buildings.sort_values( |
||
| 465 | ["id", "max_amenities"], ascending=False, inplace=True |
||
| 466 | ) |
||
| 467 | |||
| 468 | # identify lost zensus cells |
||
| 469 | df_lost_cells = df_amenities_in_buildings.loc[ |
||
| 470 | df_amenities_in_buildings.duplicated( |
||
| 471 | subset=["id", "duplicate_identifier"], keep="first" |
||
| 472 | ) |
||
| 473 | ] |
||
| 474 | df_lost_cells.drop_duplicates( |
||
| 475 | subset=["zensus_population_id"], inplace=True |
||
| 476 | ) |
||
| 477 | |||
| 478 | # drop buildings with multiple substation and lower max amenity |
||
| 479 | df_amenities_in_buildings.drop_duplicates( |
||
| 480 | subset=["id", "duplicate_identifier"], keep="first", inplace=True |
||
| 481 | ) |
||
| 482 | |||
| 483 | # check if lost zensus cells are already covered |
||
| 484 | if not df_lost_cells.empty: |
||
| 485 | if not ( |
||
| 486 | df_amenities_in_buildings["zensus_population_id"] |
||
| 487 | .isin(df_lost_cells["zensus_population_id"]) |
||
| 488 | .empty |
||
| 489 | ): |
||
| 490 | # query geom data for cell if not |
||
| 491 | with db.session_scope() as session: |
||
| 492 | cells_query = session.query( |
||
| 493 | DestatisZensusPopulationPerHa.id, |
||
| 494 | DestatisZensusPopulationPerHa.geom, |
||
| 495 | ).filter( |
||
| 496 | DestatisZensusPopulationPerHa.id.in_( |
||
| 497 | df_lost_cells["zensus_population_id"] |
||
| 498 | ) |
||
| 499 | ) |
||
| 500 | |||
| 501 | df_lost_cells = gpd.read_postgis( |
||
| 502 | cells_query.statement, |
||
| 503 | cells_query.session.bind, |
||
| 504 | geom_col="geom", |
||
| 505 | ) |
||
| 506 | # TODO maybe adapt method |
||
| 507 | # place random amenity in cell |
||
| 508 | df_lost_cells["n_amenities_inside"] = 1 |
||
| 509 | df_lost_cells.rename( |
||
| 510 | columns={ |
||
| 511 | "id": "zensus_population_id", |
||
| 512 | }, |
||
| 513 | inplace=True, |
||
| 514 | ) |
||
| 515 | df_lost_cells = place_buildings_with_amenities( |
||
| 516 | df_lost_cells, amenities=1 |
||
| 517 | ) |
||
| 518 | df_lost_cells.rename( |
||
| 519 | columns={ |
||
| 520 | # "id": "zensus_population_id", |
||
| 521 | "geom_point": "geom_amenity", |
||
| 522 | }, |
||
| 523 | inplace=True, |
||
| 524 | ) |
||
| 525 | df_lost_cells.drop( |
||
| 526 | columns=["building_count", "n_amenities_inside"], inplace=True |
||
| 527 | ) |
||
| 528 | else: |
||
| 529 | df_lost_cells = None |
||
| 530 | else: |
||
| 531 | df_lost_cells = None |
||
| 532 | |||
| 533 | # drop helper columns |
||
| 534 | df_amenities_in_buildings.drop( |
||
| 535 | columns=["duplicate_identifier"], inplace=True |
||
| 536 | ) |
||
| 537 | |||
| 538 | # sum amenities per building and cell |
||
| 539 | df_amenities_in_buildings[ |
||
| 540 | "n_amenities_inside" |
||
| 541 | ] = df_amenities_in_buildings.groupby(["zensus_population_id", "id"])[ |
||
| 542 | "n_amenities_inside" |
||
| 543 | ].transform( |
||
| 544 | "sum" |
||
| 545 | ) |
||
| 546 | # drop duplicated buildings |
||
| 547 | df_buildings_with_amenities = df_amenities_in_buildings.drop_duplicates( |
||
| 548 | ["id", "zensus_population_id"] |
||
| 549 | ) |
||
| 550 | df_buildings_with_amenities.reset_index(inplace=True, drop=True) |
||
| 551 | |||
| 552 | df_buildings_with_amenities = df_buildings_with_amenities[ |
||
| 553 | ["id", "zensus_population_id", "geom_building", "n_amenities_inside"] |
||
| 554 | ] |
||
| 555 | df_buildings_with_amenities.rename( |
||
| 556 | columns={ |
||
| 557 | # "zensus_population_id": "cell_id", |
||
| 558 | "egon_building_id": "id" |
||
| 559 | }, |
||
| 560 | inplace=True, |
||
| 561 | ) |
||
| 562 | |||
| 563 | return df_buildings_with_amenities, df_lost_cells |
||
| 564 | |||
| 565 | |||
| 566 | def buildings_without_amenities(): |
||
| 567 | """ |
||
| 568 | Buildings (filtered and synthetic) in cells with |
||
| 569 | cts demand but no amenities are determined. |
||
| 570 | |||
| 571 | Returns |
||
| 572 | ------- |
||
| 573 | df_buildings_without_amenities: gpd.GeoDataFrame |
||
| 574 | Table of buildings without amenities in zensus cells |
||
| 575 | with cts demand. |
||
| 576 | """ |
||
| 577 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
| 578 | from saio.openstreetmap import ( |
||
| 579 | osm_amenities_shops_filtered, |
||
| 580 | osm_buildings_filtered, |
||
| 581 | osm_buildings_synthetic, |
||
| 582 | ) |
||
| 583 | |||
| 584 | # buildings_filtered in cts-demand-cells without amenities |
||
| 585 | with db.session_scope() as session: |
||
| 586 | |||
| 587 | # Synthetic Buildings |
||
| 588 | q_synth_buildings = session.query( |
||
| 589 | osm_buildings_synthetic.cell_id.cast(Integer).label( |
||
| 590 | "zensus_population_id" |
||
| 591 | ), |
||
| 592 | osm_buildings_synthetic.id.cast(Integer).label("id"), |
||
| 593 | osm_buildings_synthetic.area.label("area"), |
||
| 594 | osm_buildings_synthetic.geom_building.label("geom_building"), |
||
| 595 | osm_buildings_synthetic.geom_point.label("geom_point"), |
||
| 596 | ) |
||
| 597 | |||
| 598 | # Buildings filtered |
||
| 599 | q_buildings_filtered = session.query( |
||
| 600 | egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
| 601 | osm_buildings_filtered.id, |
||
| 602 | osm_buildings_filtered.area, |
||
| 603 | osm_buildings_filtered.geom_building, |
||
| 604 | osm_buildings_filtered.geom_point, |
||
| 605 | ).filter( |
||
| 606 | osm_buildings_filtered.id |
||
| 607 | == egon_map_zensus_buildings_filtered_all.id |
||
| 608 | ) |
||
| 609 | |||
| 610 | # Amenities + zensus_population_id |
||
| 611 | q_amenities = ( |
||
| 612 | session.query( |
||
| 613 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 614 | ) |
||
| 615 | .filter( |
||
| 616 | func.st_within( |
||
| 617 | osm_amenities_shops_filtered.geom_amenity, |
||
| 618 | DestatisZensusPopulationPerHa.geom, |
||
| 619 | ) |
||
| 620 | ) |
||
| 621 | .distinct(DestatisZensusPopulationPerHa.id) |
||
| 622 | ) |
||
| 623 | |||
| 624 | # Cells with CTS demand but without amenities |
||
| 625 | q_cts_without_amenities = ( |
||
| 626 | session.query( |
||
| 627 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 628 | ) |
||
| 629 | .filter( |
||
| 630 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 631 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
| 632 | ) |
||
| 633 | .filter( |
||
| 634 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
| 635 | q_amenities |
||
| 636 | ) |
||
| 637 | ) |
||
| 638 | .distinct() |
||
| 639 | ) |
||
| 640 | |||
| 641 | # Buildings filtered + synthetic buildings residential in |
||
| 642 | # cells with CTS demand but without amenities |
||
| 643 | cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
||
| 644 | egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
||
| 645 | q_cts_without_amenities |
||
| 646 | ) |
||
| 647 | ) |
||
| 648 | |||
| 649 | # df_buildings_without_amenities = pd.read_sql( |
||
| 650 | # cells_query.statement, cells_query.session.bind, index_col=None) |
||
| 651 | df_buildings_without_amenities = gpd.read_postgis( |
||
| 652 | cells_query.statement, |
||
| 653 | cells_query.session.bind, |
||
| 654 | geom_col="geom_building", |
||
| 655 | ) |
||
| 656 | |||
| 657 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
| 658 | columns={ |
||
| 659 | # "zensus_population_id": "cell_id", |
||
| 660 | "egon_building_id": "id", |
||
| 661 | } |
||
| 662 | ) |
||
| 663 | |||
| 664 | return df_buildings_without_amenities |
||
| 665 | |||
| 666 | |||
| 667 | def select_cts_buildings(df_buildings_wo_amenities, max_n): |
||
| 668 | """ |
||
| 669 | N Buildings (filtered and synthetic) in each cell with |
||
| 670 | cts demand are selected. Only the first n buildings |
||
| 671 | are taken for each cell. The buildings are sorted by surface |
||
| 672 | area. |
||
| 673 | |||
| 674 | Returns |
||
| 675 | ------- |
||
| 676 | df_buildings_with_cts_demand: gpd.GeoDataFrame |
||
| 677 | Table of buildings |
||
| 678 | """ |
||
| 679 | |||
| 680 | df_buildings_wo_amenities.sort_values( |
||
| 681 | "area", ascending=False, inplace=True |
||
| 682 | ) |
||
| 683 | # select first n ids each census cell if available |
||
| 684 | df_buildings_with_cts_demand = ( |
||
| 685 | df_buildings_wo_amenities.groupby("zensus_population_id") |
||
| 686 | .nth(list(range(max_n))) |
||
| 687 | .reset_index() |
||
| 688 | ) |
||
| 689 | df_buildings_with_cts_demand.reset_index(drop=True, inplace=True) |
||
| 690 | |||
| 691 | return df_buildings_with_cts_demand |
||
| 692 | |||
| 693 | |||
| 694 | def cells_with_cts_demand_only(df_buildings_without_amenities): |
||
| 695 | """ |
||
| 696 | Cells with cts demand but no amenities or buildilngs |
||
| 697 | are determined. |
||
| 698 | |||
| 699 | Returns |
||
| 700 | ------- |
||
| 701 | df_cells_only_cts_demand: gpd.GeoDataFrame |
||
| 702 | Table of cells with cts demand but no amenities or buildings |
||
| 703 | """ |
||
| 704 | from saio.openstreetmap import osm_amenities_shops_filtered |
||
| 705 | |||
| 706 | # cells mit amenities |
||
| 707 | with db.session_scope() as session: |
||
| 708 | sub_query = ( |
||
| 709 | session.query( |
||
| 710 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
| 711 | ) |
||
| 712 | .filter( |
||
| 713 | func.st_within( |
||
| 714 | osm_amenities_shops_filtered.geom_amenity, |
||
| 715 | DestatisZensusPopulationPerHa.geom, |
||
| 716 | ) |
||
| 717 | ) |
||
| 718 | .distinct(DestatisZensusPopulationPerHa.id) |
||
| 719 | ) |
||
| 720 | |||
| 721 | cells_query = ( |
||
| 722 | session.query( |
||
| 723 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
| 724 | EgonDemandRegioZensusElectricity.scenario, |
||
| 725 | EgonDemandRegioZensusElectricity.sector, |
||
| 726 | EgonDemandRegioZensusElectricity.demand, |
||
| 727 | DestatisZensusPopulationPerHa.geom, |
||
| 728 | ) |
||
| 729 | .filter( |
||
| 730 | EgonDemandRegioZensusElectricity.sector == "service", |
||
| 731 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
| 732 | ) |
||
| 733 | .filter( |
||
| 734 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
| 735 | sub_query |
||
| 736 | ) |
||
| 737 | ) |
||
| 738 | .filter( |
||
| 739 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
| 740 | == DestatisZensusPopulationPerHa.id |
||
| 741 | ) |
||
| 742 | ) |
||
| 743 | |||
| 744 | df_cts_cell_without_amenities = gpd.read_postgis( |
||
| 745 | cells_query.statement, |
||
| 746 | cells_query.session.bind, |
||
| 747 | geom_col="geom", |
||
| 748 | index_col=None, |
||
| 749 | ) |
||
| 750 | |||
| 751 | # TODO maybe remove |
||
| 752 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
| 753 | columns={"cell_id": "zensus_population_id"} |
||
| 754 | ) |
||
| 755 | |||
| 756 | # Census cells with only cts demand |
||
| 757 | df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
||
| 758 | ~df_cts_cell_without_amenities["zensus_population_id"].isin( |
||
| 759 | df_buildings_without_amenities["zensus_population_id"].unique() |
||
| 760 | ) |
||
| 761 | ] |
||
| 762 | |||
| 763 | df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
||
| 764 | |||
| 765 | return df_cells_only_cts_demand |
||
| 766 | |||
| 767 | |||
| 768 | def calc_census_cell_share(scenario="eGon2035", sector="electricity"): |
||
| 769 | """ |
||
| 770 | The profile share for each census cell is calculated by it's |
||
| 771 | share of annual demand per substation bus. The annual demand |
||
| 772 | per cell is defined by DemandRegio/Peta5. The share is for both |
||
| 773 | scenarios identical as the annual demand is linearly scaled. |
||
| 774 | |||
| 775 | Parameters |
||
| 776 | ---------- |
||
| 777 | scenario: str |
||
| 778 | Scenario for which the share is calculated. |
||
| 779 | sector: str |
||
| 780 | Scenario for which the share is calculated. |
||
| 781 | |||
| 782 | Returns |
||
| 783 | ------- |
||
| 784 | df_census_share: pd.DataFrame |
||
| 785 | """ |
||
| 786 | if sector == "electricity": |
||
| 787 | demand_table = EgonDemandRegioZensusElectricity |
||
| 788 | elif sector == "heat": |
||
| 789 | demand_table = EgonPetaHeat |
||
| 790 | |||
| 791 | with db.session_scope() as session: |
||
| 792 | cells_query = ( |
||
| 793 | session.query(demand_table, MapZensusGridDistricts.bus_id) |
||
|
|
|||
| 794 | .filter(demand_table.sector == "service") |
||
| 795 | .filter(demand_table.scenario == scenario) |
||
| 796 | .filter( |
||
| 797 | demand_table.zensus_population_id |
||
| 798 | == MapZensusGridDistricts.zensus_population_id |
||
| 799 | ) |
||
| 800 | ) |
||
| 801 | |||
| 802 | df_demand = pd.read_sql( |
||
| 803 | cells_query.statement, |
||
| 804 | cells_query.session.bind, |
||
| 805 | index_col="zensus_population_id", |
||
| 806 | ) |
||
| 807 | |||
| 808 | # get demand share of cell per bus |
||
| 809 | df_census_share = df_demand["demand"] / df_demand.groupby("bus_id")[ |
||
| 810 | "demand" |
||
| 811 | ].transform("sum") |
||
| 812 | df_census_share = df_census_share.rename("cell_share") |
||
| 813 | |||
| 814 | df_census_share = pd.concat( |
||
| 815 | [ |
||
| 816 | df_census_share, |
||
| 817 | df_demand[["bus_id", "scenario"]], |
||
| 818 | ], |
||
| 819 | axis=1, |
||
| 820 | ) |
||
| 821 | |||
| 822 | df_census_share.reset_index(inplace=True) |
||
| 823 | return df_census_share |
||
| 824 | |||
| 825 | |||
| 826 | def calc_building_demand_profile_share( |
||
| 827 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
| 828 | ): |
||
| 829 | """ |
||
| 830 | Share of cts electricity demand profile per bus for every selected building |
||
| 831 | is calculated. Building-amenity share is multiplied with census cell share |
||
| 832 | to get the substation bus profile share for each building. The share is |
||
| 833 | grouped and aggregated per building as some buildings exceed the shape of |
||
| 834 | census cells and have amenities assigned from multiple cells. Building |
||
| 835 | therefore get the amenity share of all census cells. |
||
| 836 | |||
| 837 | Parameters |
||
| 838 | ---------- |
||
| 839 | df_cts_buildings: gpd.GeoDataFrame |
||
| 840 | Table of all buildings with cts demand assigned |
||
| 841 | scenario: str |
||
| 842 | Scenario for which the share is calculated. |
||
| 843 | sector: str |
||
| 844 | Sector for which the share is calculated. |
||
| 845 | |||
| 846 | Returns |
||
| 847 | ------- |
||
| 848 | df_building_share: pd.DataFrame |
||
| 849 | Table of bus profile share per building |
||
| 850 | |||
| 851 | """ |
||
| 852 | |||
| 853 | # from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
| 854 | |||
| 855 | def calc_building_amenity_share(df_cts_buildings): |
||
| 856 | """ |
||
| 857 | Calculate the building share by the number amenities per building |
||
| 858 | within a census cell. Building ids can exist multiple time but with |
||
| 859 | different zensus_population_ids. |
||
| 860 | """ |
||
| 861 | df_building_amenity_share = df_cts_buildings[ |
||
| 862 | "n_amenities_inside" |
||
| 863 | ] / df_cts_buildings.groupby("zensus_population_id")[ |
||
| 864 | "n_amenities_inside" |
||
| 865 | ].transform( |
||
| 866 | "sum" |
||
| 867 | ) |
||
| 868 | df_building_amenity_share = pd.concat( |
||
| 869 | [ |
||
| 870 | df_building_amenity_share.rename("building_amenity_share"), |
||
| 871 | df_cts_buildings[["zensus_population_id", "id"]], |
||
| 872 | ], |
||
| 873 | axis=1, |
||
| 874 | ) |
||
| 875 | return df_building_amenity_share |
||
| 876 | |||
| 877 | df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
||
| 878 | |||
| 879 | df_census_cell_share = calc_census_cell_share( |
||
| 880 | scenario=scenario, sector=sector |
||
| 881 | ) |
||
| 882 | |||
| 883 | df_demand_share = pd.merge( |
||
| 884 | left=df_building_amenity_share, |
||
| 885 | right=df_census_cell_share, |
||
| 886 | left_on="zensus_population_id", |
||
| 887 | right_on="zensus_population_id", |
||
| 888 | ) |
||
| 889 | df_demand_share["profile_share"] = df_demand_share[ |
||
| 890 | "building_amenity_share" |
||
| 891 | ].multiply(df_demand_share["cell_share"]) |
||
| 892 | |||
| 893 | # TODO bus_id fix |
||
| 894 | df_demand_share = df_demand_share[ |
||
| 895 | ["id", "bus_id", "scenario", "profile_share"] |
||
| 896 | ] |
||
| 897 | # df_demand_share = df_demand_share[["id", "scenario", "profile_share"]] |
||
| 898 | # |
||
| 899 | # # assign bus_id via census cell of building centroid |
||
| 900 | # with db.session_scope() as session: |
||
| 901 | # cells_query = session.query( |
||
| 902 | # egon_map_zensus_buildings_filtered_all.id, |
||
| 903 | # egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
| 904 | # MapZensusGridDistricts.bus_id, |
||
| 905 | # ).filter( |
||
| 906 | # MapZensusGridDistricts.zensus_population_id |
||
| 907 | # == egon_map_zensus_buildings_filtered_all.zensus_population_id |
||
| 908 | # ) |
||
| 909 | # |
||
| 910 | # df_egon_map_zensus_buildings_buses = pd.read_sql( |
||
| 911 | # cells_query.statement, |
||
| 912 | # cells_query.session.bind, |
||
| 913 | # index_col=None, |
||
| 914 | # ) |
||
| 915 | # df_demand_share = pd.merge( |
||
| 916 | # left=df_demand_share, right=df_egon_map_zensus_buildings_buses, on="id" |
||
| 917 | # ) |
||
| 918 | |||
| 919 | # TODO adapt groupby? |
||
| 920 | # Group and aggregate per building for multi cell buildings |
||
| 921 | df_demand_share = ( |
||
| 922 | df_demand_share.groupby(["scenario", "id", "bus_id"]) |
||
| 923 | .sum() |
||
| 924 | .reset_index() |
||
| 925 | ) |
||
| 926 | if df_demand_share.duplicated("id", keep=False).any(): |
||
| 927 | print( |
||
| 928 | df_demand_share.loc[df_demand_share.duplicated("id", keep=False)] |
||
| 929 | ) |
||
| 930 | return df_demand_share |
||
| 931 | |||
| 932 | |||
| 933 | def calc_building_profiles( |
||
| 934 | egon_building_id=None, |
||
| 935 | bus_id=None, |
||
| 936 | scenario="eGon2035", |
||
| 937 | sector="electricity", |
||
| 938 | ): |
||
| 939 | """ |
||
| 940 | Calculate the demand profile for each building. The profile is |
||
| 941 | calculated by the demand share of the building per substation bus. |
||
| 942 | |||
| 943 | Parameters |
||
| 944 | ---------- |
||
| 945 | egon_building_id: int |
||
| 946 | Id of the building for which the profile is calculated. |
||
| 947 | If not given, the profiles are calculated for all buildings. |
||
| 948 | bus_id: int |
||
| 949 | Id of the substation for which the all profiles are calculated. |
||
| 950 | If not given, the profiles are calculated for all buildings. |
||
| 951 | scenario: str |
||
| 952 | Scenario for which the share is calculated. |
||
| 953 | sector: str |
||
| 954 | Sector for which the share is calculated. |
||
| 955 | |||
| 956 | Returns |
||
| 957 | ------- |
||
| 958 | df_building_profiles: pd.DataFrame |
||
| 959 | Table of demand profile per building |
||
| 960 | """ |
||
| 961 | if sector == "electricity": |
||
| 962 | with db.session_scope() as session: |
||
| 963 | cells_query = session.query( |
||
| 964 | EgonCtsElectricityDemandBuildingShare, |
||
| 965 | ).filter( |
||
| 966 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
| 967 | ) |
||
| 968 | |||
| 969 | df_demand_share = pd.read_sql( |
||
| 970 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 971 | ) |
||
| 972 | |||
| 973 | # TODO maybe use demand.egon_etrago_electricity_cts |
||
| 974 | # with db.session_scope() as session: |
||
| 975 | # cells_query = ( |
||
| 976 | # session.query( |
||
| 977 | # EgonEtragoElectricityCts |
||
| 978 | # ).filter( |
||
| 979 | # EgonEtragoElectricityCts.scn_name == scenario) |
||
| 980 | # ) |
||
| 981 | # |
||
| 982 | # df_cts_profiles = pd.read_sql( |
||
| 983 | # cells_query.statement, |
||
| 984 | # cells_query.session.bind, |
||
| 985 | # ) |
||
| 986 | # df_cts_profiles = pd.DataFrame.from_dict( |
||
| 987 | # df_cts_profiles.set_index('bus_id')['p_set'].to_dict(), |
||
| 988 | # orient="index") |
||
| 989 | df_cts_profiles = calc_load_curves_cts(scenario) |
||
| 990 | |||
| 991 | elif sector == "heat": |
||
| 992 | with db.session_scope() as session: |
||
| 993 | cells_query = session.query( |
||
| 994 | EgonCtsHeatDemandBuildingShare, |
||
| 995 | ).filter(EgonCtsHeatDemandBuildingShare.scenario == scenario) |
||
| 996 | |||
| 997 | df_demand_share = pd.read_sql( |
||
| 998 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 999 | ) |
||
| 1000 | |||
| 1001 | # TODO cts heat substation profiles missing |
||
| 1002 | |||
| 1003 | # get demand share of selected building id |
||
| 1004 | if isinstance(egon_building_id, int): |
||
| 1005 | if egon_building_id in df_demand_share["id"]: |
||
| 1006 | df_demand_share = df_demand_share.loc[ |
||
| 1007 | df_demand_share["id"] == egon_building_id |
||
| 1008 | ] |
||
| 1009 | else: |
||
| 1010 | raise KeyError(f"Building with id {egon_building_id} not found") |
||
| 1011 | # TODO maybe add list |
||
| 1012 | # elif isinstance(egon_building_id, list): |
||
| 1013 | |||
| 1014 | # get demand share of all buildings for selected bus id |
||
| 1015 | if isinstance(bus_id, int): |
||
| 1016 | if bus_id in df_demand_share["bus_id"]: |
||
| 1017 | df_demand_share = df_demand_share.loc[ |
||
| 1018 | df_demand_share["bus_id"] == bus_id |
||
| 1019 | ] |
||
| 1020 | else: |
||
| 1021 | raise KeyError(f"Bus with id {bus_id} not found") |
||
| 1022 | |||
| 1023 | # get demand profile for all buildings for selected demand share |
||
| 1024 | # TODO takes a few seconds per iteration |
||
| 1025 | df_building_profiles = pd.DataFrame() |
||
| 1026 | for bus_id, df in df_demand_share.groupby("bus_id"): |
||
| 1027 | shares = df.set_index("id", drop=True)["profile_share"] |
||
| 1028 | profile = df_cts_profiles.loc[:, bus_id] |
||
| 1029 | # building_profiles = profile.apply(lambda x: x * shares) |
||
| 1030 | building_profiles = np.outer(profile, shares) |
||
| 1031 | building_profiles = pd.DataFrame( |
||
| 1032 | building_profiles, index=profile.index, columns=shares.index |
||
| 1033 | ) |
||
| 1034 | df_building_profiles = pd.concat( |
||
| 1035 | [df_building_profiles, building_profiles], axis=1 |
||
| 1036 | ) |
||
| 1037 | |||
| 1038 | return df_building_profiles |
||
| 1039 | |||
| 1040 | |||
| 1041 | def delete_synthetic_cts_buildings(): |
||
| 1042 | """ |
||
| 1043 | All synthetic cts buildings are deleted from the DB. This is necessary if |
||
| 1044 | the task is run multiple times as the existing synthetic buildings |
||
| 1045 | influence the results. |
||
| 1046 | """ |
||
| 1047 | # import db tables |
||
| 1048 | from saio.openstreetmap import osm_buildings_synthetic |
||
| 1049 | |||
| 1050 | # cells mit amenities |
||
| 1051 | with db.session_scope() as session: |
||
| 1052 | session.query(osm_buildings_synthetic).filter( |
||
| 1053 | osm_buildings_synthetic.building == "cts" |
||
| 1054 | ).delete() |
||
| 1055 | |||
| 1056 | |||
| 1057 | def remove_double_bus_id(df_cts_buildings): |
||
| 1058 | """""" |
||
| 1059 | # from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
| 1060 | |||
| 1061 | # assign bus_id via census cell of building centroid |
||
| 1062 | with db.session_scope() as session: |
||
| 1063 | cells_query = session.query( |
||
| 1064 | # egon_map_zensus_buildings_filtered_all.id, |
||
| 1065 | # egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
| 1066 | MapZensusGridDistricts.zensus_population_id, |
||
| 1067 | MapZensusGridDistricts.bus_id |
||
| 1068 | # ).filter( |
||
| 1069 | # MapZensusGridDistricts.zensus_population_id |
||
| 1070 | # == egon_map_zensus_buildings_filtered_all.zensus_population_id |
||
| 1071 | ) |
||
| 1072 | |||
| 1073 | df_egon_map_zensus_buildings_buses = pd.read_sql( |
||
| 1074 | cells_query.statement, |
||
| 1075 | cells_query.session.bind, |
||
| 1076 | index_col=None, |
||
| 1077 | ) |
||
| 1078 | df_cts_buildings = pd.merge( |
||
| 1079 | left=df_cts_buildings, |
||
| 1080 | right=df_egon_map_zensus_buildings_buses, |
||
| 1081 | on="zensus_population_id", |
||
| 1082 | ) |
||
| 1083 | |||
| 1084 | substation_per_building = df_cts_buildings.groupby("id")[ |
||
| 1085 | "bus_id" |
||
| 1086 | ].nunique() |
||
| 1087 | building_id = substation_per_building.loc[ |
||
| 1088 | substation_per_building > 1 |
||
| 1089 | ].index |
||
| 1090 | df_duplicates = df_cts_buildings.loc[ |
||
| 1091 | df_cts_buildings["id"].isin(building_id) |
||
| 1092 | ] |
||
| 1093 | for unique_id in df_duplicates["id"].unique(): |
||
| 1094 | drop_index = df_duplicates[df_duplicates["id"] == unique_id].index[0] |
||
| 1095 | print( |
||
| 1096 | f"Buildings {df_cts_buildings.loc[drop_index, 'id']}" |
||
| 1097 | f" dropped because of double substation" |
||
| 1098 | ) |
||
| 1099 | df_cts_buildings.drop(index=drop_index, inplace=True) |
||
| 1100 | |||
| 1101 | df_cts_buildings.drop(columns="bus_id", inplace=True) |
||
| 1102 | |||
| 1103 | return df_cts_buildings |
||
| 1104 | |||
| 1105 | |||
| 1106 | def cts_buildings(): |
||
| 1107 | """ |
||
| 1108 | Assigns CTS demand to buildings and calculates the respective demand |
||
| 1109 | profiles. The demand profile per substation are disaggregated per |
||
| 1110 | annual demand share of each census cell and by the number of amenities |
||
| 1111 | per building within the cell. If no building data is available, |
||
| 1112 | synthetic buildings are generated around the amenities. If no amenities |
||
| 1113 | but cts demand is available, buildings are randomly selected. If no |
||
| 1114 | building nor amenity is available, random synthetic buildings are |
||
| 1115 | generated. The demand share is stored in the database. |
||
| 1116 | |||
| 1117 | Note: |
||
| 1118 | ----- |
||
| 1119 | Cells with CTS demand, amenities and buildings do not change within |
||
| 1120 | the scenarios, only the demand itself. Therefore scenario eGon2035 |
||
| 1121 | can be used universally to determine the cts buildings but not for |
||
| 1122 | he demand share. |
||
| 1123 | """ |
||
| 1124 | |||
| 1125 | log.info("Start logging!") |
||
| 1126 | # Buildings with amenities |
||
| 1127 | df_buildings_with_amenities, df_lost_cells = buildings_with_amenities() |
||
| 1128 | log.info("Buildings with amenities selected!") |
||
| 1129 | |||
| 1130 | # Median number of amenities per cell |
||
| 1131 | median_n_amenities = int( |
||
| 1132 | df_buildings_with_amenities.groupby("zensus_population_id")[ |
||
| 1133 | "n_amenities_inside" |
||
| 1134 | ] |
||
| 1135 | .sum() |
||
| 1136 | .median() |
||
| 1137 | ) |
||
| 1138 | log.info(f"Median amenity value: {median_n_amenities}") |
||
| 1139 | |||
| 1140 | # Remove synthetic CTS buildings if existing |
||
| 1141 | delete_synthetic_cts_buildings() |
||
| 1142 | log.info("Old synthetic cts buildings deleted!") |
||
| 1143 | |||
| 1144 | # Amenities not assigned to buildings |
||
| 1145 | df_amenities_without_buildings = amenities_without_buildings() |
||
| 1146 | log.info("Amenities without buildlings selected!") |
||
| 1147 | |||
| 1148 | # Append lost cells due to duplicated ids, to cover all demand cells |
||
| 1149 | if not df_lost_cells.empty: |
||
| 1150 | |||
| 1151 | df_lost_cells["amenities"] = median_n_amenities |
||
| 1152 | # create row for every amenity |
||
| 1153 | df_lost_cells["amenities"] = ( |
||
| 1154 | df_lost_cells["amenities"].astype(int).apply(range) |
||
| 1155 | ) |
||
| 1156 | df_lost_cells = df_lost_cells.explode("amenities") |
||
| 1157 | df_lost_cells.drop(columns="amenities", inplace=True) |
||
| 1158 | df_amenities_without_buildings = df_amenities_without_buildings.append( |
||
| 1159 | df_lost_cells, ignore_index=True |
||
| 1160 | ) |
||
| 1161 | log.info("Lost cells due to substation intersection appended!") |
||
| 1162 | |||
| 1163 | # One building per amenity |
||
| 1164 | df_amenities_without_buildings["n_amenities_inside"] = 1 |
||
| 1165 | # Create synthetic buildings for amenites without buildings |
||
| 1166 | df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
||
| 1167 | df_amenities_without_buildings, points="geom_amenity" |
||
| 1168 | ) |
||
| 1169 | log.info("Synthetic buildings created!") |
||
| 1170 | |||
| 1171 | # TODO write to DB and remove renaming |
||
| 1172 | write_table_to_postgis( |
||
| 1173 | df_synthetic_buildings_with_amenities.rename( |
||
| 1174 | columns={ |
||
| 1175 | "zensus_population_id": "cell_id", |
||
| 1176 | "egon_building_id": "id", |
||
| 1177 | } |
||
| 1178 | ), |
||
| 1179 | OsmBuildingsSynthetic, |
||
| 1180 | drop=False, |
||
| 1181 | ) |
||
| 1182 | log.info("Synthetic buildings exported to DB!") |
||
| 1183 | |||
| 1184 | # Cells without amenities but CTS demand and buildings |
||
| 1185 | df_buildings_without_amenities = buildings_without_amenities() |
||
| 1186 | log.info("Buildings without amenities in demand cells identified!") |
||
| 1187 | |||
| 1188 | # TODO Fix Adhoc Bugfix duplicated buildings |
||
| 1189 | # drop building ids which have already been used |
||
| 1190 | mask = df_buildings_without_amenities.loc[ |
||
| 1191 | df_buildings_without_amenities["id"].isin( |
||
| 1192 | df_buildings_with_amenities["id"] |
||
| 1193 | ) |
||
| 1194 | ].index |
||
| 1195 | df_buildings_without_amenities = df_buildings_without_amenities.drop( |
||
| 1196 | index=mask |
||
| 1197 | ).reset_index(drop=True) |
||
| 1198 | log.info(f"{len(mask)} duplicated ids removed!") |
||
| 1199 | |||
| 1200 | # select median n buildings per cell |
||
| 1201 | df_buildings_without_amenities = select_cts_buildings( |
||
| 1202 | df_buildings_without_amenities, max_n=median_n_amenities |
||
| 1203 | ) |
||
| 1204 | df_buildings_without_amenities["n_amenities_inside"] = 1 |
||
| 1205 | log.info(f"{median_n_amenities} buildings per cell selected!") |
||
| 1206 | |||
| 1207 | # Create synthetic amenities and buildings in cells with only CTS demand |
||
| 1208 | df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
||
| 1209 | df_buildings_without_amenities |
||
| 1210 | ) |
||
| 1211 | log.info("Cells with only demand identified!") |
||
| 1212 | |||
| 1213 | # Median n Amenities per cell |
||
| 1214 | df_cells_with_cts_demand_only["amenities"] = median_n_amenities |
||
| 1215 | # create row for every amenity |
||
| 1216 | df_cells_with_cts_demand_only["amenities"] = ( |
||
| 1217 | df_cells_with_cts_demand_only["amenities"].astype(int).apply(range) |
||
| 1218 | ) |
||
| 1219 | df_cells_with_cts_demand_only = df_cells_with_cts_demand_only.explode( |
||
| 1220 | "amenities" |
||
| 1221 | ) |
||
| 1222 | df_cells_with_cts_demand_only.drop(columns="amenities", inplace=True) |
||
| 1223 | |||
| 1224 | # Only 1 Amenity per Building |
||
| 1225 | df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
||
| 1226 | df_cells_with_cts_demand_only = place_buildings_with_amenities( |
||
| 1227 | df_cells_with_cts_demand_only, amenities=1 |
||
| 1228 | ) |
||
| 1229 | df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
||
| 1230 | df_cells_with_cts_demand_only, points="geom_point" |
||
| 1231 | ) |
||
| 1232 | log.info(f"{median_n_amenities} synthetic buildings per cell created") |
||
| 1233 | |||
| 1234 | # TODO write to DB and remove (backup) renaming |
||
| 1235 | write_table_to_postgis( |
||
| 1236 | df_synthetic_buildings_without_amenities.rename( |
||
| 1237 | columns={ |
||
| 1238 | "zensus_population_id": "cell_id", |
||
| 1239 | "egon_building_id": "id", |
||
| 1240 | } |
||
| 1241 | ), |
||
| 1242 | OsmBuildingsSynthetic, |
||
| 1243 | drop=False, |
||
| 1244 | ) |
||
| 1245 | log.info("Synthetic buildings exported to DB") |
||
| 1246 | |||
| 1247 | # Concat all buildings |
||
| 1248 | columns = [ |
||
| 1249 | "zensus_population_id", |
||
| 1250 | "id", |
||
| 1251 | "geom_building", |
||
| 1252 | "n_amenities_inside", |
||
| 1253 | "source", |
||
| 1254 | ] |
||
| 1255 | |||
| 1256 | df_buildings_with_amenities["source"] = "bwa" |
||
| 1257 | df_synthetic_buildings_with_amenities["source"] = "sbwa" |
||
| 1258 | df_buildings_without_amenities["source"] = "bwoa" |
||
| 1259 | df_synthetic_buildings_without_amenities["source"] = "sbwoa" |
||
| 1260 | |||
| 1261 | df_cts_buildings = pd.concat( |
||
| 1262 | [ |
||
| 1263 | df_buildings_with_amenities[columns], |
||
| 1264 | df_synthetic_buildings_with_amenities[columns], |
||
| 1265 | df_buildings_without_amenities[columns], |
||
| 1266 | df_synthetic_buildings_without_amenities[columns], |
||
| 1267 | ], |
||
| 1268 | axis=0, |
||
| 1269 | ignore_index=True, |
||
| 1270 | ) |
||
| 1271 | df_cts_buildings = remove_double_bus_id(df_cts_buildings) |
||
| 1272 | log.info("Double bus_id checked") |
||
| 1273 | |||
| 1274 | # TODO maybe remove after #772 |
||
| 1275 | df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
||
| 1276 | |||
| 1277 | # Write table to db for debugging |
||
| 1278 | # TODO remove later |
||
| 1279 | df_cts_buildings = gpd.GeoDataFrame( |
||
| 1280 | df_cts_buildings, geometry="geom_building", crs=3035 |
||
| 1281 | ) |
||
| 1282 | df_cts_buildings = df_cts_buildings.reset_index().rename( |
||
| 1283 | columns={"index": "serial"} |
||
| 1284 | ) |
||
| 1285 | write_table_to_postgis( |
||
| 1286 | df_cts_buildings, |
||
| 1287 | CtsBuildings, |
||
| 1288 | drop=True, |
||
| 1289 | ) |
||
| 1290 | log.info("CTS buildings exported to DB!") |
||
| 1291 | |||
| 1292 | |||
| 1293 | View Code Duplication | def cts_electricity(): |
|
| 1294 | """ |
||
| 1295 | Calculate cts electricity demand share of hvmv substation profile |
||
| 1296 | for buildings. |
||
| 1297 | """ |
||
| 1298 | log.info("Start logging!") |
||
| 1299 | with db.session_scope() as session: |
||
| 1300 | cells_query = session.query(CtsBuildings) |
||
| 1301 | |||
| 1302 | df_cts_buildings = pd.read_sql( |
||
| 1303 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1304 | ) |
||
| 1305 | log.info("CTS buildings from DB imported!") |
||
| 1306 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
| 1307 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
| 1308 | ) |
||
| 1309 | log.info("Profile share for egon2035 calculated!") |
||
| 1310 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
| 1311 | df_cts_buildings, scenario="eGon100RE", sector="electricity" |
||
| 1312 | ) |
||
| 1313 | log.info("Profile share for egon100RE calculated!") |
||
| 1314 | df_demand_share = pd.concat( |
||
| 1315 | [df_demand_share_2035, df_demand_share_100RE], |
||
| 1316 | axis=0, |
||
| 1317 | ignore_index=True, |
||
| 1318 | ) |
||
| 1319 | |||
| 1320 | write_table_to_postgres( |
||
| 1321 | df_demand_share, EgonCtsElectricityDemandBuildingShare, drop=True |
||
| 1322 | ) |
||
| 1323 | log.info("Profile share exported to DB!") |
||
| 1324 | |||
| 1325 | |||
| 1326 | View Code Duplication | def cts_heat(): |
|
| 1327 | """ |
||
| 1328 | Calculate cts electricity demand share of hvmv substation profile |
||
| 1329 | for buildings. |
||
| 1330 | """ |
||
| 1331 | log.info("Start logging!") |
||
| 1332 | with db.session_scope() as session: |
||
| 1333 | cells_query = session.query(CtsBuildings) |
||
| 1334 | |||
| 1335 | df_cts_buildings = pd.read_sql( |
||
| 1336 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1337 | ) |
||
| 1338 | log.info("CTS buildings from DB imported!") |
||
| 1339 | |||
| 1340 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
| 1341 | df_cts_buildings, scenario="eGon2035", sector="heat" |
||
| 1342 | ) |
||
| 1343 | log.info("Profile share for egon2035 calculated!") |
||
| 1344 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
| 1345 | df_cts_buildings, scenario="eGon100RE", sector="heat" |
||
| 1346 | ) |
||
| 1347 | log.info("Profile share for egon100RE calculated!") |
||
| 1348 | df_demand_share = pd.concat( |
||
| 1349 | [df_demand_share_2035, df_demand_share_100RE], |
||
| 1350 | axis=0, |
||
| 1351 | ignore_index=True, |
||
| 1352 | ) |
||
| 1353 | |||
| 1354 | write_table_to_postgres( |
||
| 1355 | df_demand_share, EgonCtsHeatDemandBuildingShare, drop=True |
||
| 1356 | ) |
||
| 1357 | log.info("Profile share exported to DB!") |
||
| 1358 | |||
| 1359 | |||
| 1360 | def get_cts_electricity_peak_load(): |
||
| 1361 | """ |
||
| 1362 | Get electricity peak load of all CTS buildings for both scenarios and |
||
| 1363 | store in DB. |
||
| 1364 | """ |
||
| 1365 | log.info("Start logging!") |
||
| 1366 | # Delete rows with cts demand |
||
| 1367 | with db.session_scope() as session: |
||
| 1368 | session.query(BuildingPeakLoads).filter( |
||
| 1369 | BuildingPeakLoads.sector == "cts" |
||
| 1370 | ).delete() |
||
| 1371 | log.info("CTS Peak load removed from DB!") |
||
| 1372 | |||
| 1373 | for scenario in ["eGon2035", "eGon100RE"]: |
||
| 1374 | |||
| 1375 | with db.session_scope() as session: |
||
| 1376 | cells_query = session.query( |
||
| 1377 | EgonCtsElectricityDemandBuildingShare |
||
| 1378 | ).filter( |
||
| 1379 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
| 1380 | ) |
||
| 1381 | |||
| 1382 | df_demand_share = pd.read_sql( |
||
| 1383 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1384 | ) |
||
| 1385 | |||
| 1386 | df_cts_profiles = calc_load_curves_cts(scenario=scenario) |
||
| 1387 | |||
| 1388 | df_peak_load = pd.merge( |
||
| 1389 | left=df_cts_profiles.max(axis=0).astype(float).rename("max"), |
||
| 1390 | right=df_demand_share, |
||
| 1391 | left_on="bus_id", |
||
| 1392 | right_on="bus_id", |
||
| 1393 | ) |
||
| 1394 | |||
| 1395 | # Convert unit from MWh to W |
||
| 1396 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
| 1397 | df_peak_load["peak_load_in_w"] = ( |
||
| 1398 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
| 1399 | ) |
||
| 1400 | log.info(f"Peak load for {scenario} determined!") |
||
| 1401 | |||
| 1402 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1403 | df_peak_load["sector"] = "cts" |
||
| 1404 | |||
| 1405 | df_peak_load = df_peak_load[ |
||
| 1406 | ["building_id", "sector", "scenario", "peak_load_in_w"] |
||
| 1407 | ] |
||
| 1408 | |||
| 1409 | # Write peak loads into db |
||
| 1410 | with db.session_scope() as session: |
||
| 1411 | session.bulk_insert_mappings( |
||
| 1412 | BuildingPeakLoads, |
||
| 1413 | df_peak_load.to_dict(orient="records"), |
||
| 1414 | ) |
||
| 1415 | log.info(f"Peak load for {scenario} exported to DB!") |
||
| 1416 | |||
| 1417 | |||
| 1418 | def get_cts_heat_peak_load(): |
||
| 1419 | """ |
||
| 1420 | Get heat peak load of all CTS buildings for both scenarios and store in DB. |
||
| 1421 | """ |
||
| 1422 | log.info("Start logging!") |
||
| 1423 | |||
| 1424 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
| 1425 | |||
| 1426 | # Delete rows with cts demand |
||
| 1427 | with db.session_scope() as session: |
||
| 1428 | session.query(BuildingHeatPeakLoads).filter( |
||
| 1429 | BuildingHeatPeakLoads.sector == "cts" |
||
| 1430 | ).delete() |
||
| 1431 | log.info("CTS Peak load removed from DB!") |
||
| 1432 | |||
| 1433 | for scenario in ["eGon2035", "eGon100RE"]: |
||
| 1434 | |||
| 1435 | with db.session_scope() as session: |
||
| 1436 | cells_query = session.query(EgonCtsHeatDemandBuildingShare).filter( |
||
| 1437 | EgonCtsHeatDemandBuildingShare.scenario == scenario |
||
| 1438 | ) |
||
| 1439 | |||
| 1440 | df_demand_share = pd.read_sql( |
||
| 1441 | cells_query.statement, cells_query.session.bind, index_col=None |
||
| 1442 | ) |
||
| 1443 | |||
| 1444 | with db.session_scope() as session: |
||
| 1445 | cells_query = session.query(EgonEtragoElectricityCts).filter( |
||
| 1446 | EgonEtragoElectricityCts.scn_name == scenario |
||
| 1447 | ) |
||
| 1448 | |||
| 1449 | df_cts_profiles = pd.read_sql( |
||
| 1450 | cells_query.statement, |
||
| 1451 | cells_query.session.bind, |
||
| 1452 | ) |
||
| 1453 | df_cts_profiles = pd.DataFrame.from_dict( |
||
| 1454 | df_cts_profiles.set_index("bus_id")["p_set"].to_dict(), |
||
| 1455 | orient="index", |
||
| 1456 | ) |
||
| 1457 | |||
| 1458 | df_peak_load = pd.merge( |
||
| 1459 | left=df_cts_profiles.max(axis=0).astype(float).rename("max"), |
||
| 1460 | right=df_demand_share, |
||
| 1461 | left_on="bus_id", |
||
| 1462 | right_on="bus_id", |
||
| 1463 | ) |
||
| 1464 | |||
| 1465 | # Convert unit from MWh to W |
||
| 1466 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
| 1467 | df_peak_load["peak_load_in_w"] = ( |
||
| 1468 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
| 1469 | ) |
||
| 1470 | log.info(f"Peak load for {scenario} determined!") |
||
| 1471 | |||
| 1472 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
| 1473 | df_peak_load["sector"] = "cts" |
||
| 1474 | |||
| 1475 | df_peak_load = df_peak_load[ |
||
| 1476 | ["building_id", "sector", "scenario", "peak_load_in_w"] |
||
| 1477 | ] |
||
| 1478 | |||
| 1479 | # Write peak loads into db |
||
| 1480 | with db.session_scope() as session: |
||
| 1481 | session.bulk_insert_mappings( |
||
| 1482 | BuildingHeatPeakLoads, |
||
| 1483 | df_peak_load.to_dict(orient="records"), |
||
| 1484 | ) |
||
| 1485 | log.info(f"Peak load for {scenario} exported to DB!") |
||
| 1486 | |||
| 1487 | |||
| 1488 | class CtsElectricityBuildings(Dataset): |
||
| 1489 | def __init__(self, dependencies): |
||
| 1490 | super().__init__( |
||
| 1491 | name="CtsElectricityBuildings", |
||
| 1492 | version="0.0.0", |
||
| 1493 | dependencies=dependencies, |
||
| 1494 | tasks=( |
||
| 1495 | cts_buildings, |
||
| 1496 | {cts_electricity, cts_heat}, |
||
| 1497 | get_cts_electricity_peak_load, |
||
| 1498 | ), |
||
| 1500 |