Total Complexity | 81 |
Total Lines | 1775 |
Duplicated Lines | 4.06 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with |
||
2 | individual heat supply. |
||
3 | |||
4 | """ |
||
5 | from pathlib import Path |
||
6 | import os |
||
7 | import random |
||
8 | import time |
||
9 | |||
10 | from airflow.operators.python_operator import PythonOperator |
||
11 | from psycopg2.extensions import AsIs, register_adapter |
||
12 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
13 | from sqlalchemy.ext.declarative import declarative_base |
||
14 | import geopandas as gpd |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import saio |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.district_heating_areas import ( |
||
22 | MapZensusDistrictHeatingAreas, |
||
23 | ) |
||
24 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
25 | calc_cts_building_profiles, |
||
26 | ) |
||
27 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
28 | EgonMapZensusMvgdBuildings, |
||
29 | ) |
||
30 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
31 | write_table_to_postgres, |
||
32 | ) |
||
33 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
34 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
35 | EgonDailyHeatDemandPerClimateZone, |
||
36 | EgonMapZensusClimateZones, |
||
37 | ) |
||
38 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
39 | EgonHeatTimeseries, |
||
40 | ) |
||
41 | |||
42 | # get zensus cells with district heating |
||
43 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
44 | |||
45 | engine = db.engine() |
||
46 | Base = declarative_base() |
||
47 | |||
48 | |||
49 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
50 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
51 | __table_args__ = {"schema": "demand"} |
||
52 | bus_id = Column(Integer, primary_key=True) |
||
53 | scenario = Column(String, primary_key=True) |
||
54 | carrier = Column(String, primary_key=True) |
||
55 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
56 | |||
57 | |||
58 | class EgonHpCapacityBuildings(Base): |
||
59 | __tablename__ = "egon_hp_capacity_buildings" |
||
60 | __table_args__ = {"schema": "demand"} |
||
61 | building_id = Column(Integer, primary_key=True) |
||
62 | scenario = Column(String, primary_key=True) |
||
63 | hp_capacity = Column(REAL) |
||
64 | |||
65 | |||
66 | class HeatPumpsPypsaEurSec(Dataset): |
||
67 | def __init__(self, dependencies): |
||
68 | def dyn_parallel_tasks_pypsa_eur_sec(): |
||
69 | """Dynamically generate tasks |
||
70 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
71 | |||
72 | The number of parallel tasks is defined via parameter |
||
73 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
74 | |||
75 | Returns |
||
76 | ------- |
||
77 | set of airflow.PythonOperators |
||
78 | The tasks. Each element is of |
||
79 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
80 | determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec` |
||
81 | """ |
||
82 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
83 | "parallel_tasks", 1 |
||
84 | ) |
||
85 | |||
86 | tasks = set() |
||
87 | for i in range(parallel_tasks): |
||
88 | tasks.add( |
||
89 | PythonOperator( |
||
90 | task_id=( |
||
91 | f"determine-hp-capacity-pypsa-eur-sec-" |
||
92 | f"mvgd-bulk{i}" |
||
93 | ), |
||
94 | python_callable=split_mvgds_into_bulks_pypsa_eur_sec, |
||
95 | op_kwargs={ |
||
96 | "n": i, |
||
97 | "max_n": parallel_tasks, |
||
98 | "func": determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec, # noqa: E501 |
||
99 | }, |
||
100 | ) |
||
101 | ) |
||
102 | return tasks |
||
103 | |||
104 | super().__init__( |
||
105 | name="HeatPumpsPypsaEurSec", |
||
106 | version="0.0.0", |
||
107 | dependencies=dependencies, |
||
108 | tasks=( |
||
109 | create_peak_load_table, |
||
110 | create_egon_etrago_timeseries_individual_heating, |
||
111 | {*dyn_parallel_tasks_pypsa_eur_sec()}, |
||
112 | ), |
||
113 | ) |
||
114 | |||
115 | |||
116 | class HeatPumps2035(Dataset): |
||
117 | def __init__(self, dependencies): |
||
118 | def dyn_parallel_tasks_2035(): |
||
119 | """Dynamically generate tasks |
||
120 | |||
121 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
122 | |||
123 | The number of parallel tasks is defined via parameter |
||
124 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
125 | |||
126 | Returns |
||
127 | ------- |
||
128 | set of airflow.PythonOperators |
||
129 | The tasks. Each element is of |
||
130 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
131 | determine_hp_cap_peak_load_mvgd_ts_2035` |
||
132 | """ |
||
133 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
134 | "parallel_tasks", 1 |
||
135 | ) |
||
136 | tasks = set() |
||
137 | for i in range(parallel_tasks): |
||
138 | tasks.add( |
||
139 | PythonOperator( |
||
140 | task_id=( |
||
141 | f"determine-hp-capacity-pypsa-eur-sec_" |
||
142 | f"mvgd_bulk{i}" |
||
143 | ), |
||
144 | python_callable=split_mvgds_into_bulks_2035, |
||
145 | op_kwargs={ |
||
146 | "n": i, |
||
147 | "max_n": parallel_tasks, |
||
148 | "func": determine_hp_cap_peak_load_mvgd_ts_2035, |
||
149 | }, |
||
150 | ) |
||
151 | ) |
||
152 | return tasks |
||
153 | |||
154 | super().__init__( |
||
155 | name="HeatPumps2035", |
||
156 | version="0.0.0", |
||
157 | dependencies=dependencies, |
||
158 | tasks=( |
||
159 | create_hp_capacity_table, |
||
160 | delete_peak_loads_if_existing, |
||
161 | {*dyn_parallel_tasks_2035()}, |
||
162 | ), |
||
163 | ) |
||
164 | |||
165 | |||
166 | class HeatPumps2050(Dataset): |
||
167 | def __init__(self, dependencies): |
||
168 | super().__init__( |
||
169 | name="HeatPumps2050", |
||
170 | version="0.0.0", |
||
171 | dependencies=dependencies, |
||
172 | tasks=(determine_hp_cap_buildings_eGon100RE), |
||
173 | ) |
||
174 | |||
175 | |||
176 | class BuildingHeatPeakLoads(Base): |
||
177 | __tablename__ = "egon_building_heat_peak_loads" |
||
178 | __table_args__ = {"schema": "demand"} |
||
179 | |||
180 | building_id = Column(Integer, primary_key=True) |
||
181 | scenario = Column(String, primary_key=True) |
||
182 | sector = Column(String, primary_key=True) |
||
183 | peak_load_in_w = Column(REAL) |
||
184 | |||
185 | |||
186 | def adapt_numpy_float64(numpy_float64): |
||
187 | return AsIs(numpy_float64) |
||
188 | |||
189 | |||
190 | def adapt_numpy_int64(numpy_int64): |
||
191 | return AsIs(numpy_int64) |
||
192 | |||
193 | |||
194 | def timeit(func): |
||
195 | """ |
||
196 | Decorator for measuring function's running time. |
||
197 | """ |
||
198 | |||
199 | def measure_time(*args, **kw): |
||
200 | start_time = time.time() |
||
201 | result = func(*args, **kw) |
||
202 | print( |
||
203 | "Processing time of %s(): %.2f seconds." |
||
204 | % (func.__qualname__, time.time() - start_time) |
||
205 | ) |
||
206 | return result |
||
207 | |||
208 | return measure_time |
||
209 | |||
210 | |||
211 | def cascade_per_technology( |
||
212 | heat_per_mv, |
||
213 | technologies, |
||
214 | scenario, |
||
215 | distribution_level, |
||
216 | max_size_individual_chp=0.05, |
||
217 | ): |
||
218 | |||
219 | """Add plants for individual heat. |
||
220 | Currently only on mv grid district level. |
||
221 | |||
222 | Parameters |
||
223 | ---------- |
||
224 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
225 | MV grid districts including the heat demand |
||
226 | technologies : pandas.DataFrame |
||
227 | List of supply technologies and their parameters |
||
228 | scenario : str |
||
229 | Name of the scenario |
||
230 | max_size_individual_chp : float |
||
231 | Maximum capacity of an individual chp in MW |
||
232 | Returns |
||
233 | ------- |
||
234 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
235 | MV grid district which need additional individual heat supply |
||
236 | technologies : pandas.DataFrame |
||
237 | List of supply technologies and their parameters |
||
238 | append_df : pandas.DataFrame |
||
239 | List of plants per mv grid for the selected technology |
||
240 | |||
241 | """ |
||
242 | sources = config.datasets()["heat_supply"]["sources"] |
||
243 | |||
244 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
245 | |||
246 | # Distribute heat pumps linear to remaining demand. |
||
247 | if tech.index == "heat_pump": |
||
248 | |||
249 | if distribution_level == "federal_state": |
||
250 | # Select target values per federal state |
||
251 | target = db.select_dataframe( |
||
252 | f""" |
||
253 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
254 | FROM {sources['scenario_capacities']['schema']}. |
||
255 | {sources['scenario_capacities']['table']} a |
||
256 | JOIN {sources['federal_states']['schema']}. |
||
257 | {sources['federal_states']['table']} b |
||
258 | ON a.nuts = b.nuts |
||
259 | WHERE scenario_name = '{scenario}' |
||
260 | AND carrier = 'residential_rural_heat_pump' |
||
261 | """, |
||
262 | index_col="state", |
||
263 | ) |
||
264 | |||
265 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
266 | "state" |
||
267 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
268 | |||
269 | append_df = ( |
||
270 | heat_per_mv["share"] |
||
271 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
272 | .reset_index() |
||
273 | ) |
||
274 | else: |
||
275 | # Select target value for Germany |
||
276 | target = db.select_dataframe( |
||
277 | f""" |
||
278 | SELECT SUM(capacity) AS capacity |
||
279 | FROM {sources['scenario_capacities']['schema']}. |
||
280 | {sources['scenario_capacities']['table']} a |
||
281 | WHERE scenario_name = '{scenario}' |
||
282 | AND carrier = 'residential_rural_heat_pump' |
||
283 | """ |
||
284 | ) |
||
285 | |||
286 | heat_per_mv["share"] = ( |
||
287 | heat_per_mv.remaining_demand |
||
288 | / heat_per_mv.remaining_demand.sum() |
||
289 | ) |
||
290 | |||
291 | append_df = ( |
||
292 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
293 | ) |
||
294 | |||
295 | append_df.rename( |
||
296 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
297 | ) |
||
298 | |||
299 | elif tech.index == "gas_boiler": |
||
300 | |||
301 | append_df = pd.DataFrame( |
||
302 | data={ |
||
303 | "capacity": heat_per_mv.remaining_demand.div( |
||
304 | tech.estimated_flh.values[0] |
||
305 | ), |
||
306 | "carrier": "residential_rural_gas_boiler", |
||
307 | "mv_grid_id": heat_per_mv.index, |
||
308 | "scenario": scenario, |
||
309 | } |
||
310 | ) |
||
311 | |||
312 | if append_df.size > 0: |
||
|
|||
313 | append_df["carrier"] = tech.index[0] |
||
314 | heat_per_mv.loc[ |
||
315 | append_df.mv_grid_id, "remaining_demand" |
||
316 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
317 | tech.estimated_flh.values[0] |
||
318 | ) |
||
319 | |||
320 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
321 | |||
322 | technologies = technologies.drop(tech.index) |
||
323 | |||
324 | return heat_per_mv, technologies, append_df |
||
325 | |||
326 | |||
327 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
328 | """Assigns supply strategy for individual heating in four steps. |
||
329 | |||
330 | 1.) all small scale CHP are connected. |
||
331 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
332 | are attached. This is not implemented yet, since individual |
||
333 | solar thermal plants are not considered in eGon2035 scenario. |
||
334 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
335 | 4.) The last option are individual gas boilers. |
||
336 | |||
337 | Parameters |
||
338 | ---------- |
||
339 | scenario : str |
||
340 | Name of scenario |
||
341 | plotting : bool, optional |
||
342 | Choose if individual heating supply is plotted. The default is True. |
||
343 | |||
344 | Returns |
||
345 | ------- |
||
346 | resulting_capacities : pandas.DataFrame |
||
347 | List of plants per mv grid |
||
348 | |||
349 | """ |
||
350 | |||
351 | sources = config.datasets()["heat_supply"]["sources"] |
||
352 | |||
353 | # Select residential heat demand per mv grid district and federal state |
||
354 | heat_per_mv = db.select_geodataframe( |
||
355 | f""" |
||
356 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
357 | c.vg250_lan as state, d.geom |
||
358 | FROM {sources['heat_demand']['schema']}. |
||
359 | {sources['heat_demand']['table']} a |
||
360 | JOIN {sources['map_zensus_grid']['schema']}. |
||
361 | {sources['map_zensus_grid']['table']} b |
||
362 | ON a.zensus_population_id = b.zensus_population_id |
||
363 | JOIN {sources['map_vg250_grid']['schema']}. |
||
364 | {sources['map_vg250_grid']['table']} c |
||
365 | ON b.bus_id = c.bus_id |
||
366 | JOIN {sources['mv_grids']['schema']}. |
||
367 | {sources['mv_grids']['table']} d |
||
368 | ON d.bus_id = c.bus_id |
||
369 | WHERE scenario = '{scenario}' |
||
370 | AND a.zensus_population_id NOT IN ( |
||
371 | SELECT zensus_population_id |
||
372 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
373 | WHERE scenario = '{scenario}') |
||
374 | GROUP BY d.bus_id, vg250_lan, geom |
||
375 | """, |
||
376 | index_col="bus_id", |
||
377 | ) |
||
378 | |||
379 | # Store geometry of mv grid |
||
380 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
381 | |||
382 | # Initalize Dataframe for results |
||
383 | resulting_capacities = pd.DataFrame( |
||
384 | columns=["mv_grid_id", "carrier", "capacity"] |
||
385 | ) |
||
386 | |||
387 | # Set technology data according to |
||
388 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
389 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
390 | technologies = pd.DataFrame( |
||
391 | index=["heat_pump", "gas_boiler"], |
||
392 | columns=["estimated_flh", "priority"], |
||
393 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
394 | ) |
||
395 | |||
396 | # In the beginning, the remaining demand equals demand |
||
397 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
398 | |||
399 | # Connect new technologies, if there is still heat demand left |
||
400 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
401 | # Attach new supply technology |
||
402 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
403 | heat_per_mv, technologies, scenario, distribution_level |
||
404 | ) |
||
405 | # Collect resulting capacities |
||
406 | resulting_capacities = resulting_capacities.append( |
||
407 | append_df, ignore_index=True |
||
408 | ) |
||
409 | |||
410 | if plotting: |
||
411 | plot_heat_supply(resulting_capacities) |
||
412 | |||
413 | return gpd.GeoDataFrame( |
||
414 | resulting_capacities, |
||
415 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
416 | ) |
||
417 | |||
418 | |||
419 | def get_peta_demand(mvgd, scenario): |
||
420 | """ |
||
421 | Retrieve annual peta heat demand for residential buildings for either |
||
422 | eGon2035 or eGon100RE scenario. |
||
423 | |||
424 | Parameters |
||
425 | ---------- |
||
426 | mvgd : int |
||
427 | MV grid ID. |
||
428 | scenario : str |
||
429 | Possible options are eGon2035 or eGon100RE |
||
430 | |||
431 | Returns |
||
432 | ------- |
||
433 | df_peta_demand : pd.DataFrame |
||
434 | Annual residential heat demand per building and scenario. Columns of |
||
435 | the dataframe are zensus_population_id and demand. |
||
436 | |||
437 | """ |
||
438 | |||
439 | with db.session_scope() as session: |
||
440 | query = ( |
||
441 | session.query( |
||
442 | MapZensusGridDistricts.zensus_population_id, |
||
443 | EgonPetaHeat.demand, |
||
444 | ) |
||
445 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
446 | .filter( |
||
447 | MapZensusGridDistricts.zensus_population_id |
||
448 | == EgonPetaHeat.zensus_population_id |
||
449 | ) |
||
450 | .filter( |
||
451 | EgonPetaHeat.sector == "residential", |
||
452 | EgonPetaHeat.scenario == scenario, |
||
453 | ) |
||
454 | ) |
||
455 | |||
456 | df_peta_demand = pd.read_sql( |
||
457 | query.statement, query.session.bind, index_col=None |
||
458 | ) |
||
459 | |||
460 | return df_peta_demand |
||
461 | |||
462 | |||
463 | def get_residential_heat_profile_ids(mvgd): |
||
464 | """ |
||
465 | Retrieve 365 daily heat profiles ids per residential building and selected |
||
466 | mvgd. |
||
467 | |||
468 | Parameters |
||
469 | ---------- |
||
470 | mvgd : int |
||
471 | ID of MVGD |
||
472 | |||
473 | Returns |
||
474 | ------- |
||
475 | df_profiles_ids : pd.DataFrame |
||
476 | Residential daily heat profile ID's per building. Columns of the |
||
477 | dataframe are zensus_population_id, building_id, |
||
478 | selected_idp_profiles, buildings and day_of_year. |
||
479 | |||
480 | """ |
||
481 | with db.session_scope() as session: |
||
482 | query = ( |
||
483 | session.query( |
||
484 | MapZensusGridDistricts.zensus_population_id, |
||
485 | EgonHeatTimeseries.building_id, |
||
486 | EgonHeatTimeseries.selected_idp_profiles, |
||
487 | ) |
||
488 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
489 | .filter( |
||
490 | MapZensusGridDistricts.zensus_population_id |
||
491 | == EgonHeatTimeseries.zensus_population_id |
||
492 | ) |
||
493 | ) |
||
494 | |||
495 | df_profiles_ids = pd.read_sql( |
||
496 | query.statement, query.session.bind, index_col=None |
||
497 | ) |
||
498 | # Add building count per cell |
||
499 | df_profiles_ids = pd.merge( |
||
500 | left=df_profiles_ids, |
||
501 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
502 | .count() |
||
503 | .rename("buildings"), |
||
504 | left_on="zensus_population_id", |
||
505 | right_index=True, |
||
506 | ) |
||
507 | |||
508 | # unnest array of ids per building |
||
509 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
510 | # add day of year column by order of list |
||
511 | df_profiles_ids["day_of_year"] = ( |
||
512 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
513 | ) |
||
514 | return df_profiles_ids |
||
515 | |||
516 | |||
517 | def get_daily_profiles(profile_ids): |
||
518 | """ |
||
519 | Parameters |
||
520 | ---------- |
||
521 | profile_ids : list(int) |
||
522 | daily heat profile ID's |
||
523 | |||
524 | Returns |
||
525 | ------- |
||
526 | df_profiles : pd.DataFrame |
||
527 | Residential daily heat profiles. Columns of the dataframe are idp, |
||
528 | house, temperature_class and hour. |
||
529 | |||
530 | """ |
||
531 | saio.register_schema("demand", db.engine()) |
||
532 | from saio.demand import egon_heat_idp_pool |
||
533 | |||
534 | with db.session_scope() as session: |
||
535 | query = session.query(egon_heat_idp_pool).filter( |
||
536 | egon_heat_idp_pool.index.in_(profile_ids) |
||
537 | ) |
||
538 | |||
539 | df_profiles = pd.read_sql( |
||
540 | query.statement, query.session.bind, index_col="index" |
||
541 | ) |
||
542 | |||
543 | # unnest array of profile values per id |
||
544 | df_profiles = df_profiles.explode("idp") |
||
545 | # Add column for hour of day |
||
546 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
547 | |||
548 | return df_profiles |
||
549 | |||
550 | |||
551 | def get_daily_demand_share(mvgd): |
||
552 | """per census cell |
||
553 | Parameters |
||
554 | ---------- |
||
555 | mvgd : int |
||
556 | MVGD id |
||
557 | |||
558 | Returns |
||
559 | ------- |
||
560 | df_daily_demand_share : pd.DataFrame |
||
561 | Daily annual demand share per cencus cell. Columns of the dataframe |
||
562 | are zensus_population_id, day_of_year and daily_demand_share. |
||
563 | |||
564 | """ |
||
565 | |||
566 | with db.session_scope() as session: |
||
567 | query = session.query( |
||
568 | MapZensusGridDistricts.zensus_population_id, |
||
569 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
570 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
571 | ).filter( |
||
572 | EgonMapZensusClimateZones.climate_zone |
||
573 | == EgonDailyHeatDemandPerClimateZone.climate_zone, |
||
574 | MapZensusGridDistricts.zensus_population_id |
||
575 | == EgonMapZensusClimateZones.zensus_population_id, |
||
576 | MapZensusGridDistricts.bus_id == mvgd, |
||
577 | ) |
||
578 | |||
579 | df_daily_demand_share = pd.read_sql( |
||
580 | query.statement, query.session.bind, index_col=None |
||
581 | ) |
||
582 | return df_daily_demand_share |
||
583 | |||
584 | |||
585 | def calc_residential_heat_profiles_per_mvgd(mvgd, scenario): |
||
586 | """ |
||
587 | Gets residential heat profiles per building in MV grid for either eGon2035 |
||
588 | or eGon100RE scenario. |
||
589 | |||
590 | Parameters |
||
591 | ---------- |
||
592 | mvgd : int |
||
593 | MV grid ID. |
||
594 | scenario : str |
||
595 | Possible options are eGon2035 or eGon100RE. |
||
596 | |||
597 | Returns |
||
598 | -------- |
||
599 | pd.DataFrame |
||
600 | Heat demand profiles of buildings. Columns are: |
||
601 | * zensus_population_id : int |
||
602 | Zensus cell ID building is in. |
||
603 | * building_id : int |
||
604 | ID of building. |
||
605 | * day_of_year : int |
||
606 | Day of the year (1 - 365). |
||
607 | * hour : int |
||
608 | Hour of the day (1 - 24). |
||
609 | * demand_ts : float |
||
610 | Building's residential heat demand in MW, for specified hour |
||
611 | of the year (specified through columns `day_of_year` and |
||
612 | `hour`). |
||
613 | """ |
||
614 | |||
615 | columns = [ |
||
616 | "zensus_population_id", |
||
617 | "building_id", |
||
618 | "day_of_year", |
||
619 | "hour", |
||
620 | "demand_ts", |
||
621 | ] |
||
622 | |||
623 | df_peta_demand = get_peta_demand(mvgd, scenario) |
||
624 | |||
625 | # TODO maybe return empty dataframe |
||
626 | if df_peta_demand.empty: |
||
627 | logger.info(f"No demand for MVGD: {mvgd}") |
||
628 | return pd.DataFrame(columns=columns) |
||
629 | |||
630 | df_profiles_ids = get_residential_heat_profile_ids(mvgd) |
||
631 | |||
632 | if df_profiles_ids.empty: |
||
633 | logger.info(f"No profiles for MVGD: {mvgd}") |
||
634 | return pd.DataFrame(columns=columns) |
||
635 | |||
636 | df_profiles = get_daily_profiles( |
||
637 | df_profiles_ids["selected_idp_profiles"].unique() |
||
638 | ) |
||
639 | |||
640 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
641 | |||
642 | # Merge profile ids to peta demand by zensus_population_id |
||
643 | df_profile_merge = pd.merge( |
||
644 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
645 | ) |
||
646 | |||
647 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
648 | df_profile_merge = pd.merge( |
||
649 | left=df_profile_merge, |
||
650 | right=df_daily_demand_share, |
||
651 | on=["zensus_population_id", "day_of_year"], |
||
652 | ) |
||
653 | |||
654 | # Merge daily profiles by profile id |
||
655 | df_profile_merge = pd.merge( |
||
656 | left=df_profile_merge, |
||
657 | right=df_profiles[["idp", "hour"]], |
||
658 | left_on="selected_idp_profiles", |
||
659 | right_index=True, |
||
660 | ) |
||
661 | |||
662 | # Scale profiles |
||
663 | df_profile_merge["demand_ts"] = ( |
||
664 | df_profile_merge["idp"] |
||
665 | .mul(df_profile_merge["daily_demand_share"]) |
||
666 | .mul(df_profile_merge["demand"]) |
||
667 | .div(df_profile_merge["buildings"]) |
||
668 | ) |
||
669 | |||
670 | return df_profile_merge.loc[:, columns] |
||
671 | |||
672 | |||
673 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
674 | |||
675 | from matplotlib import pyplot as plt |
||
676 | |||
677 | mv_grids = db.select_geodataframe( |
||
678 | """ |
||
679 | SELECT * FROM grid.egon_mv_grid_district |
||
680 | """, |
||
681 | index_col="bus_id", |
||
682 | ) |
||
683 | |||
684 | for c in ["CHP", "heat_pump"]: |
||
685 | mv_grids[c] = ( |
||
686 | resulting_capacities[resulting_capacities.carrier == c] |
||
687 | .set_index("mv_grid_id") |
||
688 | .capacity |
||
689 | ) |
||
690 | |||
691 | fig, ax = plt.subplots(1, 1) |
||
692 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
693 | mv_grids.plot( |
||
694 | ax=ax, |
||
695 | column=c, |
||
696 | cmap="magma_r", |
||
697 | legend=True, |
||
698 | legend_kwds={ |
||
699 | "label": f"Installed {c} in MW", |
||
700 | "orientation": "vertical", |
||
701 | }, |
||
702 | ) |
||
703 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
704 | |||
705 | |||
706 | def get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
707 | scenario, mv_grid_id |
||
708 | ): |
||
709 | """ |
||
710 | Returns zensus cell IDs with decentral heating systems in given MV grid. |
||
711 | |||
712 | As cells with district heating differ between scenarios, this is also |
||
713 | depending on the scenario. |
||
714 | |||
715 | Parameters |
||
716 | ----------- |
||
717 | scenario : str |
||
718 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
719 | mv_grid_id : int |
||
720 | ID of MV grid. |
||
721 | |||
722 | Returns |
||
723 | -------- |
||
724 | pd.Index(int) |
||
725 | Zensus cell IDs (as int) of buildings with decentral heating systems in |
||
726 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
727 | used in a query. |
||
728 | |||
729 | """ |
||
730 | |||
731 | # get zensus cells in grid |
||
732 | zensus_population_ids = db.select_dataframe( |
||
733 | f""" |
||
734 | SELECT zensus_population_id |
||
735 | FROM boundaries.egon_map_zensus_grid_districts |
||
736 | WHERE bus_id = {mv_grid_id} |
||
737 | """, |
||
738 | index_col=None, |
||
739 | ).zensus_population_id.values |
||
740 | |||
741 | # maybe use adapter |
||
742 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
743 | # reason throw an error when used in a query) |
||
744 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
745 | |||
746 | # get zensus cells with district heating |
||
747 | with db.session_scope() as session: |
||
748 | query = session.query( |
||
749 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
750 | ).filter( |
||
751 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
752 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
753 | zensus_population_ids |
||
754 | ), |
||
755 | ) |
||
756 | |||
757 | cells_with_dh = pd.read_sql( |
||
758 | query.statement, query.session.bind, index_col=None |
||
759 | ).zensus_population_id.values |
||
760 | |||
761 | # remove zensus cells with district heating |
||
762 | zensus_population_ids = zensus_population_ids.drop( |
||
763 | cells_with_dh, errors="ignore" |
||
764 | ) |
||
765 | return pd.Index(zensus_population_ids) |
||
766 | |||
767 | |||
768 | def get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
769 | scenario, mv_grid_id |
||
770 | ): |
||
771 | """ |
||
772 | Returns building IDs of buildings with decentral residential heat demand in |
||
773 | given MV grid. |
||
774 | |||
775 | As cells with district heating differ between scenarios, this is also |
||
776 | depending on the scenario. |
||
777 | |||
778 | Parameters |
||
779 | ----------- |
||
780 | scenario : str |
||
781 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
782 | mv_grid_id : int |
||
783 | ID of MV grid. |
||
784 | |||
785 | Returns |
||
786 | -------- |
||
787 | pd.Index(int) |
||
788 | Building IDs (as int) of buildings with decentral heating system in |
||
789 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
790 | used in a query. |
||
791 | |||
792 | """ |
||
793 | # get zensus cells with decentral heating |
||
794 | zensus_population_ids = ( |
||
795 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
796 | scenario, mv_grid_id |
||
797 | ) |
||
798 | ) |
||
799 | |||
800 | # get buildings with decentral heat demand |
||
801 | saio.register_schema("demand", engine) |
||
802 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
803 | |||
804 | with db.session_scope() as session: |
||
805 | query = session.query( |
||
806 | egon_heat_timeseries_selected_profiles.building_id, |
||
807 | ).filter( |
||
808 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
809 | zensus_population_ids |
||
810 | ) |
||
811 | ) |
||
812 | |||
813 | buildings_with_heat_demand = pd.read_sql( |
||
814 | query.statement, query.session.bind, index_col=None |
||
815 | ).building_id.values |
||
816 | |||
817 | return pd.Index(buildings_with_heat_demand) |
||
818 | |||
819 | |||
820 | def get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
821 | scenario, mv_grid_id |
||
822 | ): |
||
823 | """ |
||
824 | Returns building IDs of buildings with decentral CTS heat demand in |
||
825 | given MV grid. |
||
826 | |||
827 | As cells with district heating differ between scenarios, this is also |
||
828 | depending on the scenario. |
||
829 | |||
830 | Parameters |
||
831 | ----------- |
||
832 | scenario : str |
||
833 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
834 | mv_grid_id : int |
||
835 | ID of MV grid. |
||
836 | |||
837 | Returns |
||
838 | -------- |
||
839 | pd.Index(int) |
||
840 | Building IDs (as int) of buildings with decentral heating system in |
||
841 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
842 | used in a query. |
||
843 | |||
844 | """ |
||
845 | |||
846 | # get zensus cells with decentral heating |
||
847 | zensus_population_ids = ( |
||
848 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
849 | scenario, mv_grid_id |
||
850 | ) |
||
851 | ) |
||
852 | |||
853 | # get buildings with decentral heat demand |
||
854 | with db.session_scope() as session: |
||
855 | query = session.query(EgonMapZensusMvgdBuildings.building_id).filter( |
||
856 | EgonMapZensusMvgdBuildings.sector == "cts", |
||
857 | EgonMapZensusMvgdBuildings.zensus_population_id.in_( |
||
858 | zensus_population_ids |
||
859 | ), |
||
860 | ) |
||
861 | |||
862 | buildings_with_heat_demand = pd.read_sql( |
||
863 | query.statement, query.session.bind, index_col=None |
||
864 | ).building_id.values |
||
865 | |||
866 | return pd.Index(buildings_with_heat_demand) |
||
867 | |||
868 | |||
869 | def get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd, scenario): |
||
870 | """ |
||
871 | Returns building IDs of buildings with decentral heat demand in |
||
872 | given MV grid. |
||
873 | |||
874 | As cells with district heating differ between scenarios, this is also |
||
875 | depending on the scenario. |
||
876 | |||
877 | Parameters |
||
878 | ----------- |
||
879 | mv_grid_id : int |
||
880 | ID of MV grid. |
||
881 | scenario : str |
||
882 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
883 | |||
884 | Returns |
||
885 | -------- |
||
886 | pd.Index(int) |
||
887 | Building IDs (as int) of buildings with decentral heating system in |
||
888 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
889 | used in a query. |
||
890 | |||
891 | """ |
||
892 | # get residential buildings with decentral heating systems |
||
893 | buildings_decentral_heating_res = ( |
||
894 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
895 | scenario, mvgd |
||
896 | ) |
||
897 | ) |
||
898 | |||
899 | # get CTS buildings with decentral heating systems |
||
900 | buildings_decentral_heating_cts = ( |
||
901 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mvgd) |
||
902 | ) |
||
903 | |||
904 | # merge residential and CTS buildings |
||
905 | buildings_decentral_heating = buildings_decentral_heating_res.append( |
||
906 | buildings_decentral_heating_cts |
||
907 | ).unique() |
||
908 | |||
909 | return buildings_decentral_heating |
||
910 | |||
911 | |||
912 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
913 | """ |
||
914 | Returns total heat pump capacity per grid that was previously defined |
||
915 | (by NEP or pypsa-eur-sec). |
||
916 | |||
917 | Parameters |
||
918 | ----------- |
||
919 | scenario : str |
||
920 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
921 | mv_grid_id : int |
||
922 | ID of MV grid. |
||
923 | |||
924 | Returns |
||
925 | -------- |
||
926 | float |
||
927 | Total heat pump capacity in MW in given MV grid. |
||
928 | |||
929 | """ |
||
930 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
931 | |||
932 | with db.session_scope() as session: |
||
933 | query = ( |
||
934 | session.query( |
||
935 | EgonIndividualHeatingSupply.mv_grid_id, |
||
936 | EgonIndividualHeatingSupply.capacity, |
||
937 | ) |
||
938 | .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
939 | .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
940 | .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
941 | ) |
||
942 | |||
943 | hp_cap_mv_grid = pd.read_sql( |
||
944 | query.statement, query.session.bind, index_col="mv_grid_id" |
||
945 | ) |
||
946 | if hp_cap_mv_grid.empty: |
||
947 | return 0.0 |
||
948 | else: |
||
949 | return hp_cap_mv_grid.capacity.values[0] |
||
950 | |||
951 | |||
952 | def get_heat_peak_demand_per_building(scenario, building_ids): |
||
953 | """""" |
||
954 | |||
955 | with db.session_scope() as session: |
||
956 | query = ( |
||
957 | session.query( |
||
958 | BuildingHeatPeakLoads.building_id, |
||
959 | BuildingHeatPeakLoads.peak_load_in_w, |
||
960 | ) |
||
961 | .filter(BuildingHeatPeakLoads.scenario == scenario) |
||
962 | .filter(BuildingHeatPeakLoads.building_id.in_(building_ids)) |
||
963 | ) |
||
964 | |||
965 | df_heat_peak_demand = pd.read_sql( |
||
966 | query.statement, query.session.bind, index_col=None |
||
967 | ) |
||
968 | |||
969 | # TODO remove check |
||
970 | if df_heat_peak_demand.duplicated("building_id").any(): |
||
971 | raise ValueError("Duplicate building_id") |
||
972 | |||
973 | # convert to series and from W to MW |
||
974 | df_heat_peak_demand = ( |
||
975 | df_heat_peak_demand.set_index("building_id").loc[:, "peak_load_in_w"] |
||
976 | * 1e6 |
||
977 | ) |
||
978 | return df_heat_peak_demand |
||
979 | |||
980 | |||
981 | def determine_minimum_hp_capacity_per_building( |
||
982 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
983 | ): |
||
984 | """ |
||
985 | Determines minimum required heat pump capacity. |
||
986 | |||
987 | Parameters |
||
988 | ---------- |
||
989 | peak_heat_demand : pd.Series |
||
990 | Series with peak heat demand per building in MW. Index contains the |
||
991 | building ID. |
||
992 | flexibility_factor : float |
||
993 | Factor to overdimension the heat pump to allow for some flexible |
||
994 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
995 | is used, to take into account |
||
996 | |||
997 | Returns |
||
998 | ------- |
||
999 | pd.Series |
||
1000 | Pandas series with minimum required heat pump capacity per building in |
||
1001 | MW. |
||
1002 | |||
1003 | """ |
||
1004 | return peak_heat_demand * flexibility_factor / cop |
||
1005 | |||
1006 | |||
1007 | def determine_buildings_with_hp_in_mv_grid( |
||
1008 | hp_cap_mv_grid, min_hp_cap_per_building |
||
1009 | ): |
||
1010 | """ |
||
1011 | Distributes given total heat pump capacity to buildings based on their peak |
||
1012 | heat demand. |
||
1013 | |||
1014 | Parameters |
||
1015 | ----------- |
||
1016 | hp_cap_mv_grid : float |
||
1017 | Total heat pump capacity in MW in given MV grid. |
||
1018 | min_hp_cap_per_building : pd.Series |
||
1019 | Pandas series with minimum required heat pump capacity per building |
||
1020 | in MW. |
||
1021 | |||
1022 | Returns |
||
1023 | ------- |
||
1024 | pd.Index(int) |
||
1025 | Building IDs (as int) of buildings to get heat demand time series for. |
||
1026 | |||
1027 | """ |
||
1028 | building_ids = min_hp_cap_per_building.index |
||
1029 | |||
1030 | # get buildings with PV to give them a higher priority when selecting |
||
1031 | # buildings a heat pump will be allocated to |
||
1032 | saio.register_schema("supply", engine) |
||
1033 | from saio.supply import egon_power_plants_pv_roof_building |
||
1034 | |||
1035 | with db.session_scope() as session: |
||
1036 | query = session.query( |
||
1037 | egon_power_plants_pv_roof_building.building_id |
||
1038 | ).filter( |
||
1039 | egon_power_plants_pv_roof_building.building_id.in_(building_ids) |
||
1040 | ) |
||
1041 | |||
1042 | buildings_with_pv = pd.read_sql( |
||
1043 | query.statement, query.session.bind, index_col=None |
||
1044 | ).building_id.values |
||
1045 | # set different weights for buildings with PV and without PV |
||
1046 | weight_with_pv = 1.5 |
||
1047 | weight_without_pv = 1.0 |
||
1048 | weights = pd.concat( |
||
1049 | [ |
||
1050 | pd.DataFrame( |
||
1051 | {"weight": weight_without_pv}, |
||
1052 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
1053 | ), |
||
1054 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
1055 | ] |
||
1056 | ) |
||
1057 | # normalise weights (probability needs to add up to 1) |
||
1058 | weights.weight = weights.weight / weights.weight.sum() |
||
1059 | |||
1060 | # get random order at which buildings are chosen |
||
1061 | np.random.seed(db.credentials()["--random-seed"]) |
||
1062 | buildings_with_hp_order = np.random.choice( |
||
1063 | weights.index, |
||
1064 | size=len(weights), |
||
1065 | replace=False, |
||
1066 | p=weights.weight.values, |
||
1067 | ) |
||
1068 | |||
1069 | # select buildings until HP capacity in MV grid is reached (some rest |
||
1070 | # capacity will remain) |
||
1071 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
1072 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
1073 | |||
1074 | # choose random heat pumps until remaining heat pumps are larger than |
||
1075 | # remaining heat pump capacity |
||
1076 | remaining_hp_cap = ( |
||
1077 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1078 | ) |
||
1079 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1080 | building_ids.drop(buildings_with_hp) |
||
1081 | ] |
||
1082 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1083 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1084 | ].index |
||
1085 | while len(possible_buildings) > 0: |
||
1086 | random.seed(db.credentials()["--random-seed"]) |
||
1087 | new_hp_building = random.choice(possible_buildings) |
||
1088 | # add new building to building with HP |
||
1089 | buildings_with_hp = buildings_with_hp.append( |
||
1090 | pd.Index([new_hp_building]) |
||
1091 | ) |
||
1092 | # determine if there are still possible buildings |
||
1093 | remaining_hp_cap = ( |
||
1094 | hp_cap_mv_grid |
||
1095 | - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1096 | ) |
||
1097 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1098 | building_ids.drop(buildings_with_hp) |
||
1099 | ] |
||
1100 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1101 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1102 | ].index |
||
1103 | |||
1104 | return buildings_with_hp |
||
1105 | |||
1106 | |||
1107 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
1108 | """ |
||
1109 | Desaggregates the required total heat pump capacity to buildings. |
||
1110 | |||
1111 | All buildings are previously assigned a minimum required heat pump |
||
1112 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
1113 | are assigned. |
||
1114 | |||
1115 | Parameters |
||
1116 | ------------ |
||
1117 | min_hp_cap_per_building : pd.Series |
||
1118 | Pandas series with minimum required heat pump capacity per building |
||
1119 | in MW. |
||
1120 | hp_cap_mv_grid : float |
||
1121 | Total heat pump capacity in MW in given MV grid. |
||
1122 | |||
1123 | Returns |
||
1124 | -------- |
||
1125 | pd.Series |
||
1126 | Pandas series with heat pump capacity per building in MW. |
||
1127 | |||
1128 | """ |
||
1129 | # distribute remaining capacity to all buildings with HP depending on |
||
1130 | # installed HP capacity |
||
1131 | |||
1132 | allocated_cap = min_hp_cap_per_building.sum() |
||
1133 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
1134 | |||
1135 | fac = remaining_cap / allocated_cap |
||
1136 | hp_cap_per_building = ( |
||
1137 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
1138 | ) |
||
1139 | hp_cap_per_building.index.name = "building_id" |
||
1140 | |||
1141 | return hp_cap_per_building |
||
1142 | |||
1143 | |||
1144 | def determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1145 | peak_heat_demand, building_ids |
||
1146 | ): |
||
1147 | """ |
||
1148 | Determines minimum required HP capacity in MV grid in MW as input for |
||
1149 | pypsa-eur-sec. |
||
1150 | |||
1151 | Parameters |
||
1152 | ---------- |
||
1153 | peak_heat_demand : pd.Series |
||
1154 | Series with peak heat demand per building in MW. Index contains the |
||
1155 | building ID. |
||
1156 | building_ids : pd.Index(int) |
||
1157 | Building IDs (as int) of buildings with decentral heating system in |
||
1158 | given MV grid. |
||
1159 | |||
1160 | Returns |
||
1161 | -------- |
||
1162 | float |
||
1163 | Minimum required HP capacity in MV grid in MW. |
||
1164 | |||
1165 | """ |
||
1166 | if len(building_ids) > 0: |
||
1167 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1168 | # determine minimum required heat pump capacity per building |
||
1169 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1170 | peak_heat_demand |
||
1171 | ) |
||
1172 | return min_hp_cap_buildings.sum() |
||
1173 | else: |
||
1174 | return 0.0 |
||
1175 | |||
1176 | |||
1177 | def determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1178 | mv_grid_id, peak_heat_demand, building_ids |
||
1179 | ): |
||
1180 | """ |
||
1181 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
1182 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well |
||
1183 | as their respective HP capacity in MW. |
||
1184 | |||
1185 | Parameters |
||
1186 | ----------- |
||
1187 | mv_grid_id : int |
||
1188 | ID of MV grid. |
||
1189 | peak_heat_demand : pd.Series |
||
1190 | Series with peak heat demand per building in MW. Index contains the |
||
1191 | building ID. |
||
1192 | building_ids : pd.Index(int) |
||
1193 | Building IDs (as int) of buildings with decentral heating system in |
||
1194 | given MV grid. |
||
1195 | |||
1196 | """ |
||
1197 | |||
1198 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1199 | "eGon2035", mv_grid_id |
||
1200 | ) |
||
1201 | |||
1202 | if len(building_ids) > 0 and hp_cap_grid > 0.0: |
||
1203 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1204 | |||
1205 | # determine minimum required heat pump capacity per building |
||
1206 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1207 | peak_heat_demand |
||
1208 | ) |
||
1209 | |||
1210 | # select buildings that will have a heat pump |
||
1211 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
1212 | hp_cap_grid, min_hp_cap_buildings |
||
1213 | ) |
||
1214 | |||
1215 | # distribute total heat pump capacity to all buildings with HP |
||
1216 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1217 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
1218 | ) |
||
1219 | |||
1220 | return hp_cap_per_building.rename("hp_capacity") |
||
1221 | |||
1222 | else: |
||
1223 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
1224 | |||
1225 | |||
1226 | def determine_hp_cap_buildings_eGon100RE_per_mvgd(mv_grid_id): |
||
1227 | """ |
||
1228 | Determines HP capacity per building in eGon100RE scenario. |
||
1229 | |||
1230 | In eGon100RE scenario all buildings without district heating get a heat |
||
1231 | pump. |
||
1232 | |||
1233 | Returns |
||
1234 | -------- |
||
1235 | pd.Series |
||
1236 | Pandas series with heat pump capacity per building in MW. |
||
1237 | |||
1238 | """ |
||
1239 | |||
1240 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1241 | "eGon100RE", mv_grid_id |
||
1242 | ) |
||
1243 | |||
1244 | if hp_cap_grid > 0.0: |
||
1245 | |||
1246 | # get buildings with decentral heating systems |
||
1247 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1248 | mv_grid_id, scenario="eGon100RE" |
||
1249 | ) |
||
1250 | |||
1251 | logger.info(f"MVGD={mv_grid_id} | Get peak loads from DB") |
||
1252 | df_peak_heat_demand = get_heat_peak_demand_per_building( |
||
1253 | "eGon100RE", building_ids |
||
1254 | ) |
||
1255 | |||
1256 | logger.info(f"MVGD={mv_grid_id} | Determine HP capacities.") |
||
1257 | # determine minimum required heat pump capacity per building |
||
1258 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1259 | df_peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
1260 | ) |
||
1261 | |||
1262 | logger.info(f"MVGD={mv_grid_id} | Desaggregate HP capacities.") |
||
1263 | # distribute total heat pump capacity to all buildings with HP |
||
1264 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1265 | min_hp_cap_buildings, hp_cap_grid |
||
1266 | ) |
||
1267 | |||
1268 | return hp_cap_per_building.rename("hp_capacity") |
||
1269 | else: |
||
1270 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
1271 | |||
1272 | |||
1273 | def determine_hp_cap_buildings_eGon100RE(): |
||
1274 | """ |
||
1275 | Main function to determine HP capacity per building in eGon100RE scenario. |
||
1276 | |||
1277 | """ |
||
1278 | |||
1279 | # ========== Register np datatypes with SQLA ========== |
||
1280 | register_adapter(np.float64, adapt_numpy_float64) |
||
1281 | register_adapter(np.int64, adapt_numpy_int64) |
||
1282 | # ===================================================== |
||
1283 | |||
1284 | with db.session_scope() as session: |
||
1285 | query = ( |
||
1286 | session.query( |
||
1287 | MapZensusGridDistricts.bus_id, |
||
1288 | ) |
||
1289 | .filter( |
||
1290 | MapZensusGridDistricts.zensus_population_id |
||
1291 | == EgonPetaHeat.zensus_population_id |
||
1292 | ) |
||
1293 | .distinct(MapZensusGridDistricts.bus_id) |
||
1294 | ) |
||
1295 | mvgd_ids = pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
1296 | mvgd_ids = mvgd_ids.sort_values("bus_id") |
||
1297 | mvgd_ids = mvgd_ids["bus_id"].values |
||
1298 | |||
1299 | df_hp_cap_per_building_100RE_db = pd.DataFrame( |
||
1300 | columns=["building_id", "hp_capacity"] |
||
1301 | ) |
||
1302 | |||
1303 | for mvgd_id in mvgd_ids: |
||
1304 | |||
1305 | logger.info(f"MVGD={mvgd_id} | Start") |
||
1306 | |||
1307 | hp_cap_per_building_100RE = ( |
||
1308 | determine_hp_cap_buildings_eGon100RE_per_mvgd(mvgd_id) |
||
1309 | ) |
||
1310 | |||
1311 | if not hp_cap_per_building_100RE.empty: |
||
1312 | df_hp_cap_per_building_100RE_db = pd.concat( |
||
1313 | [ |
||
1314 | df_hp_cap_per_building_100RE_db, |
||
1315 | hp_cap_per_building_100RE.reset_index(), |
||
1316 | ], |
||
1317 | axis=0, |
||
1318 | ) |
||
1319 | |||
1320 | logger.info(f"MVGD={min(mvgd_ids)} - {max(mvgd_ids)} | Write data to db.") |
||
1321 | df_hp_cap_per_building_100RE_db["scenario"] = "eGon100RE" |
||
1322 | |||
1323 | write_table_to_postgres( |
||
1324 | df_hp_cap_per_building_100RE_db, |
||
1325 | EgonHpCapacityBuildings, |
||
1326 | engine=engine, |
||
1327 | drop=False, |
||
1328 | ) |
||
1329 | |||
1330 | |||
1331 | def aggregate_residential_and_cts_profiles(mvgd, scenario): |
||
1332 | """ |
||
1333 | Gets residential and CTS heat demand profiles per building and aggregates |
||
1334 | them. |
||
1335 | |||
1336 | Parameters |
||
1337 | ---------- |
||
1338 | mvgd : int |
||
1339 | MV grid ID. |
||
1340 | scenario : str |
||
1341 | Possible options are eGon2035 or eGon100RE. |
||
1342 | |||
1343 | Returns |
||
1344 | -------- |
||
1345 | pd.DataFrame |
||
1346 | Table of demand profile per building. Column names are building IDs and |
||
1347 | index is hour of the year as int (0-8759). |
||
1348 | |||
1349 | """ |
||
1350 | # ############### get residential heat demand profiles ############### |
||
1351 | df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
||
1352 | mvgd=mvgd, scenario=scenario |
||
1353 | ) |
||
1354 | |||
1355 | # pivot to allow aggregation with CTS profiles |
||
1356 | df_heat_ts = df_heat_ts.pivot( |
||
1357 | index=["day_of_year", "hour"], |
||
1358 | columns="building_id", |
||
1359 | values="demand_ts", |
||
1360 | ) |
||
1361 | df_heat_ts = df_heat_ts.sort_index().reset_index(drop=True) |
||
1362 | |||
1363 | # ############### get CTS heat demand profiles ############### |
||
1364 | heat_demand_cts_ts = calc_cts_building_profiles( |
||
1365 | bus_ids=[mvgd], |
||
1366 | scenario=scenario, |
||
1367 | sector="heat", |
||
1368 | ) |
||
1369 | |||
1370 | # ############# aggregate residential and CTS demand profiles ############# |
||
1371 | df_heat_ts = pd.concat([df_heat_ts, heat_demand_cts_ts], axis=1) |
||
1372 | |||
1373 | df_heat_ts = df_heat_ts.groupby(axis=1, level=0).sum() |
||
1374 | |||
1375 | return df_heat_ts |
||
1376 | |||
1377 | |||
1378 | def export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db): |
||
1379 | """""" |
||
1380 | |||
1381 | df_peak_loads_db = df_peak_loads_db.melt( |
||
1382 | id_vars="building_id", |
||
1383 | var_name="scenario", |
||
1384 | value_name="peak_load_in_w", |
||
1385 | ) |
||
1386 | df_peak_loads_db["sector"] = "residential+cts" |
||
1387 | # From MW to W |
||
1388 | df_peak_loads_db["peak_load_in_w"] = ( |
||
1389 | df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
1390 | ) |
||
1391 | write_table_to_postgres( |
||
1392 | df_peak_loads_db, BuildingHeatPeakLoads, engine=engine |
||
1393 | ) |
||
1394 | |||
1395 | columns = { |
||
1396 | column.key: column.type |
||
1397 | for column in EgonEtragoTimeseriesIndividualHeating.__table__.columns |
||
1398 | } |
||
1399 | df_heat_mvgd_ts_db = df_heat_mvgd_ts_db.loc[:, columns.keys()] |
||
1400 | |||
1401 | df_heat_mvgd_ts_db.to_sql( |
||
1402 | name=EgonEtragoTimeseriesIndividualHeating.__table__.name, |
||
1403 | schema=EgonEtragoTimeseriesIndividualHeating.__table__.schema, |
||
1404 | con=engine, |
||
1405 | if_exists="append", |
||
1406 | method="multi", |
||
1407 | index=False, |
||
1408 | dtype=columns, |
||
1409 | ) |
||
1410 | |||
1411 | |||
1412 | def export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec): |
||
1413 | |||
1414 | df_hp_min_cap_mv_grid_pypsa_eur_sec.index.name = "mvgd_id" |
||
1415 | df_hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1416 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_frame( |
||
1417 | name="min_hp_capacity" |
||
1418 | ).reset_index() |
||
1419 | ) |
||
1420 | |||
1421 | folder = Path(".") / "input-pypsa-eur-sec" |
||
1422 | file = folder / "minimum_hp_capacity_mv_grid_2035.csv" |
||
1423 | # Create the folder, if it does not exist already |
||
1424 | if not os.path.exists(folder): |
||
1425 | os.mkdir(folder) |
||
1426 | # TODO check append |
||
1427 | if not file.is_file(): |
||
1428 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv(file) |
||
1429 | # TODO outsource into separate task incl delete file if clearing |
||
1430 | else: |
||
1431 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
1432 | file, mode="a", header=False |
||
1433 | ) |
||
1434 | |||
1435 | |||
1436 | def catch_missing_buidings(buildings_decentral_heating, peak_load): |
||
1437 | """ |
||
1438 | Check for missing buildings and reduce the list of buildings with |
||
1439 | decentral heating if no peak loads available. This should only happen |
||
1440 | in case of cutout SH |
||
1441 | |||
1442 | Parameters |
||
1443 | ----------- |
||
1444 | buildings_decentral_heating : list(int) |
||
1445 | Array or list of buildings with decentral heating |
||
1446 | |||
1447 | peak_load : pd.Series |
||
1448 | Peak loads of all building within the mvgd |
||
1449 | |||
1450 | """ |
||
1451 | # Catch missing buildings key error |
||
1452 | # should only happen within cutout SH |
||
1453 | if ( |
||
1454 | not all(buildings_decentral_heating.isin(peak_load.index)) |
||
1455 | and config.settings()["egon-data"]["--dataset-boundary"] |
||
1456 | == "Schleswig-Holstein" |
||
1457 | ): |
||
1458 | diff = buildings_decentral_heating.difference(peak_load.index) |
||
1459 | logger.warning( |
||
1460 | f"Dropped {len(diff)} building ids due to missing peak " |
||
1461 | f"loads. {len(buildings_decentral_heating)} left." |
||
1462 | ) |
||
1463 | logger.info(f"Dropped buildings: {diff}") |
||
1464 | buildings_decentral_heating.drop(diff, inplace=True) |
||
1465 | |||
1466 | return buildings_decentral_heating |
||
1467 | |||
1468 | |||
1469 | def determine_hp_cap_peak_load_mvgd_ts_2035(mvgd_ids): |
||
1470 | """ |
||
1471 | Main function to determine HP capacity per building in eGon2035 scenario. |
||
1472 | Further, creates heat demand time series for all buildings with heat pumps |
||
1473 | in MV grid, as well as for all buildings with gas boilers, used in eTraGo. |
||
1474 | |||
1475 | Parameters |
||
1476 | ----------- |
||
1477 | mvgd_ids : list(int) |
||
1478 | List of MV grid IDs to determine data for. |
||
1479 | |||
1480 | """ |
||
1481 | |||
1482 | # ========== Register np datatypes with SQLA ========== |
||
1483 | register_adapter(np.float64, adapt_numpy_float64) |
||
1484 | register_adapter(np.int64, adapt_numpy_int64) |
||
1485 | # ===================================================== |
||
1486 | |||
1487 | df_peak_loads_db = pd.DataFrame() |
||
1488 | df_hp_cap_per_building_2035_db = pd.DataFrame() |
||
1489 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1490 | |||
1491 | for mvgd in mvgd_ids: |
||
1492 | |||
1493 | logger.info(f"MVGD={mvgd} | Start") |
||
1494 | |||
1495 | # ############# aggregate residential and CTS demand profiles ##### |
||
1496 | |||
1497 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1498 | mvgd, scenario="eGon2035" |
||
1499 | ) |
||
1500 | |||
1501 | # ##################### determine peak loads ################### |
||
1502 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
1503 | |||
1504 | peak_load_2035 = df_heat_ts.max().rename("eGon2035") |
||
1505 | |||
1506 | # ######## determine HP capacity per building ######### |
||
1507 | logger.info(f"MVGD={mvgd} | Determine HP capacities.") |
||
1508 | |||
1509 | buildings_decentral_heating = ( |
||
1510 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1511 | mvgd, scenario="eGon2035" |
||
1512 | ) |
||
1513 | ) |
||
1514 | |||
1515 | # Reduce list of decentral heating if no Peak load available |
||
1516 | # TODO maybe remove after succesfull DE run |
||
1517 | buildings_decentral_heating = catch_missing_buidings( |
||
1518 | buildings_decentral_heating, peak_load_2035 |
||
1519 | ) |
||
1520 | |||
1521 | hp_cap_per_building_2035 = ( |
||
1522 | determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1523 | mvgd, |
||
1524 | peak_load_2035, |
||
1525 | buildings_decentral_heating, |
||
1526 | ) |
||
1527 | ) |
||
1528 | buildings_gas_2035 = pd.Index(buildings_decentral_heating).drop( |
||
1529 | hp_cap_per_building_2035.index |
||
1530 | ) |
||
1531 | |||
1532 | # ################ aggregated heat profiles ################### |
||
1533 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1534 | |||
1535 | df_mvgd_ts_2035_hp = df_heat_ts.loc[ |
||
1536 | :, |
||
1537 | hp_cap_per_building_2035.index, |
||
1538 | ].sum(axis=1) |
||
1539 | |||
1540 | # heat demand time series for buildings with gas boiler |
||
1541 | df_mvgd_ts_2035_gas = df_heat_ts.loc[:, buildings_gas_2035].sum(axis=1) |
||
1542 | |||
1543 | df_heat_mvgd_ts = pd.DataFrame( |
||
1544 | data={ |
||
1545 | "carrier": ["heat_pump", "CH4"], |
||
1546 | "bus_id": mvgd, |
||
1547 | "scenario": ["eGon2035", "eGon2035"], |
||
1548 | "dist_aggregated_mw": [ |
||
1549 | df_mvgd_ts_2035_hp.to_list(), |
||
1550 | df_mvgd_ts_2035_gas.to_list(), |
||
1551 | ], |
||
1552 | } |
||
1553 | ) |
||
1554 | |||
1555 | # ################ collect results ################## |
||
1556 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
1557 | |||
1558 | df_peak_loads_db = pd.concat( |
||
1559 | [df_peak_loads_db, peak_load_2035.reset_index()], |
||
1560 | axis=0, |
||
1561 | ignore_index=True, |
||
1562 | ) |
||
1563 | |||
1564 | df_heat_mvgd_ts_db = pd.concat( |
||
1565 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1566 | ) |
||
1567 | |||
1568 | df_hp_cap_per_building_2035_db = pd.concat( |
||
1569 | [ |
||
1570 | df_hp_cap_per_building_2035_db, |
||
1571 | hp_cap_per_building_2035.reset_index(), |
||
1572 | ], |
||
1573 | axis=0, |
||
1574 | ) |
||
1575 | |||
1576 | # ################ export to db ####################### |
||
1577 | logger.info(f"MVGD={min(mvgd_ids)} - {max(mvgd_ids)} | Write data to db.") |
||
1578 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db) |
||
1579 | |||
1580 | df_hp_cap_per_building_2035_db["scenario"] = "eGon2035" |
||
1581 | write_table_to_postgres( |
||
1582 | df_hp_cap_per_building_2035_db, |
||
1583 | EgonHpCapacityBuildings, |
||
1584 | engine=engine, |
||
1585 | drop=False, |
||
1586 | ) |
||
1587 | |||
1588 | |||
1589 | def determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec(mvgd_ids): |
||
1590 | """ |
||
1591 | Main function to determine minimum required HP capacity in MV for |
||
1592 | pypsa-eur-sec. Further, creates heat demand time series for all buildings |
||
1593 | with heat pumps in MV grid in eGon100RE scenario, used in eTraGo. |
||
1594 | |||
1595 | Parameters |
||
1596 | ----------- |
||
1597 | mvgd_ids : list(int) |
||
1598 | List of MV grid IDs to determine data for. |
||
1599 | |||
1600 | """ |
||
1601 | |||
1602 | # ========== Register np datatypes with SQLA ========== |
||
1603 | register_adapter(np.float64, adapt_numpy_float64) |
||
1604 | register_adapter(np.int64, adapt_numpy_int64) |
||
1605 | # ===================================================== |
||
1606 | |||
1607 | df_peak_loads_db = pd.DataFrame() |
||
1608 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1609 | df_hp_min_cap_mv_grid_pypsa_eur_sec = pd.Series(dtype="float64") |
||
1610 | |||
1611 | for mvgd in mvgd_ids: |
||
1612 | |||
1613 | logger.info(f"MVGD={mvgd} | Start") |
||
1614 | |||
1615 | # ############# aggregate residential and CTS demand profiles ##### |
||
1616 | |||
1617 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1618 | mvgd, scenario="eGon100RE" |
||
1619 | ) |
||
1620 | |||
1621 | # ##################### determine peak loads ################### |
||
1622 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
1623 | |||
1624 | peak_load_100RE = df_heat_ts.max().rename("eGon100RE") |
||
1625 | |||
1626 | # ######## determine minimum HP capacity pypsa-eur-sec ########### |
||
1627 | logger.info(f"MVGD={mvgd} | Determine minimum HP capacity.") |
||
1628 | |||
1629 | buildings_decentral_heating = ( |
||
1630 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1631 | mvgd, scenario="eGon100RE" |
||
1632 | ) |
||
1633 | ) |
||
1634 | |||
1635 | # Reduce list of decentral heating if no Peak load available |
||
1636 | # TODO maybe remove after succesfull DE run |
||
1637 | buildings_decentral_heating = catch_missing_buidings( |
||
1638 | buildings_decentral_heating, peak_load_100RE |
||
1639 | ) |
||
1640 | |||
1641 | hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1642 | determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1643 | peak_load_100RE, |
||
1644 | buildings_decentral_heating, |
||
1645 | ) |
||
1646 | ) |
||
1647 | |||
1648 | # ################ aggregated heat profiles ################### |
||
1649 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1650 | |||
1651 | df_mvgd_ts_hp = df_heat_ts.loc[ |
||
1652 | :, |
||
1653 | buildings_decentral_heating, |
||
1654 | ].sum(axis=1) |
||
1655 | |||
1656 | df_heat_mvgd_ts = pd.DataFrame( |
||
1657 | data={ |
||
1658 | "carrier": "heat_pump", |
||
1659 | "bus_id": mvgd, |
||
1660 | "scenario": "eGon100RE", |
||
1661 | "dist_aggregated_mw": [df_mvgd_ts_hp.to_list()], |
||
1662 | } |
||
1663 | ) |
||
1664 | |||
1665 | # ################ collect results ################## |
||
1666 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
1667 | |||
1668 | df_peak_loads_db = pd.concat( |
||
1669 | [df_peak_loads_db, peak_load_100RE.reset_index()], |
||
1670 | axis=0, |
||
1671 | ignore_index=True, |
||
1672 | ) |
||
1673 | |||
1674 | df_heat_mvgd_ts_db = pd.concat( |
||
1675 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1676 | ) |
||
1677 | |||
1678 | df_hp_min_cap_mv_grid_pypsa_eur_sec.loc[ |
||
1679 | mvgd |
||
1680 | ] = hp_min_cap_mv_grid_pypsa_eur_sec |
||
1681 | |||
1682 | # ################ export to db and csv ###################### |
||
1683 | logger.info(f"MVGD={min(mvgd_ids)} - {max(mvgd_ids)} | Write data to db.") |
||
1684 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db) |
||
1685 | |||
1686 | logger.info( |
||
1687 | f"MVGD={min(mvgd_ids)} - {max(mvgd_ids)} | Write " |
||
1688 | f"pypsa-eur-sec min " |
||
1689 | f"HP capacities to csv." |
||
1690 | ) |
||
1691 | export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec) |
||
1692 | |||
1693 | |||
1694 | View Code Duplication | def split_mvgds_into_bulks_2035(n, max_n, func): |
|
1695 | """""" |
||
1696 | |||
1697 | with db.session_scope() as session: |
||
1698 | query = ( |
||
1699 | session.query( |
||
1700 | MapZensusGridDistricts.bus_id, |
||
1701 | ) |
||
1702 | .filter( |
||
1703 | MapZensusGridDistricts.zensus_population_id |
||
1704 | == EgonPetaHeat.zensus_population_id |
||
1705 | ) |
||
1706 | .distinct(MapZensusGridDistricts.bus_id) |
||
1707 | ) |
||
1708 | mvgd_ids = pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
1709 | |||
1710 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
1711 | |||
1712 | mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
||
1713 | # Only take split n |
||
1714 | mvgd_ids = mvgd_ids[n] |
||
1715 | |||
1716 | logger.info(f"Bulk takes care of MVGD: {min(mvgd_ids)} - {max(mvgd_ids)}") |
||
1717 | func(mvgd_ids) |
||
1718 | |||
1719 | |||
1720 | View Code Duplication | def split_mvgds_into_bulks_pypsa_eur_sec(n, max_n, func): |
|
1721 | """""" |
||
1722 | |||
1723 | with db.session_scope() as session: |
||
1724 | query = ( |
||
1725 | session.query( |
||
1726 | MapZensusGridDistricts.bus_id, |
||
1727 | ) |
||
1728 | .filter( |
||
1729 | MapZensusGridDistricts.zensus_population_id |
||
1730 | == EgonPetaHeat.zensus_population_id |
||
1731 | ) |
||
1732 | .distinct(MapZensusGridDistricts.bus_id) |
||
1733 | ) |
||
1734 | mvgd_ids = pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
1735 | |||
1736 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
1737 | |||
1738 | mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
||
1739 | # Only take split n |
||
1740 | mvgd_ids = mvgd_ids[n] |
||
1741 | |||
1742 | logger.info(f"Bulk takes care of MVGD: {min(mvgd_ids)} - {max(mvgd_ids)}") |
||
1743 | func(mvgd_ids) |
||
1744 | |||
1745 | |||
1746 | def create_peak_load_table(): |
||
1747 | |||
1748 | BuildingHeatPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
||
1749 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1750 | |||
1751 | |||
1752 | def create_hp_capacity_table(): |
||
1753 | |||
1754 | EgonHpCapacityBuildings.__table__.drop(bind=engine, checkfirst=True) |
||
1755 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1756 | |||
1757 | |||
1758 | def create_egon_etrago_timeseries_individual_heating(): |
||
1759 | |||
1760 | EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
||
1761 | bind=engine, checkfirst=True |
||
1762 | ) |
||
1763 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
1764 | bind=engine, checkfirst=True |
||
1765 | ) |
||
1766 | |||
1767 | |||
1768 | def delete_peak_loads_if_existing(): |
||
1769 | """Remove all entries""" |
||
1770 | with db.session_scope() as session: |
||
1771 | # Buses |
||
1772 | session.query(BuildingHeatPeakLoads).filter( |
||
1773 | BuildingHeatPeakLoads.scenario == "eGon2035" |
||
1774 | ).delete(synchronize_session=False) |
||
1775 |