| Total Complexity | 68 |
| Total Lines | 1644 |
| Duplicated Lines | 1.46 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """The central module containing all code dealing with |
||
| 2 | individual heat supply. |
||
| 3 | |||
| 4 | """ |
||
| 5 | from pathlib import Path |
||
| 6 | import os |
||
| 7 | import random |
||
| 8 | import time |
||
| 9 | |||
| 10 | from airflow.operators.python_operator import PythonOperator |
||
| 11 | from loguru import logger |
||
| 12 | from psycopg2.extensions import AsIs, register_adapter |
||
| 13 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
| 14 | from sqlalchemy.ext.declarative import declarative_base |
||
| 15 | import geopandas as gpd |
||
| 16 | import numpy as np |
||
| 17 | import pandas as pd |
||
| 18 | import saio |
||
| 19 | |||
| 20 | from egon.data import config, db |
||
| 21 | from egon.data.datasets import Dataset |
||
| 22 | from egon.data.datasets.district_heating_areas import ( |
||
| 23 | MapZensusDistrictHeatingAreas, |
||
| 24 | ) |
||
| 25 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
| 26 | calc_cts_building_profiles, |
||
| 27 | ) |
||
| 28 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
| 29 | EgonMapZensusMvgdBuildings, |
||
| 30 | ) |
||
| 31 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
| 32 | write_table_to_postgres, |
||
| 33 | ) |
||
| 34 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
| 35 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
| 36 | EgonDailyHeatDemandPerClimateZone, |
||
| 37 | EgonMapZensusClimateZones, |
||
| 38 | ) |
||
| 39 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
| 40 | EgonHeatTimeseries, |
||
| 41 | ) |
||
| 42 | |||
| 43 | # get zensus cells with district heating |
||
| 44 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
| 45 | |||
| 46 | engine = db.engine() |
||
| 47 | Base = declarative_base() |
||
| 48 | |||
| 49 | |||
| 50 | # TODO check column names> |
||
| 51 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
| 52 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
| 53 | __table_args__ = {"schema": "demand"} |
||
| 54 | bus_id = Column(Integer, primary_key=True) |
||
| 55 | scenario = Column(String, primary_key=True) |
||
| 56 | carrier = Column(String, primary_key=True) |
||
| 57 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
| 58 | |||
| 59 | |||
| 60 | class EgonHpCapacityBuildings(Base): |
||
| 61 | __tablename__ = "egon_hp_capacity_buildings" |
||
| 62 | __table_args__ = {"schema": "demand"} |
||
| 63 | building_id = Column(Integer, primary_key=True) |
||
| 64 | scenario = Column(String, primary_key=True) |
||
| 65 | hp_capacity = Column(REAL) |
||
| 66 | |||
| 67 | |||
| 68 | class HeatPumpsPypsaEurSecAnd2035(Dataset): |
||
| 69 | def __init__(self, dependencies): |
||
| 70 | def dyn_parallel_tasks(): |
||
| 71 | """Dynamically generate tasks |
||
| 72 | |||
| 73 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
| 74 | |||
| 75 | The number of parallel tasks is defined via parameter |
||
| 76 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
| 77 | |||
| 78 | Returns |
||
| 79 | ------- |
||
| 80 | set of airflow.PythonOperators |
||
| 81 | The tasks. Each element is of |
||
| 82 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
| 83 | determine_hp_capacity_eGon2035_pypsa_eur_sec` |
||
| 84 | """ |
||
| 85 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
| 86 | "parallel_tasks", 1 |
||
| 87 | ) |
||
| 88 | # ========== Register np datatypes with SQLA ========== |
||
| 89 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 90 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 91 | # ===================================================== |
||
| 92 | |||
| 93 | with db.session_scope() as session: |
||
| 94 | query = ( |
||
| 95 | session.query( |
||
| 96 | MapZensusGridDistricts.bus_id, |
||
| 97 | ) |
||
| 98 | .filter( |
||
| 99 | MapZensusGridDistricts.zensus_population_id |
||
| 100 | == EgonPetaHeat.zensus_population_id |
||
| 101 | ) |
||
| 102 | .distinct(MapZensusGridDistricts.bus_id) |
||
| 103 | ) |
||
| 104 | mvgd_ids = pd.read_sql( |
||
| 105 | query.statement, query.session.bind, index_col=None |
||
| 106 | ) |
||
| 107 | |||
| 108 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
| 109 | |||
| 110 | mvgd_ids = np.array_split( |
||
| 111 | mvgd_ids["bus_id"].values, parallel_tasks |
||
| 112 | ) |
||
| 113 | |||
| 114 | # mvgd_bunch_size = divmod(MVGD_MIN_COUNT, parallel_tasks)[0] |
||
| 115 | tasks = set() |
||
| 116 | for i, bulk in enumerate(mvgd_ids): |
||
| 117 | tasks.add( |
||
| 118 | PythonOperator( |
||
| 119 | task_id=( |
||
| 120 | f"determine-hp-capacity-eGon2035-pypsa-eur-sec_" |
||
| 121 | f"mvgd_{min(bulk)}-{max(bulk)}" |
||
| 122 | ), |
||
| 123 | python_callable=determine_hp_cap_peak_load_mvgd_ts, |
||
| 124 | op_kwargs={ |
||
| 125 | "mvgd_ids": bulk, |
||
| 126 | }, |
||
| 127 | ) |
||
| 128 | ) |
||
| 129 | return tasks |
||
| 130 | |||
| 131 | super().__init__( |
||
| 132 | name="HeatPumpsPypsaEurSecAnd2035", |
||
| 133 | version="0.0.0", |
||
| 134 | dependencies=dependencies, |
||
| 135 | tasks=( |
||
| 136 | create_peak_load_table, |
||
| 137 | create_hp_capacity_table, |
||
| 138 | # delete_peak_loads_if_existing, |
||
| 139 | {*dyn_parallel_tasks()}, |
||
| 140 | ), |
||
| 141 | ) |
||
| 142 | |||
| 143 | |||
| 144 | class HeatPumps2050(Dataset): |
||
| 145 | def __init__(self, dependencies): |
||
| 146 | super().__init__( |
||
| 147 | name="HeatPumps2050", |
||
| 148 | version="0.0.0", |
||
| 149 | dependencies=dependencies, |
||
| 150 | tasks=(determine_hp_cap_buildings_eGon100RE,), |
||
| 151 | ) |
||
| 152 | |||
| 153 | |||
| 154 | class BuildingHeatPeakLoads(Base): |
||
| 155 | __tablename__ = "egon_building_heat_peak_loads" |
||
| 156 | __table_args__ = {"schema": "demand"} |
||
| 157 | |||
| 158 | building_id = Column(Integer, primary_key=True) |
||
| 159 | scenario = Column(String, primary_key=True) |
||
| 160 | sector = Column(String, primary_key=True) |
||
| 161 | peak_load_in_w = Column(REAL) |
||
| 162 | |||
| 163 | |||
| 164 | def adapt_numpy_float64(numpy_float64): |
||
| 165 | return AsIs(numpy_float64) |
||
| 166 | |||
| 167 | |||
| 168 | def adapt_numpy_int64(numpy_int64): |
||
| 169 | return AsIs(numpy_int64) |
||
| 170 | |||
| 171 | |||
| 172 | def log_to_file(name): |
||
| 173 | """Simple only file logger""" |
||
| 174 | file = os.path.basename(__file__).rstrip(".py") |
||
| 175 | file_path = Path(f"./{file}_logs") |
||
| 176 | os.makedirs(file_path, exist_ok=True) |
||
| 177 | logger.remove() |
||
| 178 | logger.add( |
||
| 179 | file_path / Path(f"{name}.log"), |
||
| 180 | format="{time} {level} {message}", |
||
| 181 | # filter="my_module", |
||
| 182 | level="DEBUG", |
||
| 183 | ) |
||
| 184 | logger.trace(f"Start logging of: {name}") |
||
| 185 | return logger |
||
| 186 | |||
| 187 | |||
| 188 | def timeit(func): |
||
| 189 | """ |
||
| 190 | Decorator for measuring function's running time. |
||
| 191 | """ |
||
| 192 | |||
| 193 | def measure_time(*args, **kw): |
||
| 194 | start_time = time.time() |
||
| 195 | result = func(*args, **kw) |
||
| 196 | print( |
||
| 197 | "Processing time of %s(): %.2f seconds." |
||
| 198 | % (func.__qualname__, time.time() - start_time) |
||
| 199 | ) |
||
| 200 | return result |
||
| 201 | |||
| 202 | return measure_time |
||
| 203 | |||
| 204 | |||
| 205 | def timeitlog(func): |
||
| 206 | """ |
||
| 207 | Decorator for measuring running time of residential heat peak load and |
||
| 208 | logging it. |
||
| 209 | """ |
||
| 210 | |||
| 211 | def measure_time(*args, **kw): |
||
| 212 | start_time = time.time() |
||
| 213 | result = func(*args, **kw) |
||
| 214 | process_time = time.time() - start_time |
||
| 215 | try: |
||
| 216 | mvgd = kw["mvgd"] |
||
| 217 | except KeyError: |
||
| 218 | mvgd = "bulk" |
||
| 219 | statement = ( |
||
| 220 | f"MVGD={mvgd} | Processing time of {func.__qualname__} | " |
||
| 221 | f"{time.strftime('%H h, %M min, %S s', time.gmtime(process_time))}" |
||
| 222 | ) |
||
| 223 | logger.debug(statement) |
||
| 224 | print(statement) |
||
| 225 | return result |
||
| 226 | |||
| 227 | return measure_time |
||
| 228 | |||
| 229 | |||
| 230 | def cascade_per_technology( |
||
| 231 | heat_per_mv, |
||
| 232 | technologies, |
||
| 233 | scenario, |
||
| 234 | distribution_level, |
||
| 235 | max_size_individual_chp=0.05, |
||
| 236 | ): |
||
| 237 | |||
| 238 | """Add plants for individual heat. |
||
| 239 | Currently only on mv grid district level. |
||
| 240 | |||
| 241 | Parameters |
||
| 242 | ---------- |
||
| 243 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
| 244 | MV grid districts including the heat demand |
||
| 245 | technologies : pandas.DataFrame |
||
| 246 | List of supply technologies and their parameters |
||
| 247 | scenario : str |
||
| 248 | Name of the scenario |
||
| 249 | max_size_individual_chp : float |
||
| 250 | Maximum capacity of an individual chp in MW |
||
| 251 | Returns |
||
| 252 | ------- |
||
| 253 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
| 254 | MV grid district which need additional individual heat supply |
||
| 255 | technologies : pandas.DataFrame |
||
| 256 | List of supply technologies and their parameters |
||
| 257 | append_df : pandas.DataFrame |
||
| 258 | List of plants per mv grid for the selected technology |
||
| 259 | |||
| 260 | """ |
||
| 261 | sources = config.datasets()["heat_supply"]["sources"] |
||
| 262 | |||
| 263 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
| 264 | |||
| 265 | # Distribute heat pumps linear to remaining demand. |
||
| 266 | if tech.index == "heat_pump": |
||
| 267 | |||
| 268 | if distribution_level == "federal_state": |
||
| 269 | # Select target values per federal state |
||
| 270 | target = db.select_dataframe( |
||
| 271 | f""" |
||
| 272 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
| 273 | FROM {sources['scenario_capacities']['schema']}. |
||
| 274 | {sources['scenario_capacities']['table']} a |
||
| 275 | JOIN {sources['federal_states']['schema']}. |
||
| 276 | {sources['federal_states']['table']} b |
||
| 277 | ON a.nuts = b.nuts |
||
| 278 | WHERE scenario_name = '{scenario}' |
||
| 279 | AND carrier = 'residential_rural_heat_pump' |
||
| 280 | """, |
||
| 281 | index_col="state", |
||
| 282 | ) |
||
| 283 | |||
| 284 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
| 285 | "state" |
||
| 286 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
| 287 | |||
| 288 | append_df = ( |
||
| 289 | heat_per_mv["share"] |
||
| 290 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
| 291 | .reset_index() |
||
| 292 | ) |
||
| 293 | else: |
||
| 294 | # Select target value for Germany |
||
| 295 | target = db.select_dataframe( |
||
| 296 | f""" |
||
| 297 | SELECT SUM(capacity) AS capacity |
||
| 298 | FROM {sources['scenario_capacities']['schema']}. |
||
| 299 | {sources['scenario_capacities']['table']} a |
||
| 300 | WHERE scenario_name = '{scenario}' |
||
| 301 | AND carrier = 'residential_rural_heat_pump' |
||
| 302 | """ |
||
| 303 | ) |
||
| 304 | |||
| 305 | heat_per_mv["share"] = ( |
||
| 306 | heat_per_mv.remaining_demand |
||
| 307 | / heat_per_mv.remaining_demand.sum() |
||
| 308 | ) |
||
| 309 | |||
| 310 | append_df = ( |
||
| 311 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
| 312 | ) |
||
| 313 | |||
| 314 | append_df.rename( |
||
| 315 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
| 316 | ) |
||
| 317 | |||
| 318 | elif tech.index == "gas_boiler": |
||
| 319 | |||
| 320 | append_df = pd.DataFrame( |
||
| 321 | data={ |
||
| 322 | "capacity": heat_per_mv.remaining_demand.div( |
||
| 323 | tech.estimated_flh.values[0] |
||
| 324 | ), |
||
| 325 | "carrier": "residential_rural_gas_boiler", |
||
| 326 | "mv_grid_id": heat_per_mv.index, |
||
| 327 | "scenario": scenario, |
||
| 328 | } |
||
| 329 | ) |
||
| 330 | |||
| 331 | if append_df.size > 0: |
||
|
|
|||
| 332 | append_df["carrier"] = tech.index[0] |
||
| 333 | heat_per_mv.loc[ |
||
| 334 | append_df.mv_grid_id, "remaining_demand" |
||
| 335 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
| 336 | tech.estimated_flh.values[0] |
||
| 337 | ) |
||
| 338 | |||
| 339 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
| 340 | |||
| 341 | technologies = technologies.drop(tech.index) |
||
| 342 | |||
| 343 | return heat_per_mv, technologies, append_df |
||
| 344 | |||
| 345 | |||
| 346 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
| 347 | """Assigns supply strategy for individual heating in four steps. |
||
| 348 | |||
| 349 | 1.) all small scale CHP are connected. |
||
| 350 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
| 351 | are attached. This is not implemented yet, since individual |
||
| 352 | solar thermal plants are not considered in eGon2035 scenario. |
||
| 353 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
| 354 | 4.) The last option are individual gas boilers. |
||
| 355 | |||
| 356 | Parameters |
||
| 357 | ---------- |
||
| 358 | scenario : str |
||
| 359 | Name of scenario |
||
| 360 | plotting : bool, optional |
||
| 361 | Choose if individual heating supply is plotted. The default is True. |
||
| 362 | |||
| 363 | Returns |
||
| 364 | ------- |
||
| 365 | resulting_capacities : pandas.DataFrame |
||
| 366 | List of plants per mv grid |
||
| 367 | |||
| 368 | """ |
||
| 369 | |||
| 370 | sources = config.datasets()["heat_supply"]["sources"] |
||
| 371 | |||
| 372 | # Select residential heat demand per mv grid district and federal state |
||
| 373 | heat_per_mv = db.select_geodataframe( |
||
| 374 | f""" |
||
| 375 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
| 376 | c.vg250_lan as state, d.geom |
||
| 377 | FROM {sources['heat_demand']['schema']}. |
||
| 378 | {sources['heat_demand']['table']} a |
||
| 379 | JOIN {sources['map_zensus_grid']['schema']}. |
||
| 380 | {sources['map_zensus_grid']['table']} b |
||
| 381 | ON a.zensus_population_id = b.zensus_population_id |
||
| 382 | JOIN {sources['map_vg250_grid']['schema']}. |
||
| 383 | {sources['map_vg250_grid']['table']} c |
||
| 384 | ON b.bus_id = c.bus_id |
||
| 385 | JOIN {sources['mv_grids']['schema']}. |
||
| 386 | {sources['mv_grids']['table']} d |
||
| 387 | ON d.bus_id = c.bus_id |
||
| 388 | WHERE scenario = '{scenario}' |
||
| 389 | AND a.zensus_population_id NOT IN ( |
||
| 390 | SELECT zensus_population_id |
||
| 391 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
| 392 | WHERE scenario = '{scenario}') |
||
| 393 | GROUP BY d.bus_id, vg250_lan, geom |
||
| 394 | """, |
||
| 395 | index_col="bus_id", |
||
| 396 | ) |
||
| 397 | |||
| 398 | # Store geometry of mv grid |
||
| 399 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
| 400 | |||
| 401 | # Initalize Dataframe for results |
||
| 402 | resulting_capacities = pd.DataFrame( |
||
| 403 | columns=["mv_grid_id", "carrier", "capacity"] |
||
| 404 | ) |
||
| 405 | |||
| 406 | # Set technology data according to |
||
| 407 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
| 408 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
| 409 | technologies = pd.DataFrame( |
||
| 410 | index=["heat_pump", "gas_boiler"], |
||
| 411 | columns=["estimated_flh", "priority"], |
||
| 412 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
| 413 | ) |
||
| 414 | |||
| 415 | # In the beginning, the remaining demand equals demand |
||
| 416 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
| 417 | |||
| 418 | # Connect new technologies, if there is still heat demand left |
||
| 419 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
| 420 | # Attach new supply technology |
||
| 421 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
| 422 | heat_per_mv, technologies, scenario, distribution_level |
||
| 423 | ) |
||
| 424 | # Collect resulting capacities |
||
| 425 | resulting_capacities = resulting_capacities.append( |
||
| 426 | append_df, ignore_index=True |
||
| 427 | ) |
||
| 428 | |||
| 429 | if plotting: |
||
| 430 | plot_heat_supply(resulting_capacities) |
||
| 431 | |||
| 432 | return gpd.GeoDataFrame( |
||
| 433 | resulting_capacities, |
||
| 434 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
| 435 | ) |
||
| 436 | |||
| 437 | |||
| 438 | # @timeitlog |
||
| 439 | def get_peta_demand(mvgd): |
||
| 440 | """ |
||
| 441 | Retrieve annual peta heat demand for residential buildings and both |
||
| 442 | scenarios. |
||
| 443 | |||
| 444 | Parameters |
||
| 445 | ---------- |
||
| 446 | mvgd : int |
||
| 447 | ID of MVGD |
||
| 448 | |||
| 449 | Returns |
||
| 450 | ------- |
||
| 451 | df_peta_demand : pd.DataFrame |
||
| 452 | Annual residential heat demand per building and scenario |
||
| 453 | """ |
||
| 454 | |||
| 455 | with db.session_scope() as session: |
||
| 456 | query = ( |
||
| 457 | session.query( |
||
| 458 | MapZensusGridDistricts.zensus_population_id, |
||
| 459 | EgonPetaHeat.scenario, |
||
| 460 | EgonPetaHeat.demand, |
||
| 461 | ) |
||
| 462 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 463 | .filter( |
||
| 464 | MapZensusGridDistricts.zensus_population_id |
||
| 465 | == EgonPetaHeat.zensus_population_id |
||
| 466 | ) |
||
| 467 | .filter(EgonPetaHeat.sector == "residential") |
||
| 468 | ) |
||
| 469 | |||
| 470 | df_peta_demand = pd.read_sql( |
||
| 471 | query.statement, query.session.bind, index_col=None |
||
| 472 | ) |
||
| 473 | df_peta_demand = df_peta_demand.pivot( |
||
| 474 | index="zensus_population_id", columns="scenario", values="demand" |
||
| 475 | ).reset_index() |
||
| 476 | |||
| 477 | return df_peta_demand |
||
| 478 | |||
| 479 | |||
| 480 | # @timeitlog |
||
| 481 | def get_residential_heat_profile_ids(mvgd): |
||
| 482 | """ |
||
| 483 | Retrieve 365 daily heat profiles ids per residential building and selected |
||
| 484 | mvgd. |
||
| 485 | |||
| 486 | Parameters |
||
| 487 | ---------- |
||
| 488 | mvgd : int |
||
| 489 | ID of MVGD |
||
| 490 | |||
| 491 | Returns |
||
| 492 | ------- |
||
| 493 | df_profiles_ids : pd.DataFrame |
||
| 494 | Residential daily heat profile ID's per building |
||
| 495 | """ |
||
| 496 | with db.session_scope() as session: |
||
| 497 | query = ( |
||
| 498 | session.query( |
||
| 499 | MapZensusGridDistricts.zensus_population_id, |
||
| 500 | EgonHeatTimeseries.building_id, |
||
| 501 | EgonHeatTimeseries.selected_idp_profiles, |
||
| 502 | ) |
||
| 503 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
| 504 | .filter( |
||
| 505 | MapZensusGridDistricts.zensus_population_id |
||
| 506 | == EgonHeatTimeseries.zensus_population_id |
||
| 507 | ) |
||
| 508 | ) |
||
| 509 | |||
| 510 | df_profiles_ids = pd.read_sql( |
||
| 511 | query.statement, query.session.bind, index_col=None |
||
| 512 | ) |
||
| 513 | # Add building count per cell |
||
| 514 | df_profiles_ids = pd.merge( |
||
| 515 | left=df_profiles_ids, |
||
| 516 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
| 517 | .count() |
||
| 518 | .rename("buildings"), |
||
| 519 | left_on="zensus_population_id", |
||
| 520 | right_index=True, |
||
| 521 | ) |
||
| 522 | |||
| 523 | # unnest array of ids per building |
||
| 524 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
| 525 | # add day of year column by order of list |
||
| 526 | df_profiles_ids["day_of_year"] = ( |
||
| 527 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
| 528 | ) |
||
| 529 | return df_profiles_ids |
||
| 530 | |||
| 531 | |||
| 532 | # @timeitlog |
||
| 533 | def get_daily_profiles(profile_ids): |
||
| 534 | """ |
||
| 535 | Parameters |
||
| 536 | ---------- |
||
| 537 | profile_ids : list(int) |
||
| 538 | daily heat profile ID's |
||
| 539 | |||
| 540 | Returns |
||
| 541 | ------- |
||
| 542 | df_profiles : pd.DataFrame |
||
| 543 | Residential daily heat profiles |
||
| 544 | """ |
||
| 545 | saio.register_schema("demand", db.engine()) |
||
| 546 | from saio.demand import egon_heat_idp_pool |
||
| 547 | |||
| 548 | with db.session_scope() as session: |
||
| 549 | query = session.query(egon_heat_idp_pool).filter( |
||
| 550 | egon_heat_idp_pool.index.in_(profile_ids) |
||
| 551 | ) |
||
| 552 | |||
| 553 | df_profiles = pd.read_sql( |
||
| 554 | query.statement, query.session.bind, index_col="index" |
||
| 555 | ) |
||
| 556 | |||
| 557 | # unnest array of profile values per id |
||
| 558 | df_profiles = df_profiles.explode("idp") |
||
| 559 | # Add column for hour of day |
||
| 560 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
| 561 | |||
| 562 | return df_profiles |
||
| 563 | |||
| 564 | |||
| 565 | # @timeitlog |
||
| 566 | def get_daily_demand_share(mvgd): |
||
| 567 | """per census cell |
||
| 568 | Parameters |
||
| 569 | ---------- |
||
| 570 | mvgd : int |
||
| 571 | MVGD id |
||
| 572 | |||
| 573 | Returns |
||
| 574 | ------- |
||
| 575 | df_daily_demand_share : pd.DataFrame |
||
| 576 | Daily annual demand share per cencus cell |
||
| 577 | """ |
||
| 578 | |||
| 579 | with db.session_scope() as session: |
||
| 580 | query = session.query( |
||
| 581 | MapZensusGridDistricts.zensus_population_id, |
||
| 582 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
| 583 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
| 584 | ).filter( |
||
| 585 | EgonMapZensusClimateZones.climate_zone |
||
| 586 | == EgonDailyHeatDemandPerClimateZone.climate_zone, |
||
| 587 | MapZensusGridDistricts.zensus_population_id |
||
| 588 | == EgonMapZensusClimateZones.zensus_population_id, |
||
| 589 | MapZensusGridDistricts.bus_id == mvgd, |
||
| 590 | ) |
||
| 591 | |||
| 592 | df_daily_demand_share = pd.read_sql( |
||
| 593 | query.statement, query.session.bind, index_col=None |
||
| 594 | ) |
||
| 595 | return df_daily_demand_share |
||
| 596 | |||
| 597 | |||
| 598 | @timeitlog |
||
| 599 | def calc_residential_heat_profiles_per_mvgd(mvgd): |
||
| 600 | """ |
||
| 601 | Gets residential heat profiles per building in MV grid for both eGon2035 |
||
| 602 | and eGon100RE scenario. |
||
| 603 | |||
| 604 | Parameters |
||
| 605 | ---------- |
||
| 606 | mvgd : int |
||
| 607 | MV grid ID. |
||
| 608 | |||
| 609 | Returns |
||
| 610 | -------- |
||
| 611 | pd.DataFrame |
||
| 612 | Heat demand profiles of buildings. Columns are: |
||
| 613 | * zensus_population_id : int |
||
| 614 | Zensus cell ID building is in. |
||
| 615 | * building_id : int |
||
| 616 | ID of building. |
||
| 617 | * day_of_year : int |
||
| 618 | Day of the year (1 - 365). |
||
| 619 | * hour : int |
||
| 620 | Hour of the day (1 - 24). |
||
| 621 | * eGon2035 : float |
||
| 622 | Building's residential heat demand in MW, for specified hour |
||
| 623 | of the year (specified through columns `day_of_year` and |
||
| 624 | `hour`). |
||
| 625 | * eGon100RE : float |
||
| 626 | Building's residential heat demand in MW, for specified hour |
||
| 627 | of the year (specified through columns `day_of_year` and |
||
| 628 | `hour`). |
||
| 629 | """ |
||
| 630 | df_peta_demand = get_peta_demand(mvgd) |
||
| 631 | |||
| 632 | # TODO maybe return empty dataframe |
||
| 633 | if df_peta_demand.empty: |
||
| 634 | logger.info(f"No demand for MVGD: {mvgd}") |
||
| 635 | return None |
||
| 636 | |||
| 637 | df_profiles_ids = get_residential_heat_profile_ids(mvgd) |
||
| 638 | |||
| 639 | if df_profiles_ids.empty: |
||
| 640 | logger.info(f"No profiles for MVGD: {mvgd}") |
||
| 641 | return None |
||
| 642 | |||
| 643 | df_profiles = get_daily_profiles( |
||
| 644 | df_profiles_ids["selected_idp_profiles"].unique() |
||
| 645 | ) |
||
| 646 | |||
| 647 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
| 648 | |||
| 649 | # Merge profile ids to peta demand by zensus_population_id |
||
| 650 | df_profile_merge = pd.merge( |
||
| 651 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
| 652 | ) |
||
| 653 | |||
| 654 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
| 655 | df_profile_merge = pd.merge( |
||
| 656 | left=df_profile_merge, |
||
| 657 | right=df_daily_demand_share, |
||
| 658 | on=["zensus_population_id", "day_of_year"], |
||
| 659 | ) |
||
| 660 | |||
| 661 | # Merge daily profiles by profile id |
||
| 662 | df_profile_merge = pd.merge( |
||
| 663 | left=df_profile_merge, |
||
| 664 | right=df_profiles[["idp", "hour"]], |
||
| 665 | left_on="selected_idp_profiles", |
||
| 666 | right_index=True, |
||
| 667 | ) |
||
| 668 | |||
| 669 | # Scale profiles |
||
| 670 | df_profile_merge["eGon2035"] = ( |
||
| 671 | df_profile_merge["idp"] |
||
| 672 | .mul(df_profile_merge["daily_demand_share"]) |
||
| 673 | .mul(df_profile_merge["eGon2035"]) |
||
| 674 | .div(df_profile_merge["buildings"]) |
||
| 675 | ) |
||
| 676 | |||
| 677 | df_profile_merge["eGon100RE"] = ( |
||
| 678 | df_profile_merge["idp"] |
||
| 679 | .mul(df_profile_merge["daily_demand_share"]) |
||
| 680 | .mul(df_profile_merge["eGon100RE"]) |
||
| 681 | .div(df_profile_merge["buildings"]) |
||
| 682 | ) |
||
| 683 | |||
| 684 | columns = [ |
||
| 685 | "zensus_population_id", |
||
| 686 | "building_id", |
||
| 687 | "day_of_year", |
||
| 688 | "hour", |
||
| 689 | "eGon2035", |
||
| 690 | "eGon100RE", |
||
| 691 | ] |
||
| 692 | |||
| 693 | return df_profile_merge.loc[:, columns] |
||
| 694 | |||
| 695 | |||
| 696 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
| 697 | |||
| 698 | from matplotlib import pyplot as plt |
||
| 699 | |||
| 700 | mv_grids = db.select_geodataframe( |
||
| 701 | """ |
||
| 702 | SELECT * FROM grid.egon_mv_grid_district |
||
| 703 | """, |
||
| 704 | index_col="bus_id", |
||
| 705 | ) |
||
| 706 | |||
| 707 | for c in ["CHP", "heat_pump"]: |
||
| 708 | mv_grids[c] = ( |
||
| 709 | resulting_capacities[resulting_capacities.carrier == c] |
||
| 710 | .set_index("mv_grid_id") |
||
| 711 | .capacity |
||
| 712 | ) |
||
| 713 | |||
| 714 | fig, ax = plt.subplots(1, 1) |
||
| 715 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
| 716 | mv_grids.plot( |
||
| 717 | ax=ax, |
||
| 718 | column=c, |
||
| 719 | cmap="magma_r", |
||
| 720 | legend=True, |
||
| 721 | legend_kwds={ |
||
| 722 | "label": f"Installed {c} in MW", |
||
| 723 | "orientation": "vertical", |
||
| 724 | }, |
||
| 725 | ) |
||
| 726 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
| 727 | |||
| 728 | |||
| 729 | @timeitlog |
||
| 730 | def get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
| 731 | scenario, mv_grid_id |
||
| 732 | ): |
||
| 733 | """ |
||
| 734 | Returns zensus cell IDs with decentral heating systems in given MV grid. |
||
| 735 | |||
| 736 | As cells with district heating differ between scenarios, this is also |
||
| 737 | depending on the scenario. |
||
| 738 | |||
| 739 | Parameters |
||
| 740 | ----------- |
||
| 741 | scenario : str |
||
| 742 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 743 | mv_grid_id : int |
||
| 744 | ID of MV grid. |
||
| 745 | |||
| 746 | Returns |
||
| 747 | -------- |
||
| 748 | pd.Index(int) |
||
| 749 | Zensus cell IDs (as int) of buildings with decentral heating systems in |
||
| 750 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 751 | used in a query. |
||
| 752 | |||
| 753 | """ |
||
| 754 | |||
| 755 | # get zensus cells in grid |
||
| 756 | zensus_population_ids = db.select_dataframe( |
||
| 757 | f""" |
||
| 758 | SELECT zensus_population_id |
||
| 759 | FROM boundaries.egon_map_zensus_grid_districts |
||
| 760 | WHERE bus_id = {mv_grid_id} |
||
| 761 | """, |
||
| 762 | index_col=None, |
||
| 763 | ).zensus_population_id.values |
||
| 764 | |||
| 765 | # maybe use adapter |
||
| 766 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
| 767 | # reason throw an error when used in a query) |
||
| 768 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
| 769 | |||
| 770 | # get zensus cells with district heating |
||
| 771 | with db.session_scope() as session: |
||
| 772 | query = session.query( |
||
| 773 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
| 774 | ).filter( |
||
| 775 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
| 776 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
| 777 | zensus_population_ids |
||
| 778 | ), |
||
| 779 | ) |
||
| 780 | |||
| 781 | cells_with_dh = pd.read_sql( |
||
| 782 | query.statement, query.session.bind, index_col=None |
||
| 783 | ).zensus_population_id.values |
||
| 784 | |||
| 785 | # remove zensus cells with district heating |
||
| 786 | zensus_population_ids = zensus_population_ids.drop( |
||
| 787 | cells_with_dh, errors="ignore" |
||
| 788 | ) |
||
| 789 | return pd.Index(zensus_population_ids) |
||
| 790 | |||
| 791 | |||
| 792 | @timeitlog |
||
| 793 | def get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 794 | scenario, mv_grid_id |
||
| 795 | ): |
||
| 796 | """ |
||
| 797 | Returns building IDs of buildings with decentral residential heat demand in |
||
| 798 | given MV grid. |
||
| 799 | |||
| 800 | As cells with district heating differ between scenarios, this is also |
||
| 801 | depending on the scenario. |
||
| 802 | |||
| 803 | Parameters |
||
| 804 | ----------- |
||
| 805 | scenario : str |
||
| 806 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 807 | mv_grid_id : int |
||
| 808 | ID of MV grid. |
||
| 809 | |||
| 810 | Returns |
||
| 811 | -------- |
||
| 812 | pd.Index(int) |
||
| 813 | Building IDs (as int) of buildings with decentral heating system in |
||
| 814 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 815 | used in a query. |
||
| 816 | |||
| 817 | """ |
||
| 818 | # get zensus cells with decentral heating |
||
| 819 | zensus_population_ids = ( |
||
| 820 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
| 821 | scenario, mv_grid_id |
||
| 822 | ) |
||
| 823 | ) |
||
| 824 | |||
| 825 | # get buildings with decentral heat demand |
||
| 826 | saio.register_schema("demand", engine) |
||
| 827 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
| 828 | |||
| 829 | with db.session_scope() as session: |
||
| 830 | query = session.query( |
||
| 831 | egon_heat_timeseries_selected_profiles.building_id, |
||
| 832 | ).filter( |
||
| 833 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
| 834 | zensus_population_ids |
||
| 835 | ) |
||
| 836 | ) |
||
| 837 | |||
| 838 | buildings_with_heat_demand = pd.read_sql( |
||
| 839 | query.statement, query.session.bind, index_col=None |
||
| 840 | ).building_id.values |
||
| 841 | |||
| 842 | return pd.Index(buildings_with_heat_demand) |
||
| 843 | |||
| 844 | |||
| 845 | @timeitlog |
||
| 846 | def get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 847 | scenario, mv_grid_id |
||
| 848 | ): |
||
| 849 | """ |
||
| 850 | Returns building IDs of buildings with decentral CTS heat demand in |
||
| 851 | given MV grid. |
||
| 852 | |||
| 853 | As cells with district heating differ between scenarios, this is also |
||
| 854 | depending on the scenario. |
||
| 855 | |||
| 856 | Parameters |
||
| 857 | ----------- |
||
| 858 | scenario : str |
||
| 859 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 860 | mv_grid_id : int |
||
| 861 | ID of MV grid. |
||
| 862 | |||
| 863 | Returns |
||
| 864 | -------- |
||
| 865 | pd.Index(int) |
||
| 866 | Building IDs (as int) of buildings with decentral heating system in |
||
| 867 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
| 868 | used in a query. |
||
| 869 | |||
| 870 | """ |
||
| 871 | |||
| 872 | # get zensus cells with decentral heating |
||
| 873 | zensus_population_ids = ( |
||
| 874 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
| 875 | scenario, mv_grid_id |
||
| 876 | ) |
||
| 877 | ) |
||
| 878 | |||
| 879 | # get buildings with decentral heat demand |
||
| 880 | with db.session_scope() as session: |
||
| 881 | query = session.query(EgonMapZensusMvgdBuildings.building_id).filter( |
||
| 882 | EgonMapZensusMvgdBuildings.sector == "cts", |
||
| 883 | EgonMapZensusMvgdBuildings.zensus_population_id.in_( |
||
| 884 | zensus_population_ids |
||
| 885 | ), |
||
| 886 | ) |
||
| 887 | |||
| 888 | buildings_with_heat_demand = pd.read_sql( |
||
| 889 | query.statement, query.session.bind, index_col=None |
||
| 890 | ).building_id.values |
||
| 891 | |||
| 892 | return pd.Index(buildings_with_heat_demand) |
||
| 893 | |||
| 894 | |||
| 895 | def get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd): |
||
| 896 | """""" |
||
| 897 | # get residential buildings with decentral heating systems |
||
| 898 | # scenario eGon2035 |
||
| 899 | buildings_decentral_heating_2035_res = ( |
||
| 900 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 901 | "eGon2035", mvgd |
||
| 902 | ) |
||
| 903 | ) |
||
| 904 | # scenario eGon100RE |
||
| 905 | buildings_decentral_heating_100RE_res = ( |
||
| 906 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 907 | "eGon100RE", mvgd |
||
| 908 | ) |
||
| 909 | ) |
||
| 910 | |||
| 911 | # get CTS buildings with decentral heating systems |
||
| 912 | # scenario eGon2035 |
||
| 913 | buildings_decentral_heating_2035_cts = ( |
||
| 914 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 915 | "eGon2035", mvgd |
||
| 916 | ) |
||
| 917 | ) |
||
| 918 | # scenario eGon100RE |
||
| 919 | buildings_decentral_heating_100RE_cts = ( |
||
| 920 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 921 | "eGon100RE", mvgd |
||
| 922 | ) |
||
| 923 | ) |
||
| 924 | |||
| 925 | # merge residential and CTS buildings |
||
| 926 | buildings_decentral_heating_2035 = ( |
||
| 927 | buildings_decentral_heating_2035_res.append( |
||
| 928 | buildings_decentral_heating_2035_cts |
||
| 929 | ).unique() |
||
| 930 | ) |
||
| 931 | buildings_decentral_heating_100RE = ( |
||
| 932 | buildings_decentral_heating_100RE_res.append( |
||
| 933 | buildings_decentral_heating_100RE_cts |
||
| 934 | ).unique() |
||
| 935 | ) |
||
| 936 | |||
| 937 | buildings_decentral_heating = { |
||
| 938 | "eGon2035": buildings_decentral_heating_2035, |
||
| 939 | "eGon100RE": buildings_decentral_heating_100RE, |
||
| 940 | } |
||
| 941 | |||
| 942 | return buildings_decentral_heating |
||
| 943 | |||
| 944 | |||
| 945 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
| 946 | """ |
||
| 947 | Returns total heat pump capacity per grid that was previously defined |
||
| 948 | (by NEP or pypsa-eur-sec). |
||
| 949 | |||
| 950 | Parameters |
||
| 951 | ----------- |
||
| 952 | scenario : str |
||
| 953 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
| 954 | mv_grid_id : int |
||
| 955 | ID of MV grid. |
||
| 956 | |||
| 957 | Returns |
||
| 958 | -------- |
||
| 959 | float |
||
| 960 | Total heat pump capacity in MW in given MV grid. |
||
| 961 | |||
| 962 | """ |
||
| 963 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
| 964 | |||
| 965 | # |
||
| 966 | # with db.session_scope() as session: |
||
| 967 | # query = ( |
||
| 968 | # session.query( |
||
| 969 | # EgonIndividualHeatingSupply.mv_grid_id, |
||
| 970 | # EgonIndividualHeatingSupply.capacity, |
||
| 971 | # ) |
||
| 972 | # .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
| 973 | # .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
| 974 | # .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
| 975 | # ) |
||
| 976 | # |
||
| 977 | # hp_cap_mv_grid = pd.read_sql( |
||
| 978 | # query.statement, query.session.bind, index_col="mv_grid_id" |
||
| 979 | # ).capacity.values[0] |
||
| 980 | |||
| 981 | with db.session_scope() as session: |
||
| 982 | hp_cap_mv_grid = ( |
||
| 983 | session.execute(EgonIndividualHeatingSupply.capacity) |
||
| 984 | .filter( |
||
| 985 | EgonIndividualHeatingSupply.scenario == scenario, |
||
| 986 | EgonIndividualHeatingSupply.carrier == "heat_pump", |
||
| 987 | EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id, |
||
| 988 | ) |
||
| 989 | .scalar() |
||
| 990 | ) |
||
| 991 | |||
| 992 | return hp_cap_mv_grid |
||
| 993 | |||
| 994 | |||
| 995 | def get_heat_peak_demand_per_building(scenario, building_ids): |
||
| 996 | """""" |
||
| 997 | |||
| 998 | with db.session_scope() as session: |
||
| 999 | query = ( |
||
| 1000 | session.query( |
||
| 1001 | BuildingHeatPeakLoads.building_id, |
||
| 1002 | BuildingHeatPeakLoads.peak_load_in_w, |
||
| 1003 | ).filter(BuildingHeatPeakLoads.scenario == scenario) |
||
| 1004 | # .filter(BuildingHeatPeakLoads.sector == "both") |
||
| 1005 | .filter(BuildingHeatPeakLoads.building_id.in_(building_ids)) |
||
| 1006 | ) |
||
| 1007 | |||
| 1008 | df_heat_peak_demand = pd.read_sql( |
||
| 1009 | query.statement, query.session.bind, index_col=None |
||
| 1010 | ) |
||
| 1011 | |||
| 1012 | # TODO remove check |
||
| 1013 | if df_heat_peak_demand.duplicated("building_id").any(): |
||
| 1014 | raise ValueError("Duplicate building_id") |
||
| 1015 | return df_heat_peak_demand |
||
| 1016 | |||
| 1017 | |||
| 1018 | def determine_minimum_hp_capacity_per_building( |
||
| 1019 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
| 1020 | ): |
||
| 1021 | """ |
||
| 1022 | Determines minimum required heat pump capacity. |
||
| 1023 | |||
| 1024 | Parameters |
||
| 1025 | ---------- |
||
| 1026 | peak_heat_demand : pd.Series |
||
| 1027 | Series with peak heat demand per building in MW. Index contains the |
||
| 1028 | building ID. |
||
| 1029 | flexibility_factor : float |
||
| 1030 | Factor to overdimension the heat pump to allow for some flexible |
||
| 1031 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
| 1032 | is used, to take into account |
||
| 1033 | |||
| 1034 | Returns |
||
| 1035 | ------- |
||
| 1036 | pd.Series |
||
| 1037 | Pandas series with minimum required heat pump capacity per building in |
||
| 1038 | MW. |
||
| 1039 | |||
| 1040 | """ |
||
| 1041 | return peak_heat_demand * flexibility_factor / cop |
||
| 1042 | |||
| 1043 | |||
| 1044 | def determine_buildings_with_hp_in_mv_grid( |
||
| 1045 | hp_cap_mv_grid, min_hp_cap_per_building |
||
| 1046 | ): |
||
| 1047 | """ |
||
| 1048 | Distributes given total heat pump capacity to buildings based on their peak |
||
| 1049 | heat demand. |
||
| 1050 | |||
| 1051 | Parameters |
||
| 1052 | ----------- |
||
| 1053 | hp_cap_mv_grid : float |
||
| 1054 | Total heat pump capacity in MW in given MV grid. |
||
| 1055 | min_hp_cap_per_building : pd.Series |
||
| 1056 | Pandas series with minimum required heat pump capacity per building |
||
| 1057 | in MW. |
||
| 1058 | |||
| 1059 | Returns |
||
| 1060 | ------- |
||
| 1061 | pd.Index(int) |
||
| 1062 | Building IDs (as int) of buildings to get heat demand time series for. |
||
| 1063 | |||
| 1064 | """ |
||
| 1065 | building_ids = min_hp_cap_per_building.index |
||
| 1066 | |||
| 1067 | # get buildings with PV to give them a higher priority when selecting |
||
| 1068 | # buildings a heat pump will be allocated to |
||
| 1069 | saio.register_schema("supply", engine) |
||
| 1070 | # TODO Adhoc Pv rooftop fix |
||
| 1071 | # from saio.supply import egon_power_plants_pv_roof_building |
||
| 1072 | # |
||
| 1073 | # with db.session_scope() as session: |
||
| 1074 | # query = session.query( |
||
| 1075 | # egon_power_plants_pv_roof_building.building_id |
||
| 1076 | # ).filter( |
||
| 1077 | # egon_power_plants_pv_roof_building.building_id.in_(building_ids) |
||
| 1078 | # ) |
||
| 1079 | # |
||
| 1080 | # buildings_with_pv = pd.read_sql( |
||
| 1081 | # query.statement, query.session.bind, index_col=None |
||
| 1082 | # ).building_id.values |
||
| 1083 | buildings_with_pv = [] |
||
| 1084 | # set different weights for buildings with PV and without PV |
||
| 1085 | weight_with_pv = 1.5 |
||
| 1086 | weight_without_pv = 1.0 |
||
| 1087 | weights = pd.concat( |
||
| 1088 | [ |
||
| 1089 | pd.DataFrame( |
||
| 1090 | {"weight": weight_without_pv}, |
||
| 1091 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
| 1092 | ), |
||
| 1093 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
| 1094 | ] |
||
| 1095 | ) |
||
| 1096 | # normalise weights (probability needs to add up to 1) |
||
| 1097 | weights.weight = weights.weight / weights.weight.sum() |
||
| 1098 | |||
| 1099 | # get random order at which buildings are chosen |
||
| 1100 | np.random.seed(db.credentials()["--random-seed"]) |
||
| 1101 | buildings_with_hp_order = np.random.choice( |
||
| 1102 | weights.index, |
||
| 1103 | size=len(weights), |
||
| 1104 | replace=False, |
||
| 1105 | p=weights.weight.values, |
||
| 1106 | ) |
||
| 1107 | |||
| 1108 | # select buildings until HP capacity in MV grid is reached (some rest |
||
| 1109 | # capacity will remain) |
||
| 1110 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
| 1111 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
| 1112 | |||
| 1113 | # choose random heat pumps until remaining heat pumps are larger than |
||
| 1114 | # remaining heat pump capacity |
||
| 1115 | remaining_hp_cap = ( |
||
| 1116 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
| 1117 | ) |
||
| 1118 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
| 1119 | building_ids.drop(buildings_with_hp) |
||
| 1120 | ] |
||
| 1121 | possible_buildings = min_cap_buildings_wo_hp[ |
||
| 1122 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
| 1123 | ].index |
||
| 1124 | while len(possible_buildings) > 0: |
||
| 1125 | random.seed(db.credentials()["--random-seed"]) |
||
| 1126 | new_hp_building = random.choice(possible_buildings) |
||
| 1127 | # add new building to building with HP |
||
| 1128 | buildings_with_hp = buildings_with_hp.append( |
||
| 1129 | pd.Index([new_hp_building]) |
||
| 1130 | ) |
||
| 1131 | # determine if there are still possible buildings |
||
| 1132 | remaining_hp_cap = ( |
||
| 1133 | hp_cap_mv_grid |
||
| 1134 | - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
| 1135 | ) |
||
| 1136 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
| 1137 | building_ids.drop(buildings_with_hp) |
||
| 1138 | ] |
||
| 1139 | possible_buildings = min_cap_buildings_wo_hp[ |
||
| 1140 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
| 1141 | ].index |
||
| 1142 | |||
| 1143 | return buildings_with_hp |
||
| 1144 | |||
| 1145 | |||
| 1146 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
| 1147 | """ |
||
| 1148 | Desaggregates the required total heat pump capacity to buildings. |
||
| 1149 | |||
| 1150 | All buildings are previously assigned a minimum required heat pump |
||
| 1151 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
| 1152 | are assigned. |
||
| 1153 | |||
| 1154 | Parameters |
||
| 1155 | ------------ |
||
| 1156 | min_hp_cap_per_building : pd.Series |
||
| 1157 | Pandas series with minimum required heat pump capacity per building |
||
| 1158 | in MW. |
||
| 1159 | hp_cap_mv_grid : float |
||
| 1160 | Total heat pump capacity in MW in given MV grid. |
||
| 1161 | |||
| 1162 | Returns |
||
| 1163 | -------- |
||
| 1164 | pd.Series |
||
| 1165 | Pandas series with heat pump capacity per building in MW. |
||
| 1166 | |||
| 1167 | """ |
||
| 1168 | # distribute remaining capacity to all buildings with HP depending on |
||
| 1169 | # installed HP capacity |
||
| 1170 | |||
| 1171 | allocated_cap = min_hp_cap_per_building.sum() |
||
| 1172 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
| 1173 | |||
| 1174 | fac = remaining_cap / allocated_cap |
||
| 1175 | hp_cap_per_building = ( |
||
| 1176 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
| 1177 | ) |
||
| 1178 | hp_cap_per_building.index.name = "building_id" |
||
| 1179 | |||
| 1180 | return hp_cap_per_building |
||
| 1181 | |||
| 1182 | |||
| 1183 | def determine_min_hp_cap_pypsa_eur_sec(peak_heat_demand, building_ids): |
||
| 1184 | """ |
||
| 1185 | Determines minimum required HP capacity in MV grid in MW as input for |
||
| 1186 | pypsa-eur-sec. |
||
| 1187 | |||
| 1188 | Parameters |
||
| 1189 | ---------- |
||
| 1190 | peak_heat_demand : pd.Series |
||
| 1191 | Series with peak heat demand per building in MW. Index contains the |
||
| 1192 | building ID. |
||
| 1193 | building_ids : pd.Index(int) |
||
| 1194 | Building IDs (as int) of buildings with decentral heating system in |
||
| 1195 | given MV grid. |
||
| 1196 | |||
| 1197 | Returns |
||
| 1198 | -------- |
||
| 1199 | float |
||
| 1200 | Minimum required HP capacity in MV grid in MW. |
||
| 1201 | |||
| 1202 | """ |
||
| 1203 | if len(building_ids) > 0: |
||
| 1204 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
| 1205 | # determine minimum required heat pump capacity per building |
||
| 1206 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 1207 | peak_heat_demand |
||
| 1208 | ) |
||
| 1209 | return min_hp_cap_buildings.sum() |
||
| 1210 | else: |
||
| 1211 | return 0.0 |
||
| 1212 | |||
| 1213 | |||
| 1214 | def determine_hp_cap_buildings_eGon2035( |
||
| 1215 | mv_grid_id, peak_heat_demand, building_ids |
||
| 1216 | ): |
||
| 1217 | """ |
||
| 1218 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
| 1219 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well |
||
| 1220 | as their respective HP capacity in MW. |
||
| 1221 | |||
| 1222 | Parameters |
||
| 1223 | ----------- |
||
| 1224 | mv_grid_id : int |
||
| 1225 | ID of MV grid. |
||
| 1226 | peak_heat_demand : pd.Series |
||
| 1227 | Series with peak heat demand per building in MW. Index contains the |
||
| 1228 | building ID. |
||
| 1229 | building_ids : pd.Index(int) |
||
| 1230 | Building IDs (as int) of buildings with decentral heating system in |
||
| 1231 | given MV grid. |
||
| 1232 | |||
| 1233 | """ |
||
| 1234 | |||
| 1235 | if len(building_ids) > 0: |
||
| 1236 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
| 1237 | |||
| 1238 | # determine minimum required heat pump capacity per building |
||
| 1239 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 1240 | peak_heat_demand |
||
| 1241 | ) |
||
| 1242 | |||
| 1243 | # select buildings that will have a heat pump |
||
| 1244 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
| 1245 | "eGon2035", mv_grid_id |
||
| 1246 | ) |
||
| 1247 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
| 1248 | hp_cap_grid, min_hp_cap_buildings |
||
| 1249 | ) |
||
| 1250 | |||
| 1251 | # distribute total heat pump capacity to all buildings with HP |
||
| 1252 | hp_cap_per_building = desaggregate_hp_capacity( |
||
| 1253 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
| 1254 | ) |
||
| 1255 | |||
| 1256 | return hp_cap_per_building.rename("hp_capacity") |
||
| 1257 | |||
| 1258 | else: |
||
| 1259 | return pd.Series().rename("hp_capacity") |
||
| 1260 | |||
| 1261 | |||
| 1262 | def determine_hp_cap_buildings_eGon100RE(mv_grid_id): |
||
| 1263 | """ |
||
| 1264 | Main function to determine HP capacity per building in eGon100RE scenario. |
||
| 1265 | |||
| 1266 | In eGon100RE scenario all buildings without district heating get a heat |
||
| 1267 | pump. |
||
| 1268 | |||
| 1269 | """ |
||
| 1270 | |||
| 1271 | # determine minimum required heat pump capacity per building |
||
| 1272 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
| 1273 | "eGon100RE", mv_grid_id |
||
| 1274 | ) |
||
| 1275 | |||
| 1276 | # TODO get peak demand from db |
||
| 1277 | df_peak_heat_demand = get_heat_peak_demand_per_building( |
||
| 1278 | "eGon100RE", building_ids |
||
| 1279 | ) |
||
| 1280 | |||
| 1281 | # determine minimum required heat pump capacity per building |
||
| 1282 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
| 1283 | df_peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
| 1284 | ) |
||
| 1285 | |||
| 1286 | # distribute total heat pump capacity to all buildings with HP |
||
| 1287 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
| 1288 | "eGon100RE", mv_grid_id |
||
| 1289 | ) |
||
| 1290 | hp_cap_per_building = desaggregate_hp_capacity( |
||
| 1291 | min_hp_cap_buildings, hp_cap_grid |
||
| 1292 | ) |
||
| 1293 | |||
| 1294 | # ToDo Julian Write desaggregated HP capacity to table (same as for |
||
| 1295 | # 2035 scenario) check columns |
||
| 1296 | write_table_to_postgres( |
||
| 1297 | hp_cap_per_building, |
||
| 1298 | EgonHpCapacityBuildings, |
||
| 1299 | engine=engine, |
||
| 1300 | drop=False, |
||
| 1301 | ) |
||
| 1302 | |||
| 1303 | |||
| 1304 | def aggregate_residential_and_cts_profiles(mvgd): |
||
| 1305 | """ """ |
||
| 1306 | # ############### get residential heat demand profiles ############### |
||
| 1307 | df_heat_ts = calc_residential_heat_profiles_per_mvgd(mvgd=mvgd) |
||
| 1308 | |||
| 1309 | # pivot to allow aggregation with CTS profiles |
||
| 1310 | df_heat_ts_2035 = df_heat_ts.loc[ |
||
| 1311 | :, ["building_id", "day_of_year", "hour", "eGon2035"] |
||
| 1312 | ] |
||
| 1313 | df_heat_ts_2035 = df_heat_ts_2035.pivot( |
||
| 1314 | index=["day_of_year", "hour"], |
||
| 1315 | columns="building_id", |
||
| 1316 | values="eGon2035", |
||
| 1317 | ) |
||
| 1318 | df_heat_ts_2035 = df_heat_ts_2035.sort_index().reset_index(drop=True) |
||
| 1319 | |||
| 1320 | df_heat_ts_100RE = df_heat_ts.loc[ |
||
| 1321 | :, ["building_id", "day_of_year", "hour", "eGon100RE"] |
||
| 1322 | ] |
||
| 1323 | df_heat_ts_100RE = df_heat_ts_100RE.pivot( |
||
| 1324 | index=["day_of_year", "hour"], |
||
| 1325 | columns="building_id", |
||
| 1326 | values="eGon100RE", |
||
| 1327 | ) |
||
| 1328 | df_heat_ts_100RE = df_heat_ts_100RE.sort_index().reset_index(drop=True) |
||
| 1329 | |||
| 1330 | del df_heat_ts |
||
| 1331 | |||
| 1332 | # ############### get CTS heat demand profiles ############### |
||
| 1333 | heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
||
| 1334 | bus_ids=[mvgd], |
||
| 1335 | scenario="eGon2035", |
||
| 1336 | sector="heat", |
||
| 1337 | ) |
||
| 1338 | heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
||
| 1339 | bus_ids=[mvgd], |
||
| 1340 | scenario="eGon100RE", |
||
| 1341 | sector="heat", |
||
| 1342 | ) |
||
| 1343 | |||
| 1344 | # ############# aggregate residential and CTS demand profiles ############# |
||
| 1345 | df_heat_ts_2035 = pd.concat( |
||
| 1346 | [df_heat_ts_2035, heat_demand_cts_ts_2035], axis=1 |
||
| 1347 | ) |
||
| 1348 | |||
| 1349 | df_heat_ts_2035 = df_heat_ts_2035.groupby(axis=1, level=0).sum() |
||
| 1350 | |||
| 1351 | df_heat_ts_100RE = pd.concat( |
||
| 1352 | [df_heat_ts_100RE, heat_demand_cts_ts_100RE], axis=1 |
||
| 1353 | ) |
||
| 1354 | df_heat_ts_100RE = df_heat_ts_100RE.groupby(axis=1, level=0).sum() |
||
| 1355 | |||
| 1356 | # del heat_demand_cts_ts_2035, heat_demand_cts_ts_100RE |
||
| 1357 | |||
| 1358 | return df_heat_ts_2035, df_heat_ts_100RE |
||
| 1359 | |||
| 1360 | |||
| 1361 | def determine_hp_capacity(mvgd, df_peak_loads, buildings_decentral_heating): |
||
| 1362 | """""" |
||
| 1363 | |||
| 1364 | # determine HP capacity per building for NEP2035 scenario |
||
| 1365 | hp_cap_per_building_2035 = determine_hp_cap_buildings_eGon2035( |
||
| 1366 | mvgd, |
||
| 1367 | df_peak_loads["eGon2035"], |
||
| 1368 | buildings_decentral_heating["eGon2035"], |
||
| 1369 | ) |
||
| 1370 | |||
| 1371 | # determine minimum HP capacity per building for pypsa-eur-sec |
||
| 1372 | hp_min_cap_mv_grid_pypsa_eur_sec = determine_min_hp_cap_pypsa_eur_sec( |
||
| 1373 | df_peak_loads["eGon100RE"], |
||
| 1374 | buildings_decentral_heating["eGon100RE"] |
||
| 1375 | # TODO 100RE? |
||
| 1376 | ) |
||
| 1377 | |||
| 1378 | return ( |
||
| 1379 | hp_cap_per_building_2035.rename("hp_capacity"), |
||
| 1380 | hp_min_cap_mv_grid_pypsa_eur_sec, |
||
| 1381 | ) |
||
| 1382 | |||
| 1383 | |||
| 1384 | def aggregate_heat_profiles( |
||
| 1385 | mvgd, |
||
| 1386 | df_heat_ts_2035, |
||
| 1387 | df_heat_ts_100RE, |
||
| 1388 | buildings_decentral_heating, |
||
| 1389 | buildings_gas_2035, |
||
| 1390 | ): |
||
| 1391 | """""" |
||
| 1392 | |||
| 1393 | # heat demand time series for buildings with heat pumps |
||
| 1394 | # ToDo Julian Write aggregated heat demand time series of buildings with |
||
| 1395 | # HP to table to be used in eTraGo - |
||
| 1396 | # egon_etrago_timeseries_individual_heating |
||
| 1397 | # TODO Clara uses this table already |
||
| 1398 | # but will not need it anymore for eTraGo |
||
| 1399 | # EgonEtragoTimeseriesIndividualHeating |
||
| 1400 | |||
| 1401 | df_mvgd_ts_2035_hp = df_heat_ts_2035.loc[ |
||
| 1402 | :, |
||
| 1403 | # buildings_decentral_heating["eGon2035"]].sum( |
||
| 1404 | # hp_cap_per_building_2035.index, |
||
| 1405 | buildings_decentral_heating["eGon2035"].drop(buildings_gas_2035), |
||
| 1406 | ].sum( |
||
| 1407 | axis=1 |
||
| 1408 | ) # TODO davor? buildings_hp_2035 = hp_cap_per_building_2035.index |
||
| 1409 | # TODO nur hp oder auch gas? |
||
| 1410 | df_mvgd_ts_100RE_hp = df_heat_ts_100RE.loc[ |
||
| 1411 | :, buildings_decentral_heating["eGon100RE"] |
||
| 1412 | ].sum(axis=1) |
||
| 1413 | |||
| 1414 | # heat demand time series for buildings with gas boiler |
||
| 1415 | # (only 2035 scenario) |
||
| 1416 | df_mvgd_ts_2035_gas = df_heat_ts_2035.loc[:, buildings_gas_2035].sum( |
||
| 1417 | axis=1 |
||
| 1418 | ) |
||
| 1419 | |||
| 1420 | df_heat_mvgd_ts = pd.DataFrame( |
||
| 1421 | data={ |
||
| 1422 | "carrier": ["heat_pump", "heat_pump", "CH4"], |
||
| 1423 | "bus_id": mvgd, |
||
| 1424 | "scenario": ["eGon2035", "eGon100RE", "eGon2035"], |
||
| 1425 | "dist_aggregated_mw": [ |
||
| 1426 | df_mvgd_ts_2035_hp.to_list(), |
||
| 1427 | df_mvgd_ts_100RE_hp.to_list(), |
||
| 1428 | df_mvgd_ts_2035_gas.to_list(), |
||
| 1429 | ], |
||
| 1430 | } |
||
| 1431 | ) |
||
| 1432 | return df_heat_mvgd_ts |
||
| 1433 | |||
| 1434 | |||
| 1435 | def export_to_db( |
||
| 1436 | df_peak_loads_db, df_hp_cap_per_building_2035, df_heat_mvgd_ts_db |
||
| 1437 | ): |
||
| 1438 | """""" |
||
| 1439 | |||
| 1440 | df_peak_loads_db = df_peak_loads_db.reset_index().melt( |
||
| 1441 | id_vars="building_id", |
||
| 1442 | var_name="scenario", |
||
| 1443 | value_name="peak_load_in_w", |
||
| 1444 | ) |
||
| 1445 | df_peak_loads_db["sector"] = "residential+cts" |
||
| 1446 | # From MW to W |
||
| 1447 | df_peak_loads_db["peak_load_in_w"] = ( |
||
| 1448 | df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
| 1449 | ) |
||
| 1450 | write_table_to_postgres( |
||
| 1451 | df_peak_loads_db, BuildingHeatPeakLoads, engine=engine |
||
| 1452 | ) |
||
| 1453 | |||
| 1454 | df_hp_cap_per_building_2035["scenario"] = "eGon2035" |
||
| 1455 | df_hp_cap_per_building_2035 = ( |
||
| 1456 | df_hp_cap_per_building_2035.reset_index().rename( |
||
| 1457 | columns={"index": "building_id"} |
||
| 1458 | ) |
||
| 1459 | ) |
||
| 1460 | write_table_to_postgres( |
||
| 1461 | df_hp_cap_per_building_2035, |
||
| 1462 | EgonHpCapacityBuildings, |
||
| 1463 | engine=engine, |
||
| 1464 | drop=False, |
||
| 1465 | ) |
||
| 1466 | |||
| 1467 | columns = { |
||
| 1468 | column.key: column.type |
||
| 1469 | for column in EgonEtragoTimeseriesIndividualHeating.__table__.columns |
||
| 1470 | } |
||
| 1471 | df_heat_mvgd_ts_db = df_heat_mvgd_ts_db.loc[:, columns.keys()] |
||
| 1472 | |||
| 1473 | df_heat_mvgd_ts_db.to_sql( |
||
| 1474 | name=EgonEtragoTimeseriesIndividualHeating.__table__.name, |
||
| 1475 | schema=EgonEtragoTimeseriesIndividualHeating.__table__.schema, |
||
| 1476 | con=engine, |
||
| 1477 | if_exists="append", |
||
| 1478 | method="multi", |
||
| 1479 | index=False, |
||
| 1480 | dtype=columns, |
||
| 1481 | ) |
||
| 1482 | |||
| 1483 | |||
| 1484 | def export_to_csv(df_hp_cap_per_building_2035): |
||
| 1485 | folder = Path(".") / "input-pypsa-eur-sec" |
||
| 1486 | file = folder / "minimum_hp_capacity_mv_grid_2035.csv" |
||
| 1487 | # Create the folder, if it does not exists already |
||
| 1488 | if not os.path.exists(folder): |
||
| 1489 | os.mkdir(folder) |
||
| 1490 | # TODO check append |
||
| 1491 | if not file.is_file(): |
||
| 1492 | df_hp_cap_per_building_2035.to_csv(file) |
||
| 1493 | # TODO outsource into separate task incl delete file if clearing |
||
| 1494 | else: |
||
| 1495 | df_hp_cap_per_building_2035.to_csv(file, mode="a", header=False) |
||
| 1496 | |||
| 1497 | |||
| 1498 | @timeitlog |
||
| 1499 | def determine_hp_cap_peak_load_mvgd_ts(mvgd_ids): |
||
| 1500 | """ |
||
| 1501 | Main function to determine HP capacity per building in eGon2035 scenario |
||
| 1502 | and minimum required HP capacity in MV for pypsa-eur-sec. |
||
| 1503 | Further, creates heat demand time series for all buildings with heat pumps |
||
| 1504 | (in eGon2035 and eGon100RE scenario) in MV grid, as well as for all |
||
| 1505 | buildings with gas boilers (only in eGon2035scenario), used in eTraGo. |
||
| 1506 | |||
| 1507 | Parameters |
||
| 1508 | ----------- |
||
| 1509 | bulk: list(int) |
||
| 1510 | List of numbers of mvgds |
||
| 1511 | |||
| 1512 | """ |
||
| 1513 | |||
| 1514 | # ========== Register np datatypes with SQLA ========== |
||
| 1515 | register_adapter(np.float64, adapt_numpy_float64) |
||
| 1516 | register_adapter(np.int64, adapt_numpy_int64) |
||
| 1517 | # ===================================================== |
||
| 1518 | |||
| 1519 | log_to_file( |
||
| 1520 | determine_hp_cap_peak_load_mvgd_ts.__qualname__ |
||
| 1521 | + f"_{min(mvgd_ids)}-{max(mvgd_ids)}" |
||
| 1522 | ) |
||
| 1523 | |||
| 1524 | # TODO mvgd_ids = [kleines mvgd] |
||
| 1525 | df_peak_loads_db = pd.DataFrame() |
||
| 1526 | df_hp_cap_per_building_2035_db = pd.DataFrame() |
||
| 1527 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
| 1528 | |||
| 1529 | for mvgd in mvgd_ids: # [1556]: #mvgd_ids[n - 1]: |
||
| 1530 | |||
| 1531 | logger.trace(f"MVGD={mvgd} | Start") |
||
| 1532 | |||
| 1533 | # ############# aggregate residential and CTS demand profiles ##### |
||
| 1534 | |||
| 1535 | ( |
||
| 1536 | df_heat_ts_2035, |
||
| 1537 | df_heat_ts_100RE, |
||
| 1538 | ) = aggregate_residential_and_cts_profiles(mvgd) |
||
| 1539 | |||
| 1540 | # ##################### determine peak loads ################### |
||
| 1541 | logger.debug(f"MVGD={mvgd} | Determine peak loads.") |
||
| 1542 | df_peak_loads = pd.concat( |
||
| 1543 | [ |
||
| 1544 | df_heat_ts_2035.max().rename("eGon2035"), |
||
| 1545 | df_heat_ts_100RE.max().rename("eGon100RE"), |
||
| 1546 | ], |
||
| 1547 | axis=1, |
||
| 1548 | ) |
||
| 1549 | |||
| 1550 | # ######## determine HP capacity for NEP scenario and pypsa-eur-sec ### |
||
| 1551 | logger.debug(f"MVGD={mvgd} | Determine HP capacities.") |
||
| 1552 | |||
| 1553 | buildings_decentral_heating = ( |
||
| 1554 | get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd) |
||
| 1555 | ) |
||
| 1556 | |||
| 1557 | # determine HP capacity per building for NEP2035 scenario |
||
| 1558 | hp_cap_per_building_2035 = determine_hp_cap_buildings_eGon2035( |
||
| 1559 | mvgd, |
||
| 1560 | df_peak_loads["eGon2035"], |
||
| 1561 | buildings_decentral_heating["eGon2035"], |
||
| 1562 | ) |
||
| 1563 | |||
| 1564 | # determine minimum HP capacity per building for pypsa-eur-sec |
||
| 1565 | hp_min_cap_mv_grid_pypsa_eur_sec = determine_min_hp_cap_pypsa_eur_sec( |
||
| 1566 | df_peak_loads["eGon100RE"], |
||
| 1567 | buildings_decentral_heating["eGon100RE"] |
||
| 1568 | # TODO 100RE? |
||
| 1569 | ) |
||
| 1570 | |||
| 1571 | buildings_gas_2035 = pd.Index( |
||
| 1572 | buildings_decentral_heating["eGon2035"] |
||
| 1573 | ).drop(hp_cap_per_building_2035.index) |
||
| 1574 | |||
| 1575 | # ################ aggregated heat profiles ################### |
||
| 1576 | logger.debug(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
| 1577 | |||
| 1578 | df_heat_mvgd_ts = aggregate_heat_profiles( |
||
| 1579 | mvgd, |
||
| 1580 | df_heat_ts_2035, |
||
| 1581 | df_heat_ts_100RE, |
||
| 1582 | buildings_decentral_heating, |
||
| 1583 | buildings_gas_2035, |
||
| 1584 | ) |
||
| 1585 | |||
| 1586 | # ################ collect results |
||
| 1587 | logger.debug(f"MVGD={mvgd} | Collect results.") |
||
| 1588 | |||
| 1589 | df_peak_loads_db = pd.concat( |
||
| 1590 | [df_peak_loads_db, df_peak_loads.reset_index()], |
||
| 1591 | axis=0, |
||
| 1592 | ignore_index=True, |
||
| 1593 | ) |
||
| 1594 | df_hp_cap_per_building_2035_db = pd.concat( |
||
| 1595 | [ |
||
| 1596 | df_hp_cap_per_building_2035_db, |
||
| 1597 | hp_cap_per_building_2035.reset_index(), |
||
| 1598 | ], |
||
| 1599 | axis=0, |
||
| 1600 | ) |
||
| 1601 | df_heat_mvgd_ts_db = pd.concat( |
||
| 1602 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
| 1603 | ) |
||
| 1604 | # ################ export to db |
||
| 1605 | logger.debug(" Write data to db.") |
||
| 1606 | export_to_db( |
||
| 1607 | df_peak_loads_db, df_hp_cap_per_building_2035_db, df_heat_mvgd_ts_db |
||
| 1608 | ) |
||
| 1609 | logger.debug(" Write pypsa-eur-sec min HP capacities to csv.") |
||
| 1610 | export_to_csv(hp_min_cap_mv_grid_pypsa_eur_sec) |
||
| 1611 | |||
| 1612 | |||
| 1613 | def create_peak_load_table(): |
||
| 1614 | |||
| 1615 | BuildingHeatPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
||
| 1616 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
| 1617 | |||
| 1618 | |||
| 1619 | def create_hp_capacity_table(): |
||
| 1620 | |||
| 1621 | EgonHpCapacityBuildings.__table__.drop(bind=engine, checkfirst=True) |
||
| 1622 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
| 1623 | |||
| 1624 | |||
| 1625 | def create_egon_etrago_timeseries_individual_heating(): |
||
| 1626 | |||
| 1627 | EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
||
| 1628 | bind=engine, checkfirst=True |
||
| 1629 | ) |
||
| 1630 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
| 1631 | bind=engine, checkfirst=True |
||
| 1632 | ) |
||
| 1633 | |||
| 1634 | |||
| 1635 | def delete_peak_loads_if_existing(): |
||
| 1636 | """Remove all entries""" |
||
| 1637 | |||
| 1638 | # TODO check synchronize_session? |
||
| 1639 | with db.session_scope() as session: |
||
| 1640 | # Buses |
||
| 1641 | session.query(BuildingHeatPeakLoads).filter( |
||
| 1642 | BuildingHeatPeakLoads.sector == "residential+cts" |
||
| 1643 | ).delete(synchronize_session=False) |
||
| 1644 |