|
1
|
|
|
import datetime |
|
2
|
|
|
import json |
|
3
|
|
|
import time |
|
4
|
|
|
|
|
5
|
|
|
from geoalchemy2 import Geometry |
|
6
|
|
|
from sqlalchemy import ( |
|
7
|
|
|
BigInteger, |
|
8
|
|
|
Column, |
|
9
|
|
|
Float, |
|
10
|
|
|
Integer, |
|
11
|
|
|
SmallInteger, |
|
12
|
|
|
String, |
|
13
|
|
|
func, |
|
14
|
|
|
select, |
|
15
|
|
|
) |
|
16
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
|
17
|
|
|
import geopandas as gpd |
|
18
|
|
|
|
|
19
|
|
|
from egon.data import db |
|
20
|
|
|
from egon.data.datasets import Dataset |
|
21
|
|
|
from egon.data.datasets.vg250 import vg250_metadata_resources_fields |
|
22
|
|
|
from egon.data.metadata import ( |
|
23
|
|
|
context, |
|
24
|
|
|
generate_resource_fields_from_sqla_model, |
|
25
|
|
|
license_ccby, |
|
26
|
|
|
licenses_datenlizenz_deutschland, |
|
27
|
|
|
meta_metadata, |
|
28
|
|
|
sources, |
|
29
|
|
|
) |
|
30
|
|
|
import egon.data.config |
|
31
|
|
|
|
|
32
|
|
|
Base = declarative_base() |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
|
class ZensusVg250(Dataset): |
|
36
|
|
|
def __init__(self, dependencies): |
|
37
|
|
|
super().__init__( |
|
38
|
|
|
name="ZensusVg250", |
|
39
|
|
|
version="0.0.3", |
|
40
|
|
|
dependencies=dependencies, |
|
41
|
|
|
tasks=( |
|
42
|
|
|
map_zensus_vg250, |
|
43
|
|
|
inside_germany, |
|
44
|
|
|
add_metadata_zensus_inside_ger, |
|
45
|
|
|
population_in_municipalities, |
|
46
|
|
|
add_metadata_vg250_gem_pop, |
|
47
|
|
|
add_metadata_vg250_zensus, |
|
48
|
|
|
), |
|
49
|
|
|
) |
|
50
|
|
|
|
|
51
|
|
|
|
|
52
|
|
View Code Duplication |
class Vg250Sta(Base): |
|
|
|
|
|
|
53
|
|
|
__tablename__ = "vg250_sta" |
|
54
|
|
|
__table_args__ = {"schema": "boundaries"} |
|
55
|
|
|
|
|
56
|
|
|
id = Column(BigInteger, primary_key=True, index=True) |
|
57
|
|
|
ade = Column(BigInteger) |
|
58
|
|
|
gf = Column(BigInteger) |
|
59
|
|
|
bsg = Column(BigInteger) |
|
60
|
|
|
ars = Column(String) |
|
61
|
|
|
ags = Column(String) |
|
62
|
|
|
sdv_ars = Column(String) |
|
63
|
|
|
gen = Column(String) |
|
64
|
|
|
bez = Column(String) |
|
65
|
|
|
ibz = Column(BigInteger) |
|
66
|
|
|
bem = Column(String) |
|
67
|
|
|
nbd = Column(String) |
|
68
|
|
|
sn_l = Column(String) |
|
69
|
|
|
sn_r = Column(String) |
|
70
|
|
|
sn_k = Column(String) |
|
71
|
|
|
sn_v1 = Column(String) |
|
72
|
|
|
sn_v2 = Column(String) |
|
73
|
|
|
sn_g = Column(String) |
|
74
|
|
|
fk_s3 = Column(String) |
|
75
|
|
|
nuts = Column(String) |
|
76
|
|
|
ars_0 = Column(String) |
|
77
|
|
|
ags_0 = Column(String) |
|
78
|
|
|
wsk = Column(String) |
|
79
|
|
|
debkg_id = Column(String) |
|
80
|
|
|
rs = Column(String) |
|
81
|
|
|
sdv_rs = Column(String) |
|
82
|
|
|
rs_0 = Column(String) |
|
83
|
|
|
geometry = Column(Geometry(srid=4326), index=True) |
|
84
|
|
|
|
|
85
|
|
|
|
|
86
|
|
View Code Duplication |
class Vg250Gem(Base): |
|
|
|
|
|
|
87
|
|
|
__tablename__ = "vg250_gem" |
|
88
|
|
|
__table_args__ = {"schema": "boundaries"} |
|
89
|
|
|
|
|
90
|
|
|
id = Column(BigInteger, primary_key=True, index=True) |
|
91
|
|
|
ade = Column(BigInteger) |
|
92
|
|
|
gf = Column(BigInteger) |
|
93
|
|
|
bsg = Column(BigInteger) |
|
94
|
|
|
ars = Column(String) |
|
95
|
|
|
ags = Column(String) |
|
96
|
|
|
sdv_ars = Column(String) |
|
97
|
|
|
gen = Column(String) |
|
98
|
|
|
bez = Column(String) |
|
99
|
|
|
ibz = Column(BigInteger) |
|
100
|
|
|
bem = Column(String) |
|
101
|
|
|
nbd = Column(String) |
|
102
|
|
|
sn_l = Column(String) |
|
103
|
|
|
sn_r = Column(String) |
|
104
|
|
|
sn_k = Column(String) |
|
105
|
|
|
sn_v1 = Column(String) |
|
106
|
|
|
sn_v2 = Column(String) |
|
107
|
|
|
sn_g = Column(String) |
|
108
|
|
|
fk_s3 = Column(String) |
|
109
|
|
|
nuts = Column(String) |
|
110
|
|
|
ars_0 = Column(String) |
|
111
|
|
|
ags_0 = Column(String) |
|
112
|
|
|
wsk = Column(String) |
|
113
|
|
|
debkg_id = Column(String) |
|
114
|
|
|
rs = Column(String) |
|
115
|
|
|
sdv_rs = Column(String) |
|
116
|
|
|
rs_0 = Column(String) |
|
117
|
|
|
geometry = Column(Geometry(srid=4326), index=True) |
|
118
|
|
|
|
|
119
|
|
|
|
|
120
|
|
|
class DestatisZensusPopulationPerHa(Base): |
|
121
|
|
|
__tablename__ = "destatis_zensus_population_per_ha" |
|
122
|
|
|
__table_args__ = {"schema": "society"} |
|
123
|
|
|
|
|
124
|
|
|
id = Column(Integer, primary_key=True, index=True) |
|
125
|
|
|
grid_id = Column(String(254), nullable=False) |
|
126
|
|
|
x_mp = Column(Integer) |
|
127
|
|
|
y_mp = Column(Integer) |
|
128
|
|
|
population = Column(SmallInteger) |
|
129
|
|
|
geom_point = Column(Geometry("POINT", 3035), index=True) |
|
130
|
|
|
geom = Column(Geometry("POLYGON", 3035), index=True) |
|
131
|
|
|
|
|
132
|
|
|
|
|
133
|
|
|
class DestatisZensusPopulationPerHaInsideGermany(Base): |
|
134
|
|
|
__tablename__ = "destatis_zensus_population_per_ha_inside_germany" |
|
135
|
|
|
__table_args__ = {"schema": "society"} |
|
136
|
|
|
|
|
137
|
|
|
id = Column(Integer, primary_key=True, index=True) |
|
138
|
|
|
grid_id = Column(String(254), nullable=False) |
|
139
|
|
|
population = Column(SmallInteger) |
|
140
|
|
|
geom_point = Column(Geometry("POINT", 3035), index=True) |
|
141
|
|
|
geom = Column(Geometry("POLYGON", 3035), index=True) |
|
142
|
|
|
|
|
143
|
|
|
|
|
144
|
|
|
class Vg250GemPopulation(Base): |
|
145
|
|
|
__tablename__ = "vg250_gem_population" |
|
146
|
|
|
__table_args__ = {"schema": "boundaries"} |
|
147
|
|
|
|
|
148
|
|
|
id = Column(Integer, primary_key=True, index=True) |
|
149
|
|
|
gen = Column(String) |
|
150
|
|
|
bez = Column(String) |
|
151
|
|
|
bem = Column(String) |
|
152
|
|
|
nuts = Column(String) |
|
153
|
|
|
ags_0 = Column(String) |
|
154
|
|
|
rs_0 = Column(String) |
|
155
|
|
|
area_ha = Column(Float) |
|
156
|
|
|
area_km2 = Column(Float) |
|
157
|
|
|
population_total = Column(Integer) |
|
158
|
|
|
cell_count = Column(Integer) |
|
159
|
|
|
population_density = Column(Integer) |
|
160
|
|
|
geom = Column(Geometry(srid=3035)) |
|
161
|
|
|
|
|
162
|
|
|
|
|
163
|
|
|
class MapZensusVg250(Base): |
|
164
|
|
|
__tablename__ = "egon_map_zensus_vg250" |
|
165
|
|
|
__table_args__ = {"schema": "boundaries"} |
|
166
|
|
|
|
|
167
|
|
|
zensus_population_id = Column(Integer, primary_key=True, index=True) |
|
168
|
|
|
zensus_geom = Column(Geometry("POINT", 3035)) |
|
169
|
|
|
vg250_municipality_id = Column(Integer) |
|
170
|
|
|
vg250_nuts3 = Column(String) |
|
171
|
|
|
|
|
172
|
|
|
|
|
173
|
|
|
def map_zensus_vg250(): |
|
174
|
|
|
"""Perform mapping between municipalities and zensus grid""" |
|
175
|
|
|
|
|
176
|
|
|
MapZensusVg250.__table__.drop(bind=db.engine(), checkfirst=True) |
|
177
|
|
|
MapZensusVg250.__table__.create(bind=db.engine(), checkfirst=True) |
|
178
|
|
|
|
|
179
|
|
|
# Get information from data configuration file |
|
180
|
|
|
cfg = egon.data.config.datasets()["map_zensus_vg250"] |
|
181
|
|
|
|
|
182
|
|
|
local_engine = db.engine() |
|
183
|
|
|
|
|
184
|
|
|
db.execute_sql( |
|
185
|
|
|
f"""DELETE FROM |
|
186
|
|
|
{cfg['targets']['map']['schema']}.{cfg['targets']['map']['table']}""" |
|
187
|
|
|
) |
|
188
|
|
|
|
|
189
|
|
|
gdf = db.select_geodataframe( |
|
190
|
|
|
f"""SELECT * FROM |
|
191
|
|
|
{cfg['sources']['zensus_population']['schema']}. |
|
192
|
|
|
{cfg['sources']['zensus_population']['table']}""", |
|
193
|
|
|
geom_col="geom_point", |
|
194
|
|
|
) |
|
195
|
|
|
|
|
196
|
|
|
gdf_boundaries = db.select_geodataframe( |
|
197
|
|
|
f"""SELECT * FROM {cfg['sources']['vg250_municipalities']['schema']}. |
|
198
|
|
|
{cfg['sources']['vg250_municipalities']['table']}""", |
|
199
|
|
|
geom_col="geometry", |
|
200
|
|
|
epsg=3035, |
|
201
|
|
|
) |
|
202
|
|
|
|
|
203
|
|
|
# Join vg250 with zensus cells |
|
204
|
|
|
join = gpd.sjoin(gdf, gdf_boundaries, how="inner", op="intersects") |
|
205
|
|
|
|
|
206
|
|
|
# Deal with cells that don't interect with boundaries (e.g. at borders) |
|
207
|
|
|
missing_cells = gdf[(~gdf.id.isin(join.id_left)) & (gdf.population > 0)] |
|
208
|
|
|
|
|
209
|
|
|
# start with buffer |
|
210
|
|
|
buffer = 0 |
|
211
|
|
|
|
|
212
|
|
|
# increase buffer until every zensus cell is matched to a nuts3 region |
|
213
|
|
|
while len(missing_cells) > 0: |
|
214
|
|
|
buffer += 100 |
|
215
|
|
|
boundaries_buffer = gdf_boundaries.copy() |
|
216
|
|
|
boundaries_buffer.geometry = boundaries_buffer.geometry.buffer(buffer) |
|
217
|
|
|
join_missing = gpd.sjoin( |
|
218
|
|
|
missing_cells, boundaries_buffer, how="inner", op="intersects" |
|
219
|
|
|
) |
|
220
|
|
|
join = join.append(join_missing) |
|
221
|
|
|
missing_cells = gdf[ |
|
222
|
|
|
(~gdf.id.isin(join.id_left)) & (gdf.population > 0) |
|
223
|
|
|
] |
|
224
|
|
|
print(f"Maximal buffer to match zensus points to vg250: {buffer}m") |
|
225
|
|
|
|
|
226
|
|
|
# drop duplicates |
|
227
|
|
|
join = join.drop_duplicates(subset=["id_left"]) |
|
228
|
|
|
|
|
229
|
|
|
# Insert results to database |
|
230
|
|
|
join.rename( |
|
231
|
|
|
{ |
|
232
|
|
|
"id_left": "zensus_population_id", |
|
233
|
|
|
"geom_point": "zensus_geom", |
|
234
|
|
|
"nuts": "vg250_nuts3", |
|
235
|
|
|
"id_right": "vg250_municipality_id", |
|
236
|
|
|
}, |
|
237
|
|
|
axis=1, |
|
238
|
|
|
)[ |
|
239
|
|
|
[ |
|
240
|
|
|
"zensus_population_id", |
|
241
|
|
|
"zensus_geom", |
|
242
|
|
|
"vg250_municipality_id", |
|
243
|
|
|
"vg250_nuts3", |
|
244
|
|
|
] |
|
245
|
|
|
].set_geometry( |
|
246
|
|
|
"zensus_geom" |
|
247
|
|
|
).to_postgis( |
|
248
|
|
|
cfg["targets"]["map"]["table"], |
|
249
|
|
|
schema=cfg["targets"]["map"]["schema"], |
|
250
|
|
|
con=local_engine, |
|
251
|
|
|
if_exists="replace", |
|
252
|
|
|
) |
|
253
|
|
|
|
|
254
|
|
|
|
|
255
|
|
|
def inside_germany(): |
|
256
|
|
|
""" |
|
257
|
|
|
Filter zensus data by data inside Germany and population > 0 |
|
258
|
|
|
""" |
|
259
|
|
|
|
|
260
|
|
|
# Get database engine |
|
261
|
|
|
engine_local_db = db.engine() |
|
262
|
|
|
|
|
263
|
|
|
# Create new table |
|
264
|
|
|
db.execute_sql( |
|
265
|
|
|
f""" |
|
266
|
|
|
DROP TABLE IF EXISTS {DestatisZensusPopulationPerHaInsideGermany.__table__.schema}.{DestatisZensusPopulationPerHaInsideGermany.__table__.name} CASCADE; |
|
267
|
|
|
""" |
|
268
|
|
|
) |
|
269
|
|
|
DestatisZensusPopulationPerHaInsideGermany.__table__.create( |
|
270
|
|
|
bind=engine_local_db, checkfirst=True |
|
271
|
|
|
) |
|
272
|
|
|
|
|
273
|
|
|
with db.session_scope() as s: |
|
274
|
|
|
|
|
275
|
|
|
# Query zensus cells in German boundaries from vg250 |
|
276
|
|
|
cells_in_germany = s.query(MapZensusVg250.zensus_population_id) |
|
277
|
|
|
|
|
278
|
|
|
# Query relevant data from zensus population table |
|
279
|
|
|
q = ( |
|
280
|
|
|
s.query( |
|
281
|
|
|
DestatisZensusPopulationPerHa.id, |
|
282
|
|
|
DestatisZensusPopulationPerHa.grid_id, |
|
283
|
|
|
DestatisZensusPopulationPerHa.population, |
|
284
|
|
|
DestatisZensusPopulationPerHa.geom_point, |
|
285
|
|
|
DestatisZensusPopulationPerHa.geom, |
|
286
|
|
|
) |
|
287
|
|
|
.filter(DestatisZensusPopulationPerHa.population > 0) |
|
288
|
|
|
.filter(DestatisZensusPopulationPerHa.id.in_(cells_in_germany)) |
|
289
|
|
|
) |
|
290
|
|
|
|
|
291
|
|
|
# Insert above queried data into new table |
|
292
|
|
|
insert = DestatisZensusPopulationPerHaInsideGermany.__table__.insert().from_select( |
|
293
|
|
|
( |
|
294
|
|
|
DestatisZensusPopulationPerHaInsideGermany.id, |
|
295
|
|
|
DestatisZensusPopulationPerHaInsideGermany.grid_id, |
|
296
|
|
|
DestatisZensusPopulationPerHaInsideGermany.population, |
|
297
|
|
|
DestatisZensusPopulationPerHaInsideGermany.geom_point, |
|
298
|
|
|
DestatisZensusPopulationPerHaInsideGermany.geom, |
|
299
|
|
|
), |
|
300
|
|
|
q, |
|
301
|
|
|
) |
|
302
|
|
|
|
|
303
|
|
|
# Execute and commit (trigger transactions in database) |
|
304
|
|
|
s.execute(insert) |
|
305
|
|
|
s.commit() |
|
306
|
|
|
|
|
307
|
|
|
|
|
308
|
|
|
def population_in_municipalities(): |
|
309
|
|
|
""" |
|
310
|
|
|
Create table of municipalities with information about population |
|
311
|
|
|
""" |
|
312
|
|
|
|
|
313
|
|
|
engine_local_db = db.engine() |
|
314
|
|
|
Vg250GemPopulation.__table__.drop(bind=engine_local_db, checkfirst=True) |
|
315
|
|
|
Vg250GemPopulation.__table__.create(bind=engine_local_db, checkfirst=True) |
|
316
|
|
|
|
|
317
|
|
|
srid = 3035 |
|
318
|
|
|
|
|
319
|
|
|
gem = db.select_geodataframe( |
|
320
|
|
|
"SELECT * FROM boundaries.vg250_gem", |
|
321
|
|
|
geom_col="geometry", |
|
322
|
|
|
epsg=srid, |
|
323
|
|
|
index_col="id", |
|
324
|
|
|
) |
|
325
|
|
|
|
|
326
|
|
|
gem["area_ha"] = gem.area / 10000 |
|
327
|
|
|
|
|
328
|
|
|
gem["area_km2"] = gem.area / 1000000 |
|
329
|
|
|
|
|
330
|
|
|
population = db.select_dataframe( |
|
331
|
|
|
"""SELECT id, population, vg250_municipality_id |
|
332
|
|
|
FROM society.destatis_zensus_population_per_ha |
|
333
|
|
|
INNER JOIN boundaries.egon_map_zensus_vg250 ON ( |
|
334
|
|
|
society.destatis_zensus_population_per_ha.id = |
|
335
|
|
|
boundaries.egon_map_zensus_vg250.zensus_population_id) |
|
336
|
|
|
WHERE population > 0""" |
|
337
|
|
|
) |
|
338
|
|
|
|
|
339
|
|
|
gem["population_total"] = ( |
|
340
|
|
|
population.groupby("vg250_municipality_id").population.sum().fillna(0) |
|
341
|
|
|
) |
|
342
|
|
|
|
|
343
|
|
|
gem["cell_count"] = population.groupby( |
|
344
|
|
|
"vg250_municipality_id" |
|
345
|
|
|
).population.count() |
|
346
|
|
|
|
|
347
|
|
|
gem["population_density"] = gem["population_total"] / gem["area_km2"] |
|
348
|
|
|
|
|
349
|
|
|
gem.reset_index().to_postgis( |
|
350
|
|
|
"vg250_gem_population", |
|
351
|
|
|
schema="boundaries", |
|
352
|
|
|
con=db.engine(), |
|
353
|
|
|
if_exists="replace", |
|
354
|
|
|
) |
|
355
|
|
|
|
|
356
|
|
|
|
|
357
|
|
|
def add_metadata_zensus_inside_ger(): |
|
358
|
|
|
""" |
|
359
|
|
|
Create metadata JSON for DestatisZensusPopulationPerHaInsideGermany |
|
360
|
|
|
|
|
361
|
|
|
Creates a metdadata JSON string and writes it to the database table comment |
|
362
|
|
|
""" |
|
363
|
|
|
schema_table = ".".join( |
|
364
|
|
|
[ |
|
365
|
|
|
DestatisZensusPopulationPerHaInsideGermany.__table__.schema, |
|
366
|
|
|
DestatisZensusPopulationPerHaInsideGermany.__table__.name, |
|
367
|
|
|
] |
|
368
|
|
|
) |
|
369
|
|
|
|
|
370
|
|
|
metadata = { |
|
371
|
|
|
"name": schema_table, |
|
372
|
|
|
"title": "DESTATIS - Zensus 2011 - Population per hectar", |
|
373
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
|
374
|
|
|
"description": ( |
|
375
|
|
|
"National census in Germany in 2011 with the bounds on Germanys " |
|
376
|
|
|
"borders." |
|
377
|
|
|
), |
|
378
|
|
|
"language": ["en-EN", "de-DE"], |
|
379
|
|
|
"publicationDate": datetime.date.today().isoformat(), |
|
380
|
|
|
"context": context(), |
|
381
|
|
|
"spatial": { |
|
382
|
|
|
"location": None, |
|
383
|
|
|
"extent": "Germany", |
|
384
|
|
|
"resolution": "1 ha", |
|
385
|
|
|
}, |
|
386
|
|
|
"temporal": { |
|
387
|
|
|
"reference_date": "2011-12-31", |
|
388
|
|
|
"timeseries": { |
|
389
|
|
|
"start": None, |
|
390
|
|
|
"end": None, |
|
391
|
|
|
"resolution": None, |
|
392
|
|
|
"alignment": None, |
|
393
|
|
|
"aggregationType": None, |
|
394
|
|
|
}, |
|
395
|
|
|
}, |
|
396
|
|
|
"sources": [ |
|
397
|
|
|
{ |
|
398
|
|
|
"title": "Statistisches Bundesamt (Destatis) - Ergebnisse des " |
|
399
|
|
|
"Zensus 2011 zum Download", |
|
400
|
|
|
"description": ( |
|
401
|
|
|
"Als Download bieten wir Ihnen auf dieser Seite " |
|
402
|
|
|
"zusätzlich zur Zensusdatenbank CSV- und " |
|
403
|
|
|
"teilweise Excel-Tabellen mit umfassenden " |
|
404
|
|
|
"Personen-, Haushalts- und Familien- sowie " |
|
405
|
|
|
"Gebäude- und Wohnungsmerkmalen. Die " |
|
406
|
|
|
"Ergebnisse liegen auf Bundes-, Länder-, Kreis- " |
|
407
|
|
|
"und Gemeindeebene vor. Außerdem sind einzelne " |
|
408
|
|
|
"Ergebnisse für Gitterzellen verfügbar." |
|
409
|
|
|
), |
|
410
|
|
|
"path": "https://www.zensus2011.de/DE/Home/Aktuelles/" |
|
411
|
|
|
"DemografischeGrunddaten.html", |
|
412
|
|
|
"licenses": [ |
|
413
|
|
|
licenses_datenlizenz_deutschland( |
|
414
|
|
|
attribution="© Statistische Ämter des Bundes und der " |
|
415
|
|
|
"Länder 2014" |
|
416
|
|
|
) |
|
417
|
|
|
], |
|
418
|
|
|
}, |
|
419
|
|
|
{ |
|
420
|
|
|
"title": "Dokumentation - Zensus 2011 - Methoden und Verfahren", |
|
421
|
|
|
"description": ( |
|
422
|
|
|
"Diese Publikation beschreibt ausführlich die " |
|
423
|
|
|
"Methoden und Verfahren des registergestützten " |
|
424
|
|
|
"Zensus 2011; von der Datengewinnung und " |
|
425
|
|
|
"-aufbereitung bis hin zur Ergebniserstellung" |
|
426
|
|
|
" und Geheimhaltung. Der vorliegende Band wurde " |
|
427
|
|
|
"von den Statistischen Ämtern des Bundes und " |
|
428
|
|
|
"der Länder im Juni 2015 veröffentlicht." |
|
429
|
|
|
), |
|
430
|
|
|
"path": "https://www.destatis.de/DE/Publikationen/Thematisch/Be" |
|
431
|
|
|
"voelkerung/Zensus/ZensusBuLaMethodenVerfahren51211051" |
|
432
|
|
|
"19004.pdf?__blob=publicationFile", |
|
433
|
|
|
"licenses": [ |
|
434
|
|
|
licenses_datenlizenz_deutschland( |
|
435
|
|
|
attribution="© Statistisches Bundesamt, Wiesbaden " |
|
436
|
|
|
"2015 (im Auftrag der " |
|
437
|
|
|
"Herausgebergemeinschaft)" |
|
438
|
|
|
) |
|
439
|
|
|
], |
|
440
|
|
|
}, |
|
441
|
|
|
], |
|
442
|
|
|
"licenses": [ |
|
443
|
|
|
licenses_datenlizenz_deutschland( |
|
444
|
|
|
attribution="© Statistische Ämter des Bundes und der Länder " |
|
445
|
|
|
"2014; © Statistisches Bundesamt, Wiesbaden 2015 " |
|
446
|
|
|
"(Daten verändert)" |
|
447
|
|
|
) |
|
448
|
|
|
], |
|
449
|
|
|
"contributors": [ |
|
450
|
|
|
{ |
|
451
|
|
|
"title": "Guido Pleßmann", |
|
452
|
|
|
"email": "http://github.com/gplssm", |
|
453
|
|
|
"date": time.strftime("%Y-%m-%d"), |
|
454
|
|
|
"object": None, |
|
455
|
|
|
"comment": "Imported data", |
|
456
|
|
|
}, |
|
457
|
|
|
{ |
|
458
|
|
|
"title": "Jonathan Amme", |
|
459
|
|
|
"email": "http://github.com/nesnoj", |
|
460
|
|
|
"date": time.strftime("%Y-%m-%d"), |
|
461
|
|
|
"object": None, |
|
462
|
|
|
"comment": "Metadata extended", |
|
463
|
|
|
}, |
|
464
|
|
|
], |
|
465
|
|
|
"resources": [ |
|
466
|
|
|
{ |
|
467
|
|
|
"profile": "tabular-data-resource", |
|
468
|
|
|
"name": schema_table, |
|
469
|
|
|
"path": None, |
|
470
|
|
|
"format": "PostgreSQL", |
|
471
|
|
|
"encoding": "UTF-8", |
|
472
|
|
|
"schema": { |
|
473
|
|
|
"fields": [ |
|
474
|
|
|
{ |
|
475
|
|
|
"name": "id", |
|
476
|
|
|
"description": "Unique identifier", |
|
477
|
|
|
"type": "none", |
|
478
|
|
|
"unit": "integer", |
|
479
|
|
|
}, |
|
480
|
|
|
{ |
|
481
|
|
|
"name": "grid_id", |
|
482
|
|
|
"description": "Grid number of source", |
|
483
|
|
|
"type": "string", |
|
484
|
|
|
"unit": "none", |
|
485
|
|
|
}, |
|
486
|
|
|
{ |
|
487
|
|
|
"name": "population", |
|
488
|
|
|
"description": "Number of registred residents", |
|
489
|
|
|
"type": "integer", |
|
490
|
|
|
"unit": "resident", |
|
491
|
|
|
}, |
|
492
|
|
|
{ |
|
493
|
|
|
"name": "geom_point", |
|
494
|
|
|
"description": "Geometry centroid", |
|
495
|
|
|
"type": "Geometry", |
|
496
|
|
|
"unit": "none", |
|
497
|
|
|
}, |
|
498
|
|
|
{ |
|
499
|
|
|
"name": "geom", |
|
500
|
|
|
"description": "Geometry", |
|
501
|
|
|
"type": "Geometry", |
|
502
|
|
|
"unit": "", |
|
503
|
|
|
}, |
|
504
|
|
|
], |
|
505
|
|
|
"primaryKey": ["id"], |
|
506
|
|
|
"foreignKeys": [], |
|
507
|
|
|
}, |
|
508
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."}, |
|
509
|
|
|
} |
|
510
|
|
|
], |
|
511
|
|
|
"metaMetadata": meta_metadata(), |
|
512
|
|
|
} |
|
513
|
|
|
|
|
514
|
|
|
meta_json = "'" + json.dumps(metadata) + "'" |
|
515
|
|
|
|
|
516
|
|
|
db.submit_comment( |
|
517
|
|
|
meta_json, |
|
518
|
|
|
DestatisZensusPopulationPerHaInsideGermany.__table__.schema, |
|
519
|
|
|
DestatisZensusPopulationPerHaInsideGermany.__table__.name, |
|
520
|
|
|
) |
|
521
|
|
|
|
|
522
|
|
|
|
|
523
|
|
|
def add_metadata_vg250_gem_pop(): |
|
524
|
|
|
""" |
|
525
|
|
|
Create metadata JSON for Vg250GemPopulation |
|
526
|
|
|
|
|
527
|
|
|
Creates a metdadata JSON string and writes it to the database table comment |
|
528
|
|
|
""" |
|
529
|
|
|
vg250_config = egon.data.config.datasets()["vg250"] |
|
530
|
|
|
schema_table = ".".join( |
|
531
|
|
|
[ |
|
532
|
|
|
Vg250GemPopulation.__table__.schema, |
|
533
|
|
|
Vg250GemPopulation.__table__.name, |
|
534
|
|
|
] |
|
535
|
|
|
) |
|
536
|
|
|
|
|
537
|
|
|
licenses = [ |
|
538
|
|
|
licenses_datenlizenz_deutschland( |
|
539
|
|
|
attribution="© Bundesamt für Kartographie und Geodäsie " |
|
540
|
|
|
"2020 (Daten verändert)" |
|
541
|
|
|
) |
|
542
|
|
|
] |
|
543
|
|
|
|
|
544
|
|
|
vg250_source = { |
|
545
|
|
|
"title": "Verwaltungsgebiete 1:250 000 (Ebenen)", |
|
546
|
|
|
"description": "Der Datenbestand umfasst sämtliche Verwaltungseinheiten der " |
|
547
|
|
|
"hierarchischen Verwaltungsebenen vom Staat bis zu den Gemeinden " |
|
548
|
|
|
"mit ihren Grenzen, statistischen Schlüsselzahlen, Namen der " |
|
549
|
|
|
"Verwaltungseinheit sowie die spezifische Bezeichnung der " |
|
550
|
|
|
"Verwaltungsebene des jeweiligen Landes.", |
|
551
|
|
|
"path": vg250_config["original_data"]["source"]["url"], |
|
552
|
|
|
"licenses": licenses, |
|
553
|
|
|
} |
|
554
|
|
|
|
|
555
|
|
|
resources_fields = vg250_metadata_resources_fields() |
|
556
|
|
|
resources_fields.extend( |
|
557
|
|
|
[ |
|
558
|
|
|
{ |
|
559
|
|
|
"name": "area_ha", |
|
560
|
|
|
"description": "Area in ha", |
|
561
|
|
|
"type": "float", |
|
562
|
|
|
"unit": "ha", |
|
563
|
|
|
}, |
|
564
|
|
|
{ |
|
565
|
|
|
"name": "area_km2", |
|
566
|
|
|
"description": "Area in km2", |
|
567
|
|
|
"type": "float", |
|
568
|
|
|
"unit": "km2", |
|
569
|
|
|
}, |
|
570
|
|
|
{ |
|
571
|
|
|
"name": "population_total", |
|
572
|
|
|
"description": "Number of inhabitants", |
|
573
|
|
|
"type": "integer", |
|
574
|
|
|
"unit": "none", |
|
575
|
|
|
}, |
|
576
|
|
|
{ |
|
577
|
|
|
"name": "cell_count", |
|
578
|
|
|
"description": "Number of Zensus cells", |
|
579
|
|
|
"type": "integer", |
|
580
|
|
|
"unit": "none", |
|
581
|
|
|
}, |
|
582
|
|
|
{ |
|
583
|
|
|
"name": "population_density", |
|
584
|
|
|
"description": "Number of inhabitants per km2", |
|
585
|
|
|
"type": "float", |
|
586
|
|
|
"unit": "inhabitants/km²", |
|
587
|
|
|
}, |
|
588
|
|
|
] |
|
589
|
|
|
) |
|
590
|
|
|
|
|
591
|
|
|
metadata = { |
|
592
|
|
|
"name": schema_table, |
|
593
|
|
|
"title": ( |
|
594
|
|
|
"Municipalities (BKG Verwaltungsgebiete 250) and population " |
|
595
|
|
|
"(Destatis Zensus)" |
|
596
|
|
|
), |
|
597
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
|
598
|
|
|
"description": "Municipality data enriched by population data", |
|
599
|
|
|
"language": ["de-DE"], |
|
600
|
|
|
"publicationDate": datetime.date.today().isoformat(), |
|
601
|
|
|
"context": context(), |
|
602
|
|
|
"spatial": { |
|
603
|
|
|
"location": None, |
|
604
|
|
|
"extent": "Germany", |
|
605
|
|
|
"resolution": "1:250000", |
|
606
|
|
|
}, |
|
607
|
|
|
"temporal": { |
|
608
|
|
|
"referenceDate": "2020-01-01", |
|
609
|
|
|
"timeseries": { |
|
610
|
|
|
"start": None, |
|
611
|
|
|
"end": None, |
|
612
|
|
|
"resolution": None, |
|
613
|
|
|
"alignment": None, |
|
614
|
|
|
"aggregationType": None, |
|
615
|
|
|
}, |
|
616
|
|
|
}, |
|
617
|
|
|
"sources": [vg250_source], |
|
618
|
|
|
"licenses": licenses, |
|
619
|
|
|
"contributors": [ |
|
620
|
|
|
{ |
|
621
|
|
|
"title": "Guido Pleßmann", |
|
622
|
|
|
"email": "http://github.com/gplssm", |
|
623
|
|
|
"date": time.strftime("%Y-%m-%d"), |
|
624
|
|
|
"object": None, |
|
625
|
|
|
"comment": "Imported data", |
|
626
|
|
|
}, |
|
627
|
|
|
{ |
|
628
|
|
|
"title": "Jonathan Amme", |
|
629
|
|
|
"email": "http://github.com/nesnoj", |
|
630
|
|
|
"date": time.strftime("%Y-%m-%d"), |
|
631
|
|
|
"object": None, |
|
632
|
|
|
"comment": "Metadata extended", |
|
633
|
|
|
}, |
|
634
|
|
|
], |
|
635
|
|
|
"resources": [ |
|
636
|
|
|
{ |
|
637
|
|
|
"profile": "tabular-data-resource", |
|
638
|
|
|
"name": schema_table, |
|
639
|
|
|
"path": None, |
|
640
|
|
|
"format": "PostgreSQL", |
|
641
|
|
|
"encoding": "UTF-8", |
|
642
|
|
|
"schema": { |
|
643
|
|
|
"fields": resources_fields, |
|
644
|
|
|
"primaryKey": ["id"], |
|
645
|
|
|
"foreignKeys": [], |
|
646
|
|
|
}, |
|
647
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."}, |
|
648
|
|
|
} |
|
649
|
|
|
], |
|
650
|
|
|
"metaMetadata": meta_metadata(), |
|
651
|
|
|
} |
|
652
|
|
|
|
|
653
|
|
|
meta_json = "'" + json.dumps(metadata) + "'" |
|
654
|
|
|
|
|
655
|
|
|
db.submit_comment( |
|
656
|
|
|
meta_json, |
|
657
|
|
|
Vg250GemPopulation.__table__.schema, |
|
658
|
|
|
Vg250GemPopulation.__table__.name, |
|
659
|
|
|
) |
|
660
|
|
|
|
|
661
|
|
|
|
|
662
|
|
View Code Duplication |
def add_metadata_vg250_zensus(): |
|
|
|
|
|
|
663
|
|
|
# Import column names and datatypes |
|
664
|
|
|
fields = [ |
|
665
|
|
|
{ |
|
666
|
|
|
"name": "zensus_population_id", |
|
667
|
|
|
"description": "Index of zensus population cell", |
|
668
|
|
|
"type": "integer", |
|
669
|
|
|
"unit": "none", |
|
670
|
|
|
}, |
|
671
|
|
|
{ |
|
672
|
|
|
"name": "zensus_geom", |
|
673
|
|
|
"description": "Gemetry of zensus cell", |
|
674
|
|
|
"type": "geometry(point,3035)", |
|
675
|
|
|
"unit": "none", |
|
676
|
|
|
}, |
|
677
|
|
|
{ |
|
678
|
|
|
"name": "vg250_municipality_id", |
|
679
|
|
|
"description": "Index of municipality", |
|
680
|
|
|
"type": "integer", |
|
681
|
|
|
"unit": "none", |
|
682
|
|
|
}, |
|
683
|
|
|
{ |
|
684
|
|
|
"name": "vg250_nuts3", |
|
685
|
|
|
"description": "NUTS3 region-code", |
|
686
|
|
|
"type": "varchar", |
|
687
|
|
|
"unit": "none", |
|
688
|
|
|
}, |
|
689
|
|
|
] |
|
690
|
|
|
|
|
691
|
|
|
meta = { |
|
692
|
|
|
"name": "boundaries.egon_map_zensus_vg250", |
|
693
|
|
|
"title": "eGon feedin timeseries for RES", |
|
694
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
|
695
|
|
|
"description": "Weather-dependent feedin timeseries for RES", |
|
696
|
|
|
"language": ["EN"], |
|
697
|
|
|
"publicationDate": datetime.date.today().isoformat(), |
|
698
|
|
|
"context": context(), |
|
699
|
|
|
"spatial": { |
|
700
|
|
|
"location": None, |
|
701
|
|
|
"extent": "Germany", |
|
702
|
|
|
"resolution": "100mx100m", |
|
703
|
|
|
}, |
|
704
|
|
|
"sources": [ |
|
705
|
|
|
sources()["zensus"], |
|
706
|
|
|
sources()["vg250"], |
|
707
|
|
|
sources()["egon-data"], |
|
708
|
|
|
], |
|
709
|
|
|
"licenses": [ |
|
710
|
|
|
license_ccby( |
|
711
|
|
|
"© Bundesamt für Kartographie und Geodäsie 2020 (Daten verändert); " |
|
712
|
|
|
"© Statistische Ämter des Bundes und der Länder 2014 " |
|
713
|
|
|
"© Jonathan Amme, Clara Büttner, Ilka Cußmann, Julian Endres, Carlos Epia, Stephan Günther, Ulf Müller, Amélia Nadal, Guido Pleßmann, Francesco Witte", |
|
714
|
|
|
) |
|
715
|
|
|
], |
|
716
|
|
|
"contributors": [ |
|
717
|
|
|
{ |
|
718
|
|
|
"title": "Clara Büttner", |
|
719
|
|
|
"email": "http://github.com/ClaraBuettner", |
|
720
|
|
|
"date": time.strftime("%Y-%m-%d"), |
|
721
|
|
|
"object": None, |
|
722
|
|
|
"comment": "Added metadata", |
|
723
|
|
|
}, |
|
724
|
|
|
], |
|
725
|
|
|
"resources": [ |
|
726
|
|
|
{ |
|
727
|
|
|
"profile": "tabular-data-resource", |
|
728
|
|
|
"name": "boundaries.egon_map_zensus_vg250", |
|
729
|
|
|
"path": None, |
|
730
|
|
|
"format": "PostgreSQL", |
|
731
|
|
|
"encoding": "UTF-8", |
|
732
|
|
|
"schema": { |
|
733
|
|
|
"fields": fields, |
|
734
|
|
|
"primaryKey": ["index"], |
|
735
|
|
|
"foreignKeys": [], |
|
736
|
|
|
}, |
|
737
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."}, |
|
738
|
|
|
} |
|
739
|
|
|
], |
|
740
|
|
|
"metaMetadata": meta_metadata(), |
|
741
|
|
|
} |
|
742
|
|
|
|
|
743
|
|
|
# Create json dump |
|
744
|
|
|
meta_json = "'" + json.dumps(meta) + "'" |
|
745
|
|
|
|
|
746
|
|
|
# Add metadata as a comment to the table |
|
747
|
|
|
db.submit_comment( |
|
748
|
|
|
meta_json, |
|
749
|
|
|
MapZensusVg250.__table__.schema, |
|
750
|
|
|
MapZensusVg250.__table__.name, |
|
751
|
|
|
) |
|
752
|
|
|
|