Total Complexity | 56 |
Total Lines | 1611 |
Duplicated Lines | 12.79 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.DSM_cts_ind often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | from sqlalchemy import ARRAY, Column, Float, Integer, String |
||
2 | from sqlalchemy.ext.declarative import declarative_base |
||
3 | import geopandas as gpd |
||
4 | import numpy as np |
||
5 | import pandas as pd |
||
6 | |||
7 | from egon.data import config, db |
||
8 | from egon.data.datasets import Dataset |
||
9 | from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
||
10 | from egon.data.datasets.industry.temporal import identify_bus |
||
11 | |||
12 | # CONSTANTS |
||
13 | # TODO: move to datasets.yml |
||
14 | CON = db.engine() |
||
15 | |||
16 | # CTS |
||
17 | CTS_COOL_VENT_AC_SHARE = 0.22 |
||
18 | |||
19 | S_FLEX_CTS = 0.5 |
||
20 | S_UTIL_CTS = 0.67 |
||
21 | S_INC_CTS = 1 |
||
22 | S_DEC_CTS = 0 |
||
23 | DELTA_T_CTS = 1 |
||
24 | |||
25 | # industry |
||
26 | IND_VENT_COOL_SHARE = 0.039 |
||
27 | IND_VENT_SHARE = 0.017 |
||
28 | |||
29 | # OSM |
||
30 | S_FLEX_OSM = 0.5 |
||
31 | S_UTIL_OSM = 0.73 |
||
32 | S_INC_OSM = 0.9 |
||
33 | S_DEC_OSM = 0.5 |
||
34 | DELTA_T_OSM = 1 |
||
35 | |||
36 | # paper |
||
37 | S_FLEX_PAPER = 0.15 |
||
38 | S_UTIL_PAPER = 0.86 |
||
39 | S_INC_PAPER = 0.95 |
||
40 | S_DEC_PAPER = 0 |
||
41 | DELTA_T_PAPER = 3 |
||
42 | |||
43 | # recycled paper |
||
44 | S_FLEX_RECYCLED_PAPER = 0.7 |
||
45 | S_UTIL_RECYCLED_PAPER = 0.85 |
||
46 | S_INC_RECYCLED_PAPER = 0.95 |
||
47 | S_DEC_RECYCLED_PAPER = 0 |
||
48 | DELTA_T_RECYCLED_PAPER = 3 |
||
49 | |||
50 | # pulp |
||
51 | S_FLEX_PULP = 0.7 |
||
52 | S_UTIL_PULP = 0.83 |
||
53 | S_INC_PULP = 0.95 |
||
54 | S_DEC_PULP = 0 |
||
55 | DELTA_T_PULP = 2 |
||
56 | |||
57 | # cement |
||
58 | S_FLEX_CEMENT = 0.61 |
||
59 | S_UTIL_CEMENT = 0.65 |
||
60 | S_INC_CEMENT = 0.95 |
||
61 | S_DEC_CEMENT = 0 |
||
62 | DELTA_T_CEMENT = 4 |
||
63 | |||
64 | # wz 23 |
||
65 | WZ = 23 |
||
66 | |||
67 | S_FLEX_WZ = 0.5 |
||
68 | S_UTIL_WZ = 0.8 |
||
69 | S_INC_WZ = 1 |
||
70 | S_DEC_WZ = 0.5 |
||
71 | DELTA_T_WZ = 1 |
||
72 | |||
73 | Base = declarative_base() |
||
74 | |||
75 | |||
76 | class DsmPotential(Dataset): |
||
77 | def __init__(self, dependencies): |
||
78 | super().__init__( |
||
79 | name="DsmPotential", |
||
80 | version="0.0.4.dev", |
||
81 | dependencies=dependencies, |
||
82 | tasks=(dsm_cts_ind_processing), |
||
83 | ) |
||
84 | |||
85 | |||
86 | # Datasets |
||
87 | View Code Duplication | class EgonEtragoElectricityCtsDsmTimeseries(Base): |
|
|
|||
88 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
89 | "cts_loadcurves_dsm" |
||
90 | ] |
||
91 | |||
92 | __tablename__ = target["table"] |
||
93 | __table_args__ = {"schema": target["schema"]} |
||
94 | |||
95 | bus = Column(Integer, primary_key=True, index=True) |
||
96 | scn_name = Column(String, primary_key=True, index=True) |
||
97 | p_nom = Column(Float) |
||
98 | e_nom = Column(Float) |
||
99 | p_max_pu = Column(ARRAY(Float)) |
||
100 | p_min_pu = Column(ARRAY(Float)) |
||
101 | e_max_pu = Column(ARRAY(Float)) |
||
102 | e_min_pu = Column(ARRAY(Float)) |
||
103 | |||
104 | |||
105 | View Code Duplication | class EgonOsmIndLoadCurvesIndividualDsmTimeseries(Base): |
|
106 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
107 | "ind_osm_loadcurves_individual_dsm" |
||
108 | ] |
||
109 | |||
110 | __tablename__ = target["table"] |
||
111 | __table_args__ = {"schema": target["schema"]} |
||
112 | |||
113 | osm_id = Column(Integer, primary_key=True, index=True) |
||
114 | scn_name = Column(String, primary_key=True, index=True) |
||
115 | bus = Column(Integer) |
||
116 | p_nom = Column(Float) |
||
117 | e_nom = Column(Float) |
||
118 | p_max_pu = Column(ARRAY(Float)) |
||
119 | p_min_pu = Column(ARRAY(Float)) |
||
120 | e_max_pu = Column(ARRAY(Float)) |
||
121 | e_min_pu = Column(ARRAY(Float)) |
||
122 | |||
123 | |||
124 | View Code Duplication | class EgonDemandregioSitesIndElectricityDsmTimeseries(Base): |
|
125 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
126 | "demandregio_ind_sites_dsm" |
||
127 | ] |
||
128 | |||
129 | __tablename__ = target["table"] |
||
130 | __table_args__ = {"schema": target["schema"]} |
||
131 | |||
132 | industrial_sites_id = Column(Integer, primary_key=True, index=True) |
||
133 | scn_name = Column(String, primary_key=True, index=True) |
||
134 | bus = Column(Integer) |
||
135 | application = Column(String) |
||
136 | p_nom = Column(Float) |
||
137 | e_nom = Column(Float) |
||
138 | p_max_pu = Column(ARRAY(Float)) |
||
139 | p_min_pu = Column(ARRAY(Float)) |
||
140 | e_max_pu = Column(ARRAY(Float)) |
||
141 | e_min_pu = Column(ARRAY(Float)) |
||
142 | |||
143 | |||
144 | View Code Duplication | class EgonSitesIndLoadCurvesIndividualDsmTimeseries(Base): |
|
145 | target = config.datasets()["DSM_CTS_industry"]["targets"][ |
||
146 | "ind_sites_loadcurves_individual" |
||
147 | ] |
||
148 | |||
149 | __tablename__ = target["table"] |
||
150 | __table_args__ = {"schema": target["schema"]} |
||
151 | |||
152 | site_id = Column(Integer, primary_key=True, index=True) |
||
153 | scn_name = Column(String, primary_key=True, index=True) |
||
154 | bus = Column(Integer) |
||
155 | p_nom = Column(Float) |
||
156 | e_nom = Column(Float) |
||
157 | p_max_pu = Column(ARRAY(Float)) |
||
158 | p_min_pu = Column(ARRAY(Float)) |
||
159 | e_max_pu = Column(ARRAY(Float)) |
||
160 | e_min_pu = Column(ARRAY(Float)) |
||
161 | |||
162 | |||
163 | # Code |
||
164 | def cts_data_import(cts_cool_vent_ac_share): |
||
165 | """ |
||
166 | Import CTS data necessary to identify DSM-potential. |
||
167 | |||
168 | ---------- |
||
169 | cts_share: float |
||
170 | Share of cooling, ventilation and AC in CTS demand |
||
171 | """ |
||
172 | |||
173 | # import load data |
||
174 | |||
175 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
176 | "cts_loadcurves" |
||
177 | ] |
||
178 | |||
179 | ts = db.select_dataframe( |
||
180 | f"""SELECT bus_id, scn_name, p_set FROM |
||
181 | {sources['schema']}.{sources['table']}""" |
||
182 | ) |
||
183 | |||
184 | # identify relevant columns and prepare df to be returned |
||
185 | |||
186 | dsm = pd.DataFrame(index=ts.index) |
||
187 | |||
188 | dsm["bus"] = ts["bus_id"].copy() |
||
189 | dsm["scn_name"] = ts["scn_name"].copy() |
||
190 | dsm["p_set"] = ts["p_set"].copy() |
||
191 | |||
192 | # calculate share of timeseries for air conditioning, cooling and |
||
193 | # ventilation out of CTS-data |
||
194 | |||
195 | timeseries = dsm["p_set"].copy() |
||
196 | |||
197 | for index, liste in timeseries.items(): |
||
198 | share = [float(item) * cts_cool_vent_ac_share for item in liste] |
||
199 | timeseries.loc[index] = share |
||
200 | |||
201 | dsm["p_set"] = timeseries.copy() |
||
202 | |||
203 | return dsm |
||
204 | |||
205 | |||
206 | View Code Duplication | def ind_osm_data_import(ind_vent_cool_share): |
|
207 | """ |
||
208 | Import industry data per osm-area necessary to identify DSM-potential. |
||
209 | ---------- |
||
210 | ind_share: float |
||
211 | Share of considered application in industry demand |
||
212 | """ |
||
213 | |||
214 | # import load data |
||
215 | |||
216 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
217 | "ind_osm_loadcurves" |
||
218 | ] |
||
219 | |||
220 | dsm = db.select_dataframe( |
||
221 | f"""SELECT bus, scn_name, p_set FROM |
||
222 | {sources['schema']}.{sources['table']}""" |
||
223 | ) |
||
224 | |||
225 | # calculate share of timeseries for cooling and ventilation out of |
||
226 | # industry-data |
||
227 | |||
228 | timeseries = dsm["p_set"].copy() |
||
229 | |||
230 | for index, liste in timeseries.items(): |
||
231 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
232 | |||
233 | timeseries.loc[index] = share |
||
234 | |||
235 | dsm["p_set"] = timeseries.copy() |
||
236 | |||
237 | return dsm |
||
238 | |||
239 | |||
240 | View Code Duplication | def ind_osm_data_import_individual(ind_vent_cool_share): |
|
241 | """ |
||
242 | Import industry data per osm-area necessary to identify DSM-potential. |
||
243 | ---------- |
||
244 | ind_share: float |
||
245 | Share of considered application in industry demand |
||
246 | """ |
||
247 | |||
248 | # import load data |
||
249 | |||
250 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
251 | "ind_osm_loadcurves_individual" |
||
252 | ] |
||
253 | |||
254 | dsm = db.select_dataframe( |
||
255 | f""" |
||
256 | SELECT osm_id, bus_id as bus, scn_name, p_set FROM |
||
257 | {sources['schema']}.{sources['table']} |
||
258 | WHERE scn_name in ('eGon2035', 'eGon100RE') |
||
259 | """ |
||
260 | ) |
||
261 | |||
262 | # calculate share of timeseries for cooling and ventilation out of |
||
263 | # industry-data |
||
264 | |||
265 | timeseries = dsm["p_set"].copy() |
||
266 | |||
267 | for index, liste in timeseries.items(): |
||
268 | share = [float(item) * ind_vent_cool_share for item in liste] |
||
269 | |||
270 | timeseries.loc[index] = share |
||
271 | |||
272 | dsm["p_set"] = timeseries.copy() |
||
273 | |||
274 | return dsm |
||
275 | |||
276 | |||
277 | View Code Duplication | def ind_sites_vent_data_import(ind_vent_share, wz): |
|
278 | """ |
||
279 | Import industry sites necessary to identify DSM-potential. |
||
280 | ---------- |
||
281 | ind_vent_share: float |
||
282 | Share of considered application in industry demand |
||
283 | wz: int |
||
284 | Wirtschaftszweig to be considered within industry sites |
||
285 | """ |
||
286 | |||
287 | # import load data |
||
288 | |||
289 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
290 | "ind_sites_loadcurves" |
||
291 | ] |
||
292 | |||
293 | dsm = db.select_dataframe( |
||
294 | f""" |
||
295 | SELECT bus, scn_name, p_set FROM |
||
296 | {sources['schema']}.{sources['table']} |
||
297 | WHERE wz = '{wz}' |
||
298 | """ |
||
299 | ) |
||
300 | |||
301 | # calculate share of timeseries for ventilation |
||
302 | |||
303 | timeseries = dsm["p_set"].copy() |
||
304 | |||
305 | for index, liste in timeseries.items(): |
||
306 | share = [float(item) * ind_vent_share for item in liste] |
||
307 | timeseries.loc[index] = share |
||
308 | |||
309 | dsm["p_set"] = timeseries.copy() |
||
310 | |||
311 | return dsm |
||
312 | |||
313 | |||
314 | View Code Duplication | def ind_sites_vent_data_import_individual(ind_vent_share, wz): |
|
315 | """ |
||
316 | Import industry sites necessary to identify DSM-potential. |
||
317 | ---------- |
||
318 | ind_vent_share: float |
||
319 | Share of considered application in industry demand |
||
320 | wz: int |
||
321 | Wirtschaftszweig to be considered within industry sites |
||
322 | """ |
||
323 | |||
324 | # import load data |
||
325 | |||
326 | sources = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
327 | "ind_sites_loadcurves_individual" |
||
328 | ] |
||
329 | |||
330 | dsm = db.select_dataframe( |
||
331 | f""" |
||
332 | SELECT site_id, bus_id as bus, scn_name, p_set FROM |
||
333 | {sources['schema']}.{sources['table']} |
||
334 | WHERE scn_name IN ('eGon2035', 'eGon100RE') |
||
335 | AND wz = '{wz}' |
||
336 | """ |
||
337 | ) |
||
338 | |||
339 | # calculate share of timeseries for ventilation |
||
340 | |||
341 | timeseries = dsm["p_set"].copy() |
||
342 | |||
343 | for index, liste in timeseries.items(): |
||
344 | share = [float(item) * ind_vent_share for item in liste] |
||
345 | timeseries.loc[index] = share |
||
346 | |||
347 | dsm["p_set"] = timeseries.copy() |
||
348 | |||
349 | return dsm |
||
350 | |||
351 | |||
352 | def calc_ind_site_timeseries(scenario): |
||
353 | # calculate timeseries per site |
||
354 | # -> using code from egon.data.datasets.industry.temporal: |
||
355 | # calc_load_curves_ind_sites |
||
356 | |||
357 | # select demands per industrial site including the subsector information |
||
358 | source1 = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
359 | "demandregio_ind_sites" |
||
360 | ] |
||
361 | |||
362 | demands_ind_sites = db.select_dataframe( |
||
363 | f"""SELECT industrial_sites_id, wz, demand |
||
364 | FROM {source1['schema']}.{source1['table']} |
||
365 | WHERE scenario = '{scenario}' |
||
366 | AND demand > 0 |
||
367 | """ |
||
368 | ).set_index(["industrial_sites_id"]) |
||
369 | |||
370 | # select industrial sites as demand_areas from database |
||
371 | source2 = config.datasets()["DSM_CTS_industry"]["sources"]["ind_sites"] |
||
372 | |||
373 | demand_area = db.select_geodataframe( |
||
374 | f"""SELECT id, geom, subsector FROM |
||
375 | {source2['schema']}.{source2['table']}""", |
||
376 | index_col="id", |
||
377 | geom_col="geom", |
||
378 | epsg=3035, |
||
379 | ) |
||
380 | |||
381 | # replace entries to bring it in line with demandregio's subsector |
||
382 | # definitions |
||
383 | demands_ind_sites.replace(1718, 17, inplace=True) |
||
384 | share_wz_sites = demands_ind_sites.copy() |
||
385 | |||
386 | # create additional df on wz_share per industrial site, which is always set |
||
387 | # to one as the industrial demand per site is subsector specific |
||
388 | share_wz_sites.demand = 1 |
||
389 | share_wz_sites.reset_index(inplace=True) |
||
390 | |||
391 | share_transpose = pd.DataFrame( |
||
392 | index=share_wz_sites.industrial_sites_id.unique(), |
||
393 | columns=share_wz_sites.wz.unique(), |
||
394 | ) |
||
395 | share_transpose.index.rename("industrial_sites_id", inplace=True) |
||
396 | for wz in share_transpose.columns: |
||
397 | share_transpose[wz] = ( |
||
398 | share_wz_sites[share_wz_sites.wz == wz] |
||
399 | .set_index("industrial_sites_id") |
||
400 | .demand |
||
401 | ) |
||
402 | |||
403 | # calculate load curves |
||
404 | load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"]) |
||
405 | |||
406 | # identify bus per industrial site |
||
407 | curves_bus = identify_bus(load_curves, demand_area) |
||
408 | curves_bus.index = curves_bus["id"].astype(int) |
||
409 | |||
410 | # initialize dataframe to be returned |
||
411 | |||
412 | ts = pd.DataFrame( |
||
413 | data=curves_bus["bus_id"], index=curves_bus["id"].astype(int) |
||
414 | ) |
||
415 | ts["scenario_name"] = scenario |
||
416 | curves_bus.drop({"id", "bus_id", "geom"}, axis=1, inplace=True) |
||
417 | ts["p_set"] = curves_bus.values.tolist() |
||
418 | |||
419 | # add subsector to relate to Schmidt's tables afterwards |
||
420 | ts["application"] = demand_area["subsector"] |
||
421 | |||
422 | return ts |
||
423 | |||
424 | |||
425 | def relate_to_schmidt_sites(dsm): |
||
426 | # import industrial sites by Schmidt |
||
427 | |||
428 | source = config.datasets()["DSM_CTS_industry"]["sources"][ |
||
429 | "ind_sites_schmidt" |
||
430 | ] |
||
431 | |||
432 | schmidt = db.select_dataframe( |
||
433 | f"""SELECT application, geom FROM |
||
434 | {source['schema']}.{source['table']}""" |
||
435 | ) |
||
436 | |||
437 | # relate calculated timeseries (dsm) to Schmidt's industrial sites |
||
438 | |||
439 | applications = np.unique(schmidt["application"]) |
||
440 | dsm = pd.DataFrame(dsm[dsm["application"].isin(applications)]) |
||
441 | |||
442 | # initialize dataframe to be returned |
||
443 | |||
444 | dsm.rename( |
||
445 | columns={"scenario_name": "scn_name", "bus_id": "bus"}, |
||
446 | inplace=True, |
||
447 | ) |
||
448 | |||
449 | return dsm |
||
450 | |||
451 | |||
452 | def ind_sites_data_import(): |
||
453 | """ |
||
454 | Import industry sites data necessary to identify DSM-potential. |
||
455 | """ |
||
456 | # calculate timeseries per site |
||
457 | |||
458 | # scenario eGon2035 |
||
459 | dsm_2035 = calc_ind_site_timeseries("eGon2035") |
||
460 | dsm_2035.reset_index(inplace=True) |
||
461 | # scenario eGon100RE |
||
462 | dsm_100 = calc_ind_site_timeseries("eGon100RE") |
||
463 | dsm_100.reset_index(inplace=True) |
||
464 | # bring df for both scenarios together |
||
465 | dsm_100.index = range(len(dsm_2035), (len(dsm_2035) + len((dsm_100)))) |
||
466 | dsm = dsm_2035.append(dsm_100) |
||
467 | |||
468 | # relate calculated timeseries to Schmidt's industrial sites |
||
469 | |||
470 | dsm = relate_to_schmidt_sites(dsm) |
||
471 | |||
472 | return dsm[["application", "id", "bus", "scn_name", "p_set"]] |
||
473 | |||
474 | |||
475 | def calculate_potentials(s_flex, s_util, s_inc, s_dec, delta_t, dsm): |
||
476 | """ |
||
477 | Calculate DSM-potential per bus using the methods by Heitkoetter et. al.: |
||
478 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
479 | Parameters |
||
480 | ---------- |
||
481 | s_flex: float |
||
482 | Feasability factor to account for socio-technical restrictions |
||
483 | s_util: float |
||
484 | Average annual utilisation rate |
||
485 | s_inc: float |
||
486 | Shiftable share of installed capacity up to which load can be |
||
487 | increased considering technical limitations |
||
488 | s_dec: float |
||
489 | Shiftable share of installed capacity up to which load can be |
||
490 | decreased considering technical limitations |
||
491 | delta_t: int |
||
492 | Maximum shift duration in hours |
||
493 | dsm: DataFrame |
||
494 | List of existing buses with DSM-potential including timeseries of |
||
495 | loads |
||
496 | """ |
||
497 | |||
498 | # copy relevant timeseries |
||
499 | timeseries = dsm["p_set"].copy() |
||
500 | |||
501 | # calculate scheduled load L(t) |
||
502 | |||
503 | scheduled_load = timeseries.copy() |
||
504 | |||
505 | for index, liste in scheduled_load.items(): |
||
506 | share = [] |
||
507 | for item in liste: |
||
508 | share.append(item * s_flex) |
||
509 | scheduled_load.loc[index] = share |
||
510 | |||
511 | # calculate maximum capacity Lambda |
||
512 | |||
513 | # calculate energy annual requirement |
||
514 | energy_annual = pd.Series(index=timeseries.index, dtype=float) |
||
515 | for index, liste in timeseries.items(): |
||
516 | energy_annual.loc[index] = sum(liste) |
||
517 | |||
518 | # calculate Lambda |
||
519 | lam = (energy_annual * s_flex) / (8760 * s_util) |
||
520 | |||
521 | # calculation of P_max and P_min |
||
522 | |||
523 | # P_max |
||
524 | p_max = scheduled_load.copy() |
||
525 | for index, liste in scheduled_load.items(): |
||
526 | lamb = lam.loc[index] |
||
527 | p = [] |
||
528 | for item in liste: |
||
529 | value = lamb * s_inc - item |
||
530 | if value < 0: |
||
531 | value = 0 |
||
532 | p.append(value) |
||
533 | p_max.loc[index] = p |
||
534 | |||
535 | # P_min |
||
536 | p_min = scheduled_load.copy() |
||
537 | for index, liste in scheduled_load.items(): |
||
538 | lamb = lam.loc[index] |
||
539 | p = [] |
||
540 | for item in liste: |
||
541 | value = -(item - lamb * s_dec) |
||
542 | if value > 0: |
||
543 | value = 0 |
||
544 | p.append(value) |
||
545 | p_min.loc[index] = p |
||
546 | |||
547 | # calculation of E_max and E_min |
||
548 | |||
549 | e_max = scheduled_load.copy() |
||
550 | e_min = scheduled_load.copy() |
||
551 | |||
552 | for index, liste in scheduled_load.items(): |
||
553 | emin = [] |
||
554 | emax = [] |
||
555 | for i in range(len(liste)): |
||
556 | if i + delta_t > len(liste): |
||
557 | emax.append( |
||
558 | (sum(liste[i:]) + sum(liste[: delta_t - (len(liste) - i)])) |
||
559 | ) |
||
560 | else: |
||
561 | emax.append(sum(liste[i : i + delta_t])) |
||
562 | if i - delta_t < 0: |
||
563 | emin.append( |
||
564 | ( |
||
565 | -1 |
||
566 | * ( |
||
567 | ( |
||
568 | sum(liste[:i]) |
||
569 | + sum(liste[len(liste) - delta_t + i :]) |
||
570 | ) |
||
571 | ) |
||
572 | ) |
||
573 | ) |
||
574 | else: |
||
575 | emin.append(-1 * sum(liste[i - delta_t : i])) |
||
576 | e_max.loc[index] = emax |
||
577 | e_min.loc[index] = emin |
||
578 | |||
579 | return p_max, p_min, e_max, e_min |
||
580 | |||
581 | |||
582 | def create_dsm_components(con, p_max, p_min, e_max, e_min, dsm): |
||
583 | """ |
||
584 | Create components representing DSM. |
||
585 | Parameters |
||
586 | ---------- |
||
587 | con : |
||
588 | Connection to database |
||
589 | p_max: DataFrame |
||
590 | Timeseries identifying maximum load increase |
||
591 | p_min: DataFrame |
||
592 | Timeseries identifying maximum load decrease |
||
593 | e_max: DataFrame |
||
594 | Timeseries identifying maximum energy amount to be preponed |
||
595 | e_min: DataFrame |
||
596 | Timeseries identifying maximum energy amount to be postponed |
||
597 | dsm: DataFrame |
||
598 | List of existing buses with DSM-potential including timeseries of loads |
||
599 | """ |
||
600 | |||
601 | # calculate P_nom and P per unit |
||
602 | p_nom = pd.Series(index=p_max.index, dtype=float) |
||
603 | for index, row in p_max.items(): |
||
604 | nom = max(max(row), abs(min(p_min.loc[index]))) |
||
605 | p_nom.loc[index] = nom |
||
606 | new = [element / nom for element in row] |
||
607 | p_max.loc[index] = new |
||
608 | new = [element / nom for element in p_min.loc[index]] |
||
609 | p_min.loc[index] = new |
||
610 | |||
611 | # calculate E_nom and E per unit |
||
612 | e_nom = pd.Series(index=p_min.index, dtype=float) |
||
613 | for index, row in e_max.items(): |
||
614 | nom = max(max(row), abs(min(e_min.loc[index]))) |
||
615 | e_nom.loc[index] = nom |
||
616 | new = [element / nom for element in row] |
||
617 | e_max.loc[index] = new |
||
618 | new = [element / nom for element in e_min.loc[index]] |
||
619 | e_min.loc[index] = new |
||
620 | |||
621 | # add DSM-buses to "original" buses |
||
622 | dsm_buses = gpd.GeoDataFrame(index=dsm.index) |
||
623 | dsm_buses["original_bus"] = dsm["bus"].copy() |
||
624 | dsm_buses["scn_name"] = dsm["scn_name"].copy() |
||
625 | |||
626 | # get original buses and add copy of relevant information |
||
627 | target1 = config.datasets()["DSM_CTS_industry"]["targets"]["bus"] |
||
628 | original_buses = db.select_geodataframe( |
||
629 | f"""SELECT bus_id, v_nom, scn_name, x, y, geom FROM |
||
630 | {target1['schema']}.{target1['table']}""", |
||
631 | geom_col="geom", |
||
632 | epsg=4326, |
||
633 | ) |
||
634 | |||
635 | # copy relevant information from original buses to DSM-buses |
||
636 | dsm_buses["index"] = dsm_buses.index |
||
637 | originals = original_buses[ |
||
638 | original_buses["bus_id"].isin(np.unique(dsm_buses["original_bus"])) |
||
639 | ] |
||
640 | dsm_buses = originals.merge( |
||
641 | dsm_buses, |
||
642 | left_on=["bus_id", "scn_name"], |
||
643 | right_on=["original_bus", "scn_name"], |
||
644 | ) |
||
645 | dsm_buses.index = dsm_buses["index"] |
||
646 | dsm_buses.drop(["bus_id", "index"], axis=1, inplace=True) |
||
647 | |||
648 | # new bus_ids for DSM-buses |
||
649 | max_id = original_buses["bus_id"].max() |
||
650 | if np.isnan(max_id): |
||
651 | max_id = 0 |
||
652 | dsm_id = max_id + 1 |
||
653 | bus_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
654 | |||
655 | # Get number of DSM buses for both scenarios |
||
656 | rows_per_scenario = ( |
||
657 | dsm_buses.groupby("scn_name").count().original_bus.to_dict() |
||
658 | ) |
||
659 | |||
660 | # Assignment of DSM ids |
||
661 | bus_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
662 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
663 | ) |
||
664 | |||
665 | bus_id.iloc[ |
||
666 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
667 | "eGon2035", 0 |
||
668 | ) |
||
669 | + rows_per_scenario.get("eGon100RE", 0) |
||
670 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
671 | |||
672 | dsm_buses["bus_id"] = bus_id |
||
673 | |||
674 | # add links from "orignal" buses to DSM-buses |
||
675 | |||
676 | dsm_links = pd.DataFrame(index=dsm_buses.index) |
||
677 | dsm_links["original_bus"] = dsm_buses["original_bus"].copy() |
||
678 | dsm_links["dsm_bus"] = dsm_buses["bus_id"].copy() |
||
679 | dsm_links["scn_name"] = dsm_buses["scn_name"].copy() |
||
680 | |||
681 | # set link_id |
||
682 | target2 = config.datasets()["DSM_CTS_industry"]["targets"]["link"] |
||
683 | sql = f"""SELECT link_id FROM {target2['schema']}.{target2['table']}""" |
||
684 | max_id = pd.read_sql_query(sql, con) |
||
685 | max_id = max_id["link_id"].max() |
||
686 | if np.isnan(max_id): |
||
687 | max_id = 0 |
||
688 | dsm_id = max_id + 1 |
||
689 | link_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
690 | |||
691 | # Assignment of link ids |
||
692 | link_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
693 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
694 | ) |
||
695 | |||
696 | link_id.iloc[ |
||
697 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
698 | "eGon2035", 0 |
||
699 | ) |
||
700 | + rows_per_scenario.get("eGon100RE", 0) |
||
701 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
702 | |||
703 | dsm_links["link_id"] = link_id |
||
704 | |||
705 | # add calculated timeseries to df to be returned |
||
706 | dsm_links["p_nom"] = p_nom |
||
707 | dsm_links["p_min"] = p_min |
||
708 | dsm_links["p_max"] = p_max |
||
709 | |||
710 | # add DSM-stores |
||
711 | |||
712 | dsm_stores = pd.DataFrame(index=dsm_buses.index) |
||
713 | dsm_stores["bus"] = dsm_buses["bus_id"].copy() |
||
714 | dsm_stores["scn_name"] = dsm_buses["scn_name"].copy() |
||
715 | dsm_stores["original_bus"] = dsm_buses["original_bus"].copy() |
||
716 | |||
717 | # set store_id |
||
718 | target3 = config.datasets()["DSM_CTS_industry"]["targets"]["store"] |
||
719 | sql = f"""SELECT store_id FROM {target3['schema']}.{target3['table']}""" |
||
720 | max_id = pd.read_sql_query(sql, con) |
||
721 | max_id = max_id["store_id"].max() |
||
722 | if np.isnan(max_id): |
||
723 | max_id = 0 |
||
724 | dsm_id = max_id + 1 |
||
725 | store_id = pd.Series(index=dsm_buses.index, dtype=int) |
||
726 | |||
727 | # Assignment of store ids |
||
728 | store_id.iloc[: rows_per_scenario.get("eGon2035", 0)] = range( |
||
729 | dsm_id, dsm_id + rows_per_scenario.get("eGon2035", 0) |
||
730 | ) |
||
731 | |||
732 | store_id.iloc[ |
||
733 | rows_per_scenario.get("eGon2035", 0) : rows_per_scenario.get( |
||
734 | "eGon2035", 0 |
||
735 | ) |
||
736 | + rows_per_scenario.get("eGon100RE", 0) |
||
737 | ] = range(dsm_id, dsm_id + rows_per_scenario.get("eGon100RE", 0)) |
||
738 | |||
739 | dsm_stores["store_id"] = store_id |
||
740 | |||
741 | # add calculated timeseries to df to be returned |
||
742 | dsm_stores["e_nom"] = e_nom |
||
743 | dsm_stores["e_min"] = e_min |
||
744 | dsm_stores["e_max"] = e_max |
||
745 | |||
746 | return dsm_buses, dsm_links, dsm_stores |
||
747 | |||
748 | |||
749 | def aggregate_components(df_dsm_buses, df_dsm_links, df_dsm_stores): |
||
750 | # aggregate buses |
||
751 | |||
752 | grouper = [df_dsm_buses.original_bus, df_dsm_buses.scn_name] |
||
753 | |||
754 | df_dsm_buses = df_dsm_buses.groupby(grouper).first() |
||
755 | |||
756 | df_dsm_buses.reset_index(inplace=True) |
||
757 | df_dsm_buses.sort_values("scn_name", inplace=True) |
||
758 | |||
759 | # aggregate links |
||
760 | |||
761 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: np.array(x)) |
||
762 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: np.array(x)) |
||
763 | |||
764 | grouper = [df_dsm_links.original_bus, df_dsm_links.scn_name] |
||
765 | p_nom = df_dsm_links.groupby(grouper)["p_nom"].sum() |
||
766 | p_max = df_dsm_links.groupby(grouper)["p_max"].apply(np.sum) |
||
767 | p_min = df_dsm_links.groupby(grouper)["p_min"].apply(np.sum) |
||
768 | |||
769 | df_dsm_links = df_dsm_links.groupby(grouper).first() |
||
770 | df_dsm_links.p_nom = p_nom |
||
771 | df_dsm_links.p_max = p_max |
||
772 | df_dsm_links.p_min = p_min |
||
773 | |||
774 | df_dsm_links["p_max"] = df_dsm_links["p_max"].apply(lambda x: list(x)) |
||
775 | df_dsm_links["p_min"] = df_dsm_links["p_min"].apply(lambda x: list(x)) |
||
776 | |||
777 | df_dsm_links.reset_index(inplace=True) |
||
778 | df_dsm_links.sort_values("scn_name", inplace=True) |
||
779 | |||
780 | # aggregate stores |
||
781 | |||
782 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply( |
||
783 | lambda x: np.array(x) |
||
784 | ) |
||
785 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply( |
||
786 | lambda x: np.array(x) |
||
787 | ) |
||
788 | |||
789 | grouper = [df_dsm_stores.original_bus, df_dsm_stores.scn_name] |
||
790 | e_nom = df_dsm_stores.groupby(grouper)["e_nom"].sum() |
||
791 | e_max = df_dsm_stores.groupby(grouper)["e_max"].apply(np.sum) |
||
792 | e_min = df_dsm_stores.groupby(grouper)["e_min"].apply(np.sum) |
||
793 | |||
794 | df_dsm_stores = df_dsm_stores.groupby(grouper).first() |
||
795 | df_dsm_stores.e_nom = e_nom |
||
796 | df_dsm_stores.e_max = e_max |
||
797 | df_dsm_stores.e_min = e_min |
||
798 | |||
799 | df_dsm_stores["e_max"] = df_dsm_stores["e_max"].apply(lambda x: list(x)) |
||
800 | df_dsm_stores["e_min"] = df_dsm_stores["e_min"].apply(lambda x: list(x)) |
||
801 | |||
802 | df_dsm_stores.reset_index(inplace=True) |
||
803 | df_dsm_stores.sort_values("scn_name", inplace=True) |
||
804 | |||
805 | # select new bus_ids for aggregated buses and add to links and stores |
||
806 | bus_id = db.next_etrago_id("Bus") + df_dsm_buses.index |
||
807 | |||
808 | df_dsm_buses["bus_id"] = bus_id |
||
809 | df_dsm_links["dsm_bus"] = bus_id |
||
810 | df_dsm_stores["bus"] = bus_id |
||
811 | |||
812 | # select new link_ids for aggregated links |
||
813 | link_id = db.next_etrago_id("Link") + df_dsm_links.index |
||
814 | |||
815 | df_dsm_links["link_id"] = link_id |
||
816 | |||
817 | # select new store_ids to aggregated stores |
||
818 | |||
819 | store_id = db.next_etrago_id("Store") + df_dsm_stores.index |
||
820 | |||
821 | df_dsm_stores["store_id"] = store_id |
||
822 | |||
823 | return df_dsm_buses, df_dsm_links, df_dsm_stores |
||
824 | |||
825 | |||
826 | def data_export(dsm_buses, dsm_links, dsm_stores, carrier): |
||
827 | """ |
||
828 | Export new components to database. |
||
829 | |||
830 | Parameters |
||
831 | ---------- |
||
832 | dsm_buses: DataFrame |
||
833 | Buses representing locations of DSM-potential |
||
834 | dsm_links: DataFrame |
||
835 | Links connecting DSM-buses and DSM-stores |
||
836 | dsm_stores: DataFrame |
||
837 | Stores representing DSM-potential |
||
838 | carrier: str |
||
839 | Remark to be filled in column 'carrier' identifying DSM-potential |
||
840 | """ |
||
841 | |||
842 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
843 | |||
844 | # dsm_buses |
||
845 | |||
846 | insert_buses = gpd.GeoDataFrame( |
||
847 | index=dsm_buses.index, |
||
848 | data=dsm_buses["geom"], |
||
849 | geometry="geom", |
||
850 | crs=dsm_buses.crs, |
||
851 | ) |
||
852 | insert_buses["scn_name"] = dsm_buses["scn_name"] |
||
853 | insert_buses["bus_id"] = dsm_buses["bus_id"] |
||
854 | insert_buses["v_nom"] = dsm_buses["v_nom"] |
||
855 | insert_buses["carrier"] = carrier |
||
856 | insert_buses["x"] = dsm_buses["x"] |
||
857 | insert_buses["y"] = dsm_buses["y"] |
||
858 | |||
859 | # insert into database |
||
860 | insert_buses.to_postgis( |
||
861 | targets["bus"]["table"], |
||
862 | con=db.engine(), |
||
863 | schema=targets["bus"]["schema"], |
||
864 | if_exists="append", |
||
865 | index=False, |
||
866 | dtype={"geom": "geometry"}, |
||
867 | ) |
||
868 | |||
869 | # dsm_links |
||
870 | |||
871 | insert_links = pd.DataFrame(index=dsm_links.index) |
||
872 | insert_links["scn_name"] = dsm_links["scn_name"] |
||
873 | insert_links["link_id"] = dsm_links["link_id"] |
||
874 | insert_links["bus0"] = dsm_links["original_bus"] |
||
875 | insert_links["bus1"] = dsm_links["dsm_bus"] |
||
876 | insert_links["carrier"] = carrier |
||
877 | insert_links["p_nom"] = dsm_links["p_nom"] |
||
878 | |||
879 | # insert into database |
||
880 | insert_links.to_sql( |
||
881 | targets["link"]["table"], |
||
882 | con=db.engine(), |
||
883 | schema=targets["link"]["schema"], |
||
884 | if_exists="append", |
||
885 | index=False, |
||
886 | ) |
||
887 | |||
888 | insert_links_timeseries = pd.DataFrame(index=dsm_links.index) |
||
889 | insert_links_timeseries["scn_name"] = dsm_links["scn_name"] |
||
890 | insert_links_timeseries["link_id"] = dsm_links["link_id"] |
||
891 | insert_links_timeseries["p_min_pu"] = dsm_links["p_min"] |
||
892 | insert_links_timeseries["p_max_pu"] = dsm_links["p_max"] |
||
893 | insert_links_timeseries["temp_id"] = 1 |
||
894 | |||
895 | # insert into database |
||
896 | insert_links_timeseries.to_sql( |
||
897 | targets["link_timeseries"]["table"], |
||
898 | con=db.engine(), |
||
899 | schema=targets["link_timeseries"]["schema"], |
||
900 | if_exists="append", |
||
901 | index=False, |
||
902 | ) |
||
903 | |||
904 | # dsm_stores |
||
905 | |||
906 | insert_stores = pd.DataFrame(index=dsm_stores.index) |
||
907 | insert_stores["scn_name"] = dsm_stores["scn_name"] |
||
908 | insert_stores["store_id"] = dsm_stores["store_id"] |
||
909 | insert_stores["bus"] = dsm_stores["bus"] |
||
910 | insert_stores["carrier"] = carrier |
||
911 | insert_stores["e_nom"] = dsm_stores["e_nom"] |
||
912 | |||
913 | # insert into database |
||
914 | insert_stores.to_sql( |
||
915 | targets["store"]["table"], |
||
916 | con=db.engine(), |
||
917 | schema=targets["store"]["schema"], |
||
918 | if_exists="append", |
||
919 | index=False, |
||
920 | ) |
||
921 | |||
922 | insert_stores_timeseries = pd.DataFrame(index=dsm_stores.index) |
||
923 | insert_stores_timeseries["scn_name"] = dsm_stores["scn_name"] |
||
924 | insert_stores_timeseries["store_id"] = dsm_stores["store_id"] |
||
925 | insert_stores_timeseries["e_min_pu"] = dsm_stores["e_min"] |
||
926 | insert_stores_timeseries["e_max_pu"] = dsm_stores["e_max"] |
||
927 | insert_stores_timeseries["temp_id"] = 1 |
||
928 | |||
929 | # insert into database |
||
930 | insert_stores_timeseries.to_sql( |
||
931 | targets["store_timeseries"]["table"], |
||
932 | con=db.engine(), |
||
933 | schema=targets["store_timeseries"]["schema"], |
||
934 | if_exists="append", |
||
935 | index=False, |
||
936 | ) |
||
937 | |||
938 | |||
939 | def delete_dsm_entries(carrier): |
||
940 | """ |
||
941 | Deletes DSM-components from database if they already exist before creating |
||
942 | new ones. |
||
943 | |||
944 | Parameters |
||
945 | ---------- |
||
946 | carrier: str |
||
947 | Remark in column 'carrier' identifying DSM-potential |
||
948 | """ |
||
949 | |||
950 | targets = config.datasets()["DSM_CTS_industry"]["targets"] |
||
951 | |||
952 | # buses |
||
953 | |||
954 | sql = f"""DELETE FROM {targets["bus"]["schema"]}.{targets["bus"]["table"]} b |
||
955 | WHERE (b.carrier LIKE '{carrier}');""" |
||
956 | db.execute_sql(sql) |
||
957 | |||
958 | # links |
||
959 | |||
960 | sql = f""" |
||
961 | DELETE FROM {targets["link_timeseries"]["schema"]}. |
||
962 | {targets["link_timeseries"]["table"]} t |
||
963 | WHERE t.link_id IN |
||
964 | ( |
||
965 | SELECT l.link_id FROM {targets["link"]["schema"]}. |
||
966 | {targets["link"]["table"]} l |
||
967 | WHERE l.carrier LIKE '{carrier}' |
||
968 | ); |
||
969 | """ |
||
970 | |||
971 | db.execute_sql(sql) |
||
972 | |||
973 | sql = f""" |
||
974 | DELETE FROM {targets["link"]["schema"]}. |
||
975 | {targets["link"]["table"]} l |
||
976 | WHERE (l.carrier LIKE '{carrier}'); |
||
977 | """ |
||
978 | |||
979 | db.execute_sql(sql) |
||
980 | |||
981 | # stores |
||
982 | |||
983 | sql = f""" |
||
984 | DELETE FROM {targets["store_timeseries"]["schema"]}. |
||
985 | {targets["store_timeseries"]["table"]} t |
||
986 | WHERE t.store_id IN |
||
987 | ( |
||
988 | SELECT s.store_id FROM {targets["store"]["schema"]}. |
||
989 | {targets["store"]["table"]} s |
||
990 | WHERE s.carrier LIKE '{carrier}' |
||
991 | ); |
||
992 | """ |
||
993 | |||
994 | db.execute_sql(sql) |
||
995 | |||
996 | sql = f""" |
||
997 | DELETE FROM {targets["store"]["schema"]}.{targets["store"]["table"]} s |
||
998 | WHERE (s.carrier LIKE '{carrier}'); |
||
999 | """ |
||
1000 | |||
1001 | db.execute_sql(sql) |
||
1002 | |||
1003 | |||
1004 | def dsm_cts_ind( |
||
1005 | con=db.engine(), |
||
1006 | cts_cool_vent_ac_share=0.22, |
||
1007 | ind_vent_cool_share=0.039, |
||
1008 | ind_vent_share=0.017, |
||
1009 | ): |
||
1010 | """ |
||
1011 | Execute methodology to create and implement components for DSM considering |
||
1012 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
1013 | conditioning |
||
1014 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
1015 | c) Industrial Sites: potentials of ventilation in sites of |
||
1016 | "Wirtschaftszweig" (WZ) 23 |
||
1017 | d) Industrial Sites: potentials of sites specified by subsectors |
||
1018 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
1019 | Paper, Recycled Paper, Pulp, Cement |
||
1020 | |||
1021 | Modelled using the methods by Heitkoetter et. al.: |
||
1022 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
1023 | |||
1024 | Parameters |
||
1025 | ---------- |
||
1026 | con : |
||
1027 | Connection to database |
||
1028 | cts_cool_vent_ac_share: float |
||
1029 | Share of cooling, ventilation and AC in CTS demand |
||
1030 | ind_vent_cool_share: float |
||
1031 | Share of cooling and ventilation in industry demand |
||
1032 | ind_vent_share: float |
||
1033 | Share of ventilation in industry demand in sites of WZ 23 |
||
1034 | |||
1035 | """ |
||
1036 | |||
1037 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
1038 | |||
1039 | print(" ") |
||
1040 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
1041 | print(" ") |
||
1042 | |||
1043 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
1044 | |||
1045 | # calculate combined potentials of cooling, ventilation and air |
||
1046 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
1047 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1048 | s_flex=S_FLEX_CTS, |
||
1049 | s_util=S_UTIL_CTS, |
||
1050 | s_inc=S_INC_CTS, |
||
1051 | s_dec=S_DEC_CTS, |
||
1052 | delta_t=DELTA_T_CTS, |
||
1053 | dsm=dsm, |
||
1054 | ) |
||
1055 | |||
1056 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1057 | con, p_max, p_min, e_max, e_min, dsm |
||
1058 | ) |
||
1059 | |||
1060 | df_dsm_buses = dsm_buses.copy() |
||
1061 | df_dsm_links = dsm_links.copy() |
||
1062 | df_dsm_stores = dsm_stores.copy() |
||
1063 | |||
1064 | # industry per osm-area: cooling and ventilation |
||
1065 | |||
1066 | print(" ") |
||
1067 | print("industry per osm-area: cooling and ventilation") |
||
1068 | print(" ") |
||
1069 | |||
1070 | dsm = ind_osm_data_import(ind_vent_cool_share) |
||
1071 | |||
1072 | # calculate combined potentials of cooling and ventilation in industrial |
||
1073 | # sector using combined parameters by Heitkoetter et. al. |
||
1074 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1075 | s_flex=S_FLEX_OSM, |
||
1076 | s_util=S_UTIL_OSM, |
||
1077 | s_inc=S_INC_OSM, |
||
1078 | s_dec=S_DEC_OSM, |
||
1079 | delta_t=DELTA_T_OSM, |
||
1080 | dsm=dsm, |
||
1081 | ) |
||
1082 | |||
1083 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1084 | con, p_max, p_min, e_max, e_min, dsm |
||
1085 | ) |
||
1086 | |||
1087 | df_dsm_buses = gpd.GeoDataFrame( |
||
1088 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1089 | crs="EPSG:4326", |
||
1090 | ) |
||
1091 | df_dsm_links = pd.DataFrame( |
||
1092 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1093 | ) |
||
1094 | df_dsm_stores = pd.DataFrame( |
||
1095 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1096 | ) |
||
1097 | |||
1098 | # industry sites |
||
1099 | |||
1100 | # industry sites: different applications |
||
1101 | |||
1102 | dsm = ind_sites_data_import() |
||
1103 | |||
1104 | print(" ") |
||
1105 | print("industry sites: paper") |
||
1106 | print(" ") |
||
1107 | |||
1108 | dsm_paper = gpd.GeoDataFrame( |
||
1109 | dsm[ |
||
1110 | dsm["application"].isin( |
||
1111 | [ |
||
1112 | "Graphic Paper", |
||
1113 | "Packing Paper and Board", |
||
1114 | "Hygiene Paper", |
||
1115 | "Technical/Special Paper and Board", |
||
1116 | ] |
||
1117 | ) |
||
1118 | ] |
||
1119 | ) |
||
1120 | |||
1121 | # calculate potentials of industrial sites with paper-applications |
||
1122 | # using parameters by Heitkoetter et al. |
||
1123 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1124 | s_flex=S_FLEX_PAPER, |
||
1125 | s_util=S_UTIL_PAPER, |
||
1126 | s_inc=S_INC_PAPER, |
||
1127 | s_dec=S_DEC_PAPER, |
||
1128 | delta_t=DELTA_T_PAPER, |
||
1129 | dsm=dsm_paper, |
||
1130 | ) |
||
1131 | |||
1132 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1133 | con, p_max, p_min, e_max, e_min, dsm_paper |
||
1134 | ) |
||
1135 | |||
1136 | df_dsm_buses = gpd.GeoDataFrame( |
||
1137 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1138 | crs="EPSG:4326", |
||
1139 | ) |
||
1140 | df_dsm_links = pd.DataFrame( |
||
1141 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1142 | ) |
||
1143 | df_dsm_stores = pd.DataFrame( |
||
1144 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1145 | ) |
||
1146 | |||
1147 | print(" ") |
||
1148 | print("industry sites: recycled paper") |
||
1149 | print(" ") |
||
1150 | |||
1151 | # calculate potentials of industrial sites with recycled paper-applications |
||
1152 | # using parameters by Heitkoetter et. al. |
||
1153 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
1154 | dsm[dsm["application"] == "Recycled Paper"] |
||
1155 | ) |
||
1156 | |||
1157 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1158 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
1159 | s_util=S_UTIL_RECYCLED_PAPER, |
||
1160 | s_inc=S_INC_RECYCLED_PAPER, |
||
1161 | s_dec=S_DEC_RECYCLED_PAPER, |
||
1162 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
1163 | dsm=dsm_recycled_paper, |
||
1164 | ) |
||
1165 | |||
1166 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1167 | con, p_max, p_min, e_max, e_min, dsm_recycled_paper |
||
1168 | ) |
||
1169 | |||
1170 | df_dsm_buses = gpd.GeoDataFrame( |
||
1171 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1172 | crs="EPSG:4326", |
||
1173 | ) |
||
1174 | df_dsm_links = pd.DataFrame( |
||
1175 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1176 | ) |
||
1177 | df_dsm_stores = pd.DataFrame( |
||
1178 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1179 | ) |
||
1180 | |||
1181 | print(" ") |
||
1182 | print("industry sites: pulp") |
||
1183 | print(" ") |
||
1184 | |||
1185 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
1186 | |||
1187 | # calculate potentials of industrial sites with pulp-applications |
||
1188 | # using parameters by Heitkoetter et al. |
||
1189 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1190 | s_flex=S_FLEX_PULP, |
||
1191 | s_util=S_UTIL_PULP, |
||
1192 | s_inc=S_INC_PULP, |
||
1193 | s_dec=S_DEC_PULP, |
||
1194 | delta_t=DELTA_T_PULP, |
||
1195 | dsm=dsm_pulp, |
||
1196 | ) |
||
1197 | |||
1198 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1199 | con, p_max, p_min, e_max, e_min, dsm_pulp |
||
1200 | ) |
||
1201 | |||
1202 | df_dsm_buses = gpd.GeoDataFrame( |
||
1203 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1204 | crs="EPSG:4326", |
||
1205 | ) |
||
1206 | df_dsm_links = pd.DataFrame( |
||
1207 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1208 | ) |
||
1209 | df_dsm_stores = pd.DataFrame( |
||
1210 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1211 | ) |
||
1212 | |||
1213 | # industry sites: cement |
||
1214 | |||
1215 | print(" ") |
||
1216 | print("industry sites: cement") |
||
1217 | print(" ") |
||
1218 | |||
1219 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
1220 | |||
1221 | # calculate potentials of industrial sites with cement-applications |
||
1222 | # using parameters by Heitkoetter et al. |
||
1223 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1224 | s_flex=S_FLEX_CEMENT, |
||
1225 | s_util=S_UTIL_CEMENT, |
||
1226 | s_inc=S_INC_CEMENT, |
||
1227 | s_dec=S_DEC_CEMENT, |
||
1228 | delta_t=DELTA_T_CEMENT, |
||
1229 | dsm=dsm_cement, |
||
1230 | ) |
||
1231 | |||
1232 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1233 | con, p_max, p_min, e_max, e_min, dsm_cement |
||
1234 | ) |
||
1235 | |||
1236 | df_dsm_buses = gpd.GeoDataFrame( |
||
1237 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1238 | crs="EPSG:4326", |
||
1239 | ) |
||
1240 | df_dsm_links = pd.DataFrame( |
||
1241 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1242 | ) |
||
1243 | df_dsm_stores = pd.DataFrame( |
||
1244 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1245 | ) |
||
1246 | |||
1247 | # industry sites: ventilation in WZ23 |
||
1248 | |||
1249 | print(" ") |
||
1250 | print("industry sites: ventilation in WZ23") |
||
1251 | print(" ") |
||
1252 | |||
1253 | dsm = ind_sites_vent_data_import(ind_vent_share, wz=WZ) |
||
1254 | |||
1255 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
1256 | # modelled |
||
1257 | cement = np.unique(dsm_cement["bus"].values) |
||
1258 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
1259 | dsm.drop(index_names, inplace=True) |
||
1260 | |||
1261 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
1262 | # using parameters by Heitkoetter et al. |
||
1263 | p_max, p_min, e_max, e_min = calculate_potentials( |
||
1264 | s_flex=S_FLEX_WZ, |
||
1265 | s_util=S_UTIL_WZ, |
||
1266 | s_inc=S_INC_WZ, |
||
1267 | s_dec=S_DEC_WZ, |
||
1268 | delta_t=DELTA_T_WZ, |
||
1269 | dsm=dsm, |
||
1270 | ) |
||
1271 | |||
1272 | dsm_buses, dsm_links, dsm_stores = create_dsm_components( |
||
1273 | con, p_max, p_min, e_max, e_min, dsm |
||
1274 | ) |
||
1275 | |||
1276 | df_dsm_buses = gpd.GeoDataFrame( |
||
1277 | pd.concat([df_dsm_buses, dsm_buses], ignore_index=True), |
||
1278 | crs="EPSG:4326", |
||
1279 | ) |
||
1280 | df_dsm_links = pd.DataFrame( |
||
1281 | pd.concat([df_dsm_links, dsm_links], ignore_index=True) |
||
1282 | ) |
||
1283 | df_dsm_stores = pd.DataFrame( |
||
1284 | pd.concat([df_dsm_stores, dsm_stores], ignore_index=True) |
||
1285 | ) |
||
1286 | |||
1287 | # aggregate DSM components per substation |
||
1288 | dsm_buses, dsm_links, dsm_stores = aggregate_components( |
||
1289 | df_dsm_buses, df_dsm_links, df_dsm_stores |
||
1290 | ) |
||
1291 | |||
1292 | # export aggregated DSM components to database |
||
1293 | |||
1294 | delete_dsm_entries("dsm-cts") |
||
1295 | delete_dsm_entries("dsm-ind-osm") |
||
1296 | delete_dsm_entries("dsm-ind-sites") |
||
1297 | delete_dsm_entries("dsm") |
||
1298 | |||
1299 | data_export(dsm_buses, dsm_links, dsm_stores, carrier="dsm") |
||
1300 | |||
1301 | |||
1302 | def get_p_nom_e_nom(df: pd.DataFrame): |
||
1303 | p_nom = [ |
||
1304 | max(max(val), max(abs(v) for v in df.p_min_pu.at[idx])) |
||
1305 | for idx, val in df.p_max_pu.items() |
||
1306 | ] |
||
1307 | |||
1308 | e_nom = [ |
||
1309 | max(max(val), max(abs(v) for v in df.e_min_pu.at[idx])) |
||
1310 | for idx, val in df.e_max_pu.items() |
||
1311 | ] |
||
1312 | |||
1313 | return df.assign(p_nom=p_nom, e_nom=e_nom) |
||
1314 | |||
1315 | |||
1316 | def calc_per_unit(df): |
||
1317 | df = get_p_nom_e_nom(df) |
||
1318 | |||
1319 | for col in ["p_max_pu", "p_min_pu"]: |
||
1320 | rslt = [] |
||
1321 | |||
1322 | for idx, lst in df[col].items(): |
||
1323 | p_nom = df.p_nom.at[idx] |
||
1324 | |||
1325 | rslt.append([v / p_nom for v in lst]) |
||
1326 | |||
1327 | df[col] = rslt |
||
1328 | |||
1329 | for col in ["e_max_pu", "e_min_pu"]: |
||
1330 | rslt = [] |
||
1331 | |||
1332 | for idx, lst in df[col].items(): |
||
1333 | e_nom = df.e_nom.at[idx] |
||
1334 | |||
1335 | rslt.append([v / e_nom for v in lst]) |
||
1336 | |||
1337 | df[col] = rslt |
||
1338 | |||
1339 | return df |
||
1340 | |||
1341 | |||
1342 | def create_table(df, table, engine=CON): |
||
1343 | """Create table""" |
||
1344 | table.__table__.drop(bind=engine, checkfirst=True) |
||
1345 | table.__table__.create(bind=engine, checkfirst=True) |
||
1346 | |||
1347 | df.drop(columns=["p_set"]).to_sql( |
||
1348 | name=table.__table__.name, |
||
1349 | schema=table.__table__.schema, |
||
1350 | con=engine, |
||
1351 | if_exists="append", |
||
1352 | index=False, |
||
1353 | ) |
||
1354 | |||
1355 | |||
1356 | def dsm_cts_ind_individual( |
||
1357 | cts_cool_vent_ac_share=CTS_COOL_VENT_AC_SHARE, |
||
1358 | ind_vent_cool_share=IND_VENT_COOL_SHARE, |
||
1359 | ind_vent_share=IND_VENT_SHARE, |
||
1360 | ): |
||
1361 | """ |
||
1362 | Execute methodology to create and implement components for DSM considering |
||
1363 | a) CTS per osm-area: combined potentials of cooling, ventilation and air |
||
1364 | conditioning |
||
1365 | b) Industry per osm-are: combined potentials of cooling and ventilation |
||
1366 | c) Industrial Sites: potentials of ventilation in sites of |
||
1367 | "Wirtschaftszweig" (WZ) 23 |
||
1368 | d) Industrial Sites: potentials of sites specified by subsectors |
||
1369 | identified by Schmidt (https://zenodo.org/record/3613767#.YTsGwVtCRhG): |
||
1370 | Paper, Recycled Paper, Pulp, Cement |
||
1371 | |||
1372 | Modelled using the methods by Heitkoetter et. al.: |
||
1373 | https://doi.org/10.1016/j.adapen.2020.100001 |
||
1374 | |||
1375 | Parameters |
||
1376 | ---------- |
||
1377 | cts_cool_vent_ac_share: float |
||
1378 | Share of cooling, ventilation and AC in CTS demand |
||
1379 | ind_vent_cool_share: float |
||
1380 | Share of cooling and ventilation in industry demand |
||
1381 | ind_vent_share: float |
||
1382 | Share of ventilation in industry demand in sites of WZ 23 |
||
1383 | |||
1384 | """ |
||
1385 | |||
1386 | # CTS per osm-area: cooling, ventilation and air conditioning |
||
1387 | |||
1388 | print(" ") |
||
1389 | print("CTS per osm-area: cooling, ventilation and air conditioning") |
||
1390 | print(" ") |
||
1391 | |||
1392 | dsm = cts_data_import(cts_cool_vent_ac_share) |
||
1393 | |||
1394 | # calculate combined potentials of cooling, ventilation and air |
||
1395 | # conditioning in CTS using combined parameters by Heitkoetter et. al. |
||
1396 | vals = calculate_potentials( |
||
1397 | s_flex=S_FLEX_CTS, |
||
1398 | s_util=S_UTIL_CTS, |
||
1399 | s_inc=S_INC_CTS, |
||
1400 | s_dec=S_DEC_CTS, |
||
1401 | delta_t=DELTA_T_CTS, |
||
1402 | dsm=dsm, |
||
1403 | ) |
||
1404 | |||
1405 | base_columns = [ |
||
1406 | "bus", |
||
1407 | "scn_name", |
||
1408 | "p_set", |
||
1409 | "p_max_pu", |
||
1410 | "p_min_pu", |
||
1411 | "e_max_pu", |
||
1412 | "e_min_pu", |
||
1413 | ] |
||
1414 | |||
1415 | cts_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1416 | cts_df.columns = base_columns |
||
1417 | cts_df = calc_per_unit(cts_df) |
||
1418 | |||
1419 | print(" ") |
||
1420 | print("industry per osm-area: cooling and ventilation") |
||
1421 | print(" ") |
||
1422 | |||
1423 | dsm = ind_osm_data_import_individual(ind_vent_cool_share) |
||
1424 | |||
1425 | # calculate combined potentials of cooling and ventilation in industrial |
||
1426 | # sector using combined parameters by Heitkoetter et al. |
||
1427 | vals = calculate_potentials( |
||
1428 | s_flex=S_FLEX_OSM, |
||
1429 | s_util=S_UTIL_OSM, |
||
1430 | s_inc=S_INC_OSM, |
||
1431 | s_dec=S_DEC_OSM, |
||
1432 | delta_t=DELTA_T_OSM, |
||
1433 | dsm=dsm, |
||
1434 | ) |
||
1435 | |||
1436 | columns = ["osm_id"] + base_columns |
||
1437 | |||
1438 | osm_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1439 | osm_df.columns = columns |
||
1440 | osm_df = calc_per_unit(osm_df) |
||
1441 | |||
1442 | # industry sites |
||
1443 | |||
1444 | # industry sites: different applications |
||
1445 | |||
1446 | dsm = ind_sites_data_import() |
||
1447 | |||
1448 | print(" ") |
||
1449 | print("industry sites: paper") |
||
1450 | print(" ") |
||
1451 | |||
1452 | dsm_paper = gpd.GeoDataFrame( |
||
1453 | dsm[ |
||
1454 | dsm["application"].isin( |
||
1455 | [ |
||
1456 | "Graphic Paper", |
||
1457 | "Packing Paper and Board", |
||
1458 | "Hygiene Paper", |
||
1459 | "Technical/Special Paper and Board", |
||
1460 | ] |
||
1461 | ) |
||
1462 | ] |
||
1463 | ) |
||
1464 | |||
1465 | # calculate potentials of industrial sites with paper-applications |
||
1466 | # using parameters by Heitkoetter et al. |
||
1467 | vals = calculate_potentials( |
||
1468 | s_flex=S_FLEX_PAPER, |
||
1469 | s_util=S_UTIL_PAPER, |
||
1470 | s_inc=S_INC_PAPER, |
||
1471 | s_dec=S_DEC_PAPER, |
||
1472 | delta_t=DELTA_T_PAPER, |
||
1473 | dsm=dsm_paper, |
||
1474 | ) |
||
1475 | |||
1476 | columns = ["application", "industrial_sites_id"] + base_columns |
||
1477 | |||
1478 | paper_df = pd.concat([dsm_paper, *vals], axis=1, ignore_index=True) |
||
1479 | paper_df.columns = columns |
||
1480 | paper_df = calc_per_unit(paper_df) |
||
1481 | |||
1482 | print(" ") |
||
1483 | print("industry sites: recycled paper") |
||
1484 | print(" ") |
||
1485 | |||
1486 | # calculate potentials of industrial sites with recycled paper-applications |
||
1487 | # using parameters by Heitkoetter et. al. |
||
1488 | dsm_recycled_paper = gpd.GeoDataFrame( |
||
1489 | dsm[dsm["application"] == "Recycled Paper"] |
||
1490 | ) |
||
1491 | |||
1492 | vals = calculate_potentials( |
||
1493 | s_flex=S_FLEX_RECYCLED_PAPER, |
||
1494 | s_util=S_UTIL_RECYCLED_PAPER, |
||
1495 | s_inc=S_INC_RECYCLED_PAPER, |
||
1496 | s_dec=S_DEC_RECYCLED_PAPER, |
||
1497 | delta_t=DELTA_T_RECYCLED_PAPER, |
||
1498 | dsm=dsm_recycled_paper, |
||
1499 | ) |
||
1500 | |||
1501 | recycled_paper_df = pd.concat( |
||
1502 | [dsm_recycled_paper, *vals], axis=1, ignore_index=True |
||
1503 | ) |
||
1504 | recycled_paper_df.columns = columns |
||
1505 | recycled_paper_df = calc_per_unit(recycled_paper_df) |
||
1506 | |||
1507 | print(" ") |
||
1508 | print("industry sites: pulp") |
||
1509 | print(" ") |
||
1510 | |||
1511 | dsm_pulp = gpd.GeoDataFrame(dsm[dsm["application"] == "Mechanical Pulp"]) |
||
1512 | |||
1513 | # calculate potentials of industrial sites with pulp-applications |
||
1514 | # using parameters by Heitkoetter et al. |
||
1515 | vals = calculate_potentials( |
||
1516 | s_flex=S_FLEX_PULP, |
||
1517 | s_util=S_UTIL_PULP, |
||
1518 | s_inc=S_INC_PULP, |
||
1519 | s_dec=S_DEC_PULP, |
||
1520 | delta_t=DELTA_T_PULP, |
||
1521 | dsm=dsm_pulp, |
||
1522 | ) |
||
1523 | |||
1524 | pulp_df = pd.concat([dsm_pulp, *vals], axis=1, ignore_index=True) |
||
1525 | pulp_df.columns = columns |
||
1526 | pulp_df = calc_per_unit(pulp_df) |
||
1527 | |||
1528 | # industry sites: cement |
||
1529 | |||
1530 | print(" ") |
||
1531 | print("industry sites: cement") |
||
1532 | print(" ") |
||
1533 | |||
1534 | dsm_cement = gpd.GeoDataFrame(dsm[dsm["application"] == "Cement Mill"]) |
||
1535 | |||
1536 | # calculate potentials of industrial sites with cement-applications |
||
1537 | # using parameters by Heitkoetter et al. |
||
1538 | vals = calculate_potentials( |
||
1539 | s_flex=S_FLEX_CEMENT, |
||
1540 | s_util=S_UTIL_CEMENT, |
||
1541 | s_inc=S_INC_CEMENT, |
||
1542 | s_dec=S_DEC_CEMENT, |
||
1543 | delta_t=DELTA_T_CEMENT, |
||
1544 | dsm=dsm_cement, |
||
1545 | ) |
||
1546 | |||
1547 | cement_df = pd.concat([dsm_cement, *vals], axis=1, ignore_index=True) |
||
1548 | cement_df.columns = columns |
||
1549 | cement_df = calc_per_unit(cement_df) |
||
1550 | |||
1551 | ind_df = pd.concat( |
||
1552 | [paper_df, recycled_paper_df, pulp_df, cement_df], ignore_index=True |
||
1553 | ) |
||
1554 | |||
1555 | # industry sites: ventilation in WZ23 |
||
1556 | |||
1557 | print(" ") |
||
1558 | print("industry sites: ventilation in WZ23") |
||
1559 | print(" ") |
||
1560 | |||
1561 | dsm = ind_sites_vent_data_import_individual(ind_vent_share, wz=WZ) |
||
1562 | |||
1563 | # drop entries of Cement Mills whose DSM-potentials have already been |
||
1564 | # modelled |
||
1565 | cement = np.unique(dsm_cement["bus"].values) |
||
1566 | index_names = np.array(dsm[dsm["bus"].isin(cement)].index) |
||
1567 | dsm.drop(index_names, inplace=True) |
||
1568 | |||
1569 | # calculate potentials of ventialtion in industrial sites of WZ 23 |
||
1570 | # using parameters by Heitkoetter et al. |
||
1571 | vals = calculate_potentials( |
||
1572 | s_flex=S_FLEX_WZ, |
||
1573 | s_util=S_UTIL_WZ, |
||
1574 | s_inc=S_INC_WZ, |
||
1575 | s_dec=S_DEC_WZ, |
||
1576 | delta_t=DELTA_T_WZ, |
||
1577 | dsm=dsm, |
||
1578 | ) |
||
1579 | |||
1580 | columns = ["site_id"] + base_columns |
||
1581 | |||
1582 | ind_sites_df = pd.concat([dsm, *vals], axis=1, ignore_index=True) |
||
1583 | ind_sites_df.columns = columns |
||
1584 | ind_sites_df = calc_per_unit(ind_sites_df) |
||
1585 | |||
1586 | # create tables |
||
1587 | create_table( |
||
1588 | df=cts_df, table=EgonEtragoElectricityCtsDsmTimeseries, engine=CON |
||
1589 | ) |
||
1590 | create_table( |
||
1591 | df=osm_df, |
||
1592 | table=EgonOsmIndLoadCurvesIndividualDsmTimeseries, |
||
1593 | engine=CON, |
||
1594 | ) |
||
1595 | create_table( |
||
1596 | df=ind_df, |
||
1597 | table=EgonDemandregioSitesIndElectricityDsmTimeseries, |
||
1598 | engine=CON, |
||
1599 | ) |
||
1600 | create_table( |
||
1601 | df=ind_sites_df, |
||
1602 | table=EgonSitesIndLoadCurvesIndividualDsmTimeseries, |
||
1603 | engine=CON, |
||
1604 | ) |
||
1605 | |||
1606 | |||
1607 | def dsm_cts_ind_processing(): |
||
1608 | dsm_cts_ind() |
||
1609 | |||
1610 | dsm_cts_ind_individual() |
||
1611 |