|
1
|
|
|
""" |
|
2
|
|
|
Sanity check validation rules for heat demand. |
|
3
|
|
|
|
|
4
|
|
|
Validates that heat demand timeseries match expected values from peta_heat. |
|
5
|
|
|
""" |
|
6
|
|
|
|
|
7
|
|
|
from egon_validation.rules.base import DataFrameRule, RuleResult, Severity |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
class HeatDemandValidation(DataFrameRule): |
|
11
|
|
|
""" |
|
12
|
|
|
Validate annual heat demand against peta_heat reference values. |
|
13
|
|
|
|
|
14
|
|
|
Compares the sum of rural_heat and central_heat load timeseries |
|
15
|
|
|
against the demand from egon_peta_heat table to ensure demand is |
|
16
|
|
|
correctly distributed. |
|
17
|
|
|
""" |
|
18
|
|
|
|
|
19
|
|
|
def __init__( |
|
20
|
|
|
self, |
|
21
|
|
|
table: str, |
|
22
|
|
|
rule_id: str, |
|
23
|
|
|
scenario: str = "eGon2035", |
|
24
|
|
|
rtol: float = 0.02, |
|
25
|
|
|
**kwargs |
|
26
|
|
|
): |
|
27
|
|
|
""" |
|
28
|
|
|
Parameters |
|
29
|
|
|
---------- |
|
30
|
|
|
table : str |
|
31
|
|
|
Target table (grid.egon_etrago_load) |
|
32
|
|
|
rule_id : str |
|
33
|
|
|
Unique identifier for this validation rule |
|
34
|
|
|
scenario : str |
|
35
|
|
|
Scenario name ("eGon2035" or "eGon100RE") |
|
36
|
|
|
rtol : float |
|
37
|
|
|
Relative tolerance for deviation (default: 0.02 = 2%) |
|
38
|
|
|
""" |
|
39
|
|
|
super().__init__( |
|
40
|
|
|
rule_id=rule_id, |
|
41
|
|
|
table=table, |
|
42
|
|
|
scenario=scenario, |
|
43
|
|
|
rtol=rtol, |
|
44
|
|
|
**kwargs |
|
45
|
|
|
) |
|
46
|
|
|
self.kind = "sanity" |
|
47
|
|
|
self.scenario = scenario |
|
48
|
|
|
self.rtol = rtol |
|
49
|
|
|
|
|
50
|
|
|
def get_query(self, ctx): |
|
51
|
|
|
""" |
|
52
|
|
|
Query to compare heat demand output vs input. |
|
53
|
|
|
|
|
54
|
|
|
Returns a query that: |
|
55
|
|
|
1. Sums rural_heat + central_heat timeseries from etrago_load |
|
56
|
|
|
2. Sums demand from egon_peta_heat |
|
57
|
|
|
3. Returns both values for comparison |
|
58
|
|
|
""" |
|
59
|
|
|
return f""" |
|
60
|
|
|
WITH output_demand AS ( |
|
61
|
|
|
SELECT |
|
62
|
|
|
SUM((SELECT SUM(p) FROM UNNEST(b.p_set) p)) / 1000000 as demand_twh |
|
63
|
|
|
FROM grid.egon_etrago_load a |
|
64
|
|
|
JOIN grid.egon_etrago_load_timeseries b ON (a.load_id = b.load_id) |
|
65
|
|
|
JOIN grid.egon_etrago_bus c ON (a.bus = c.bus_id) |
|
66
|
|
|
WHERE b.scn_name = '{self.scenario}' |
|
67
|
|
|
AND a.scn_name = '{self.scenario}' |
|
68
|
|
|
AND c.scn_name = '{self.scenario}' |
|
69
|
|
|
AND c.country = 'DE' |
|
70
|
|
|
AND a.carrier IN ('rural_heat', 'central_heat') |
|
71
|
|
|
), |
|
72
|
|
|
input_demand AS ( |
|
73
|
|
|
SELECT |
|
74
|
|
|
SUM(demand / 1000000) as demand_twh |
|
75
|
|
|
FROM demand.egon_peta_heat |
|
76
|
|
|
WHERE scenario = '{self.scenario}' |
|
77
|
|
|
) |
|
78
|
|
|
SELECT |
|
79
|
|
|
o.demand_twh as output_demand_twh, |
|
80
|
|
|
i.demand_twh as input_demand_twh |
|
81
|
|
|
FROM output_demand o |
|
82
|
|
|
CROSS JOIN input_demand i |
|
83
|
|
|
""" |
|
84
|
|
|
|
|
85
|
|
|
def evaluate_df(self, df, ctx): |
|
86
|
|
|
""" |
|
87
|
|
|
Evaluate heat demand comparison. |
|
88
|
|
|
|
|
89
|
|
|
Parameters |
|
90
|
|
|
---------- |
|
91
|
|
|
df : pd.DataFrame |
|
92
|
|
|
DataFrame with output_demand_twh and input_demand_twh columns |
|
93
|
|
|
ctx : dict |
|
94
|
|
|
Context information |
|
95
|
|
|
|
|
96
|
|
|
Returns |
|
97
|
|
|
------- |
|
98
|
|
|
RuleResult |
|
99
|
|
|
Validation result with success/failure status |
|
100
|
|
|
""" |
|
101
|
|
View Code Duplication |
if df.empty or df["output_demand_twh"].isna().all() or df["input_demand_twh"].isna().all(): |
|
|
|
|
|
|
102
|
|
|
return RuleResult( |
|
103
|
|
|
rule_id=self.rule_id, |
|
104
|
|
|
task=self.task, |
|
105
|
|
|
table=self.table, |
|
106
|
|
|
kind=self.kind, |
|
107
|
|
|
success=False, |
|
108
|
|
|
message=f"No heat demand data found for {self.scenario}", |
|
109
|
|
|
severity=Severity.ERROR, |
|
110
|
|
|
schema=self.schema, |
|
111
|
|
|
table_name=self.table_name, |
|
112
|
|
|
rule_class=self.__class__.__name__ |
|
113
|
|
|
) |
|
114
|
|
|
|
|
115
|
|
|
output_twh = float(df["output_demand_twh"].values[0]) |
|
116
|
|
|
input_twh = float(df["input_demand_twh"].values[0]) |
|
117
|
|
|
|
|
118
|
|
|
# Calculate deviation |
|
119
|
|
|
deviation = abs(output_twh - input_twh) / input_twh |
|
120
|
|
|
deviation_pct = deviation * 100 |
|
121
|
|
|
diff_twh = output_twh - input_twh |
|
122
|
|
|
|
|
123
|
|
|
success = deviation <= self.rtol |
|
124
|
|
|
|
|
125
|
|
|
if success: |
|
126
|
|
|
return RuleResult( |
|
127
|
|
|
rule_id=self.rule_id, |
|
128
|
|
|
task=self.task, |
|
129
|
|
|
table=self.table, |
|
130
|
|
|
kind=self.kind, |
|
131
|
|
|
success=True, |
|
132
|
|
|
observed=output_twh, |
|
133
|
|
|
expected=input_twh, |
|
134
|
|
|
message=( |
|
135
|
|
|
f"Heat demand valid for {self.scenario}: " |
|
136
|
|
|
f"{output_twh:.2f} TWh vs {input_twh:.2f} TWh expected " |
|
137
|
|
|
f"(deviation: {deviation_pct:.2f}%, tolerance: {self.rtol*100:.2f}%)" |
|
138
|
|
|
), |
|
139
|
|
|
severity=Severity.INFO, |
|
140
|
|
|
schema=self.schema, |
|
141
|
|
|
table_name=self.table_name, |
|
142
|
|
|
rule_class=self.__class__.__name__ |
|
143
|
|
|
) |
|
144
|
|
|
else: |
|
145
|
|
|
return RuleResult( |
|
146
|
|
|
rule_id=self.rule_id, |
|
147
|
|
|
task=self.task, |
|
148
|
|
|
table=self.table, |
|
149
|
|
|
kind=self.kind, |
|
150
|
|
|
success=False, |
|
151
|
|
|
observed=output_twh, |
|
152
|
|
|
expected=input_twh, |
|
153
|
|
|
message=( |
|
154
|
|
|
f"Heat demand deviation too large for {self.scenario}: " |
|
155
|
|
|
f"{output_twh:.2f} TWh vs {input_twh:.2f} TWh expected " |
|
156
|
|
|
f"(diff: {diff_twh:+.2f} TWh, deviation: {deviation_pct:.2f}%, " |
|
157
|
|
|
f"tolerance: {self.rtol*100:.2f}%)" |
|
158
|
|
|
), |
|
159
|
|
|
severity=Severity.ERROR, |
|
160
|
|
|
schema=self.schema, |
|
161
|
|
|
table_name=self.table_name, |
|
162
|
|
|
rule_class=self.__class__.__name__ |
|
163
|
|
|
) |
|
164
|
|
|
|