|
1
|
|
|
"""CTS (Commercial, Trade, Services) demand sanity check validation rules.""" |
|
2
|
|
|
|
|
3
|
|
|
from egon_validation.rules.base import DataFrameRule, RuleResult, Severity |
|
4
|
|
|
import numpy as np |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
View Code Duplication |
class CtsElectricityDemandShare(DataFrameRule): |
|
|
|
|
|
|
8
|
|
|
"""Validate CTS electricity demand shares sum to 1 for each substation. |
|
9
|
|
|
|
|
10
|
|
|
Checks that the sum of aggregated CTS electricity demand share equals 1 |
|
11
|
|
|
for every substation, as the substation profile is linearly disaggregated |
|
12
|
|
|
to all buildings. |
|
13
|
|
|
|
|
14
|
|
|
Args: |
|
15
|
|
|
table: Primary table being validated (demand.egon_cts_electricity_demand_building_share) |
|
16
|
|
|
rule_id: Unique identifier for this validation rule |
|
17
|
|
|
rtol: Relative tolerance for comparison (default: 0.005 = 0.5%) |
|
18
|
|
|
|
|
19
|
|
|
Example: |
|
20
|
|
|
>>> validation = { |
|
21
|
|
|
... "data_quality": [ |
|
22
|
|
|
... CtsElectricityDemandShare( |
|
23
|
|
|
... table="demand.egon_cts_electricity_demand_building_share", |
|
24
|
|
|
... rule_id="SANITY_CTS_ELECTRICITY_DEMAND_SHARE", |
|
25
|
|
|
... rtol=0.005 |
|
26
|
|
|
... ) |
|
27
|
|
|
... ] |
|
28
|
|
|
... } |
|
29
|
|
|
""" |
|
30
|
|
|
|
|
31
|
|
|
def __init__(self, table: str, rule_id: str, rtol: float = 0.005, **kwargs): |
|
32
|
|
|
super().__init__(rule_id=rule_id, table=table, rtol=rtol, **kwargs) |
|
33
|
|
|
self.kind = "sanity" |
|
34
|
|
|
|
|
35
|
|
|
def get_query(self, ctx): |
|
36
|
|
|
return """ |
|
37
|
|
|
SELECT bus_id, scenario, SUM(profile_share) as total_share |
|
38
|
|
|
FROM demand.egon_cts_electricity_demand_building_share |
|
39
|
|
|
GROUP BY bus_id, scenario |
|
40
|
|
|
""" |
|
41
|
|
|
|
|
42
|
|
|
def evaluate_df(self, df, ctx): |
|
43
|
|
|
rtol = self.params.get("rtol", 0.005) |
|
44
|
|
|
|
|
45
|
|
|
try: |
|
46
|
|
|
# Check that all shares sum to 1 (within tolerance) |
|
47
|
|
|
np.testing.assert_allclose( |
|
48
|
|
|
actual=df["total_share"], |
|
49
|
|
|
desired=1.0, |
|
50
|
|
|
rtol=rtol, |
|
51
|
|
|
verbose=False, |
|
52
|
|
|
) |
|
53
|
|
|
|
|
54
|
|
|
# Calculate actual max deviation for reporting |
|
55
|
|
|
max_diff = (df["total_share"] - 1.0).abs().max() |
|
56
|
|
|
|
|
57
|
|
|
return RuleResult( |
|
58
|
|
|
rule_id=self.rule_id, |
|
59
|
|
|
task=self.task, |
|
60
|
|
|
table=self.table, |
|
61
|
|
|
kind=self.kind, |
|
62
|
|
|
success=True, |
|
63
|
|
|
observed=float(max_diff), |
|
64
|
|
|
expected=rtol, |
|
65
|
|
|
message=f"CTS electricity demand shares sum to 1 for all {len(df)} bus/scenario combinations (max deviation: {max_diff:.6f}, tolerance: {rtol:.6f})", |
|
66
|
|
|
schema=self.schema, |
|
67
|
|
|
table_name=self.table_name, |
|
68
|
|
|
rule_class=self.__class__.__name__ |
|
69
|
|
|
) |
|
70
|
|
|
except AssertionError: |
|
71
|
|
|
max_diff = (df["total_share"] - 1.0).abs().max() |
|
72
|
|
|
violations = df[~np.isclose(df["total_share"], 1.0, rtol=rtol)] |
|
73
|
|
|
|
|
74
|
|
|
return RuleResult( |
|
75
|
|
|
rule_id=self.rule_id, |
|
76
|
|
|
task=self.task, |
|
77
|
|
|
table=self.table, |
|
78
|
|
|
kind=self.kind, |
|
79
|
|
|
success=False, |
|
80
|
|
|
observed=float(max_diff), |
|
81
|
|
|
expected=rtol, |
|
82
|
|
|
message=f"CTS electricity demand share mismatch: max deviation {max_diff:.6f} exceeds tolerance {rtol:.6f}. {len(violations)} bus/scenario combinations have shares != 1.", |
|
83
|
|
|
severity=Severity.ERROR, |
|
84
|
|
|
schema=self.schema, |
|
85
|
|
|
table_name=self.table_name, |
|
86
|
|
|
rule_class=self.__class__.__name__ |
|
87
|
|
|
) |
|
88
|
|
|
|
|
89
|
|
|
|
|
90
|
|
View Code Duplication |
class CtsHeatDemandShare(DataFrameRule): |
|
|
|
|
|
|
91
|
|
|
"""Validate CTS heat demand shares sum to 1 for each substation. |
|
92
|
|
|
|
|
93
|
|
|
Checks that the sum of aggregated CTS heat demand share equals 1 |
|
94
|
|
|
for every substation, as the substation profile is linearly disaggregated |
|
95
|
|
|
to all buildings. |
|
96
|
|
|
|
|
97
|
|
|
Args: |
|
98
|
|
|
table: Primary table being validated (demand.egon_cts_heat_demand_building_share) |
|
99
|
|
|
rule_id: Unique identifier for this validation rule |
|
100
|
|
|
rtol: Relative tolerance for comparison (default: 0.005 = 0.5%) |
|
101
|
|
|
|
|
102
|
|
|
Example: |
|
103
|
|
|
>>> validation = { |
|
104
|
|
|
... "data_quality": [ |
|
105
|
|
|
... CtsHeatDemandShare( |
|
106
|
|
|
... table="demand.egon_cts_heat_demand_building_share", |
|
107
|
|
|
... rule_id="SANITY_CTS_HEAT_DEMAND_SHARE", |
|
108
|
|
|
... rtol=0.005 |
|
109
|
|
|
... ) |
|
110
|
|
|
... ] |
|
111
|
|
|
... } |
|
112
|
|
|
""" |
|
113
|
|
|
|
|
114
|
|
|
def __init__(self, table: str, rule_id: str, rtol: float = 0.005, **kwargs): |
|
115
|
|
|
super().__init__(rule_id=rule_id, table=table, rtol=rtol, **kwargs) |
|
116
|
|
|
self.kind = "sanity" |
|
117
|
|
|
|
|
118
|
|
|
def get_query(self, ctx): |
|
119
|
|
|
return """ |
|
120
|
|
|
SELECT bus_id, scenario, SUM(profile_share) as total_share |
|
121
|
|
|
FROM demand.egon_cts_heat_demand_building_share |
|
122
|
|
|
GROUP BY bus_id, scenario |
|
123
|
|
|
""" |
|
124
|
|
|
|
|
125
|
|
|
def evaluate_df(self, df, ctx): |
|
126
|
|
|
rtol = self.params.get("rtol", 0.005) |
|
127
|
|
|
|
|
128
|
|
|
try: |
|
129
|
|
|
# Check that all shares sum to 1 (within tolerance) |
|
130
|
|
|
np.testing.assert_allclose( |
|
131
|
|
|
actual=df["total_share"], |
|
132
|
|
|
desired=1.0, |
|
133
|
|
|
rtol=rtol, |
|
134
|
|
|
verbose=False, |
|
135
|
|
|
) |
|
136
|
|
|
|
|
137
|
|
|
# Calculate actual max deviation for reporting |
|
138
|
|
|
max_diff = (df["total_share"] - 1.0).abs().max() |
|
139
|
|
|
|
|
140
|
|
|
return RuleResult( |
|
141
|
|
|
rule_id=self.rule_id, |
|
142
|
|
|
task=self.task, |
|
143
|
|
|
table=self.table, |
|
144
|
|
|
kind=self.kind, |
|
145
|
|
|
success=True, |
|
146
|
|
|
observed=float(max_diff), |
|
147
|
|
|
expected=rtol, |
|
148
|
|
|
message=f"CTS heat demand shares sum to 1 for all {len(df)} bus/scenario combinations (max deviation: {max_diff:.6f}, tolerance: {rtol:.6f})", |
|
149
|
|
|
schema=self.schema, |
|
150
|
|
|
table_name=self.table_name, |
|
151
|
|
|
rule_class=self.__class__.__name__ |
|
152
|
|
|
) |
|
153
|
|
|
except AssertionError: |
|
154
|
|
|
max_diff = (df["total_share"] - 1.0).abs().max() |
|
155
|
|
|
violations = df[~np.isclose(df["total_share"], 1.0, rtol=rtol)] |
|
156
|
|
|
|
|
157
|
|
|
return RuleResult( |
|
158
|
|
|
rule_id=self.rule_id, |
|
159
|
|
|
task=self.task, |
|
160
|
|
|
table=self.table, |
|
161
|
|
|
kind=self.kind, |
|
162
|
|
|
success=False, |
|
163
|
|
|
observed=float(max_diff), |
|
164
|
|
|
expected=rtol, |
|
165
|
|
|
message=f"CTS heat demand share mismatch: max deviation {max_diff:.6f} exceeds tolerance {rtol:.6f}. {len(violations)} bus/scenario combinations have shares != 1.", |
|
166
|
|
|
severity=Severity.ERROR, |
|
167
|
|
|
schema=self.schema, |
|
168
|
|
|
table_name=self.table_name, |
|
169
|
|
|
rule_class=self.__class__.__name__ |
|
170
|
|
|
) |
|
171
|
|
|
|