|
1
|
|
|
"""The central module containing all code dealing with importing Zensus data. |
|
2
|
|
|
""" |
|
3
|
|
|
|
|
4
|
|
|
from pathlib import Path |
|
5
|
|
|
import csv |
|
6
|
|
|
import json |
|
7
|
|
|
import os |
|
8
|
|
|
import zipfile |
|
9
|
|
|
|
|
10
|
|
|
from shapely.geometry import Point, shape |
|
11
|
|
|
from shapely.prepared import prep |
|
12
|
|
|
import pandas as pd |
|
13
|
|
|
import requests |
|
14
|
|
|
|
|
15
|
|
|
from egon.data import db, subprocess |
|
16
|
|
|
from egon.data.config import settings |
|
17
|
|
|
from egon.data.datasets import Dataset |
|
18
|
|
|
import egon.data.config |
|
19
|
|
|
|
|
20
|
|
|
from egon_validation import( |
|
21
|
|
|
RowCountValidation, |
|
22
|
|
|
DataTypeValidation, |
|
23
|
|
|
NotNullAndNotNaNValidation, |
|
24
|
|
|
WholeTableNotNullAndNotNaNValidation, |
|
25
|
|
|
SRIDUniqueNonZero |
|
26
|
|
|
) |
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
class ZensusPopulation(Dataset): |
|
30
|
|
View Code Duplication |
def __init__(self, dependencies): |
|
|
|
|
|
|
31
|
|
|
super().__init__( |
|
32
|
|
|
name="ZensusPopulation", |
|
33
|
|
|
version="0.0.2", |
|
34
|
|
|
dependencies=dependencies, |
|
35
|
|
|
tasks=( |
|
36
|
|
|
create_zensus_pop_table, |
|
37
|
|
|
population_to_postgres, |
|
38
|
|
|
), |
|
39
|
|
|
validation={ |
|
40
|
|
|
"data-quality":[ |
|
41
|
|
|
RowCountValidation( |
|
42
|
|
|
table="society.egon_destatis_zensus_apartment_building_population_per_ha", |
|
43
|
|
|
rule_id="TEST_ROW_COUNT.egon_destatis_zensus_apartment_building_population_per_ha", |
|
44
|
|
|
expected_count={"Schleswig-Holstein": 145634, "Everything": 3206490} |
|
45
|
|
|
), |
|
46
|
|
|
DataTypeValidation( |
|
47
|
|
|
table="society.egon_destatis_zensus_apartment_building_population_per_ha", |
|
48
|
|
|
rule_id="TEST_DATA_MULTIPLE_TYPES.egon_destatis_zensus_apartment_building_population_per_ha", |
|
49
|
|
|
column_types={ |
|
50
|
|
|
"grid_id": "character varying", "zensus_population_id": "integer", "building_count": "smallint", |
|
51
|
|
|
"apartment_count": "smallint", "geom": "geometry", "geom_point": "geometry" |
|
52
|
|
|
} |
|
53
|
|
|
), |
|
54
|
|
|
NotNullAndNotNaNValidation( |
|
55
|
|
|
table="society.egon_destatis_zensus_apartment_building_population_per_ha", |
|
56
|
|
|
rule_id="TEST_NOT_NAN.egon_destatis_zensus_apartment_building_population_per_ha", |
|
57
|
|
|
columns=["grid_id", "zensus_population_id", "building_count", "apartment_count", "geom", "geom_point"] |
|
58
|
|
|
), |
|
59
|
|
|
WholeTableNotNullAndNotNaNValidation( |
|
60
|
|
|
table="society.egon_destatis_zensus_apartment_building_population_per_ha", |
|
61
|
|
|
rule_id="TEST_WHOLE_TABLE_NOT_NAN.egon_destatis_zensus_apartment_building_population_per_ha" |
|
62
|
|
|
), |
|
63
|
|
|
SRIDUniqueNonZero( |
|
64
|
|
|
table="society.egon_destatis_zensus_apartment_building_population_per_ha", |
|
65
|
|
|
rule_id="SRIDUniqueNonZero.egon_destatis_zensus_apartment_building_population_per_ha.geom", |
|
66
|
|
|
column="geom" |
|
67
|
|
|
), |
|
68
|
|
|
SRIDUniqueNonZero( |
|
69
|
|
|
table="society.egon_destatis_zensus_apartment_building_population_per_ha", |
|
70
|
|
|
rule_id="SRIDUniqueNonZero.egon_destatis_zensus_apartment_building_population_per_ha.geom_point", |
|
71
|
|
|
column="geom_point" |
|
72
|
|
|
), |
|
73
|
|
|
] |
|
74
|
|
|
}, |
|
75
|
|
|
on_validation_failure="continue" |
|
76
|
|
|
) |
|
77
|
|
|
|
|
78
|
|
|
|
|
79
|
|
|
class ZensusMiscellaneous(Dataset): |
|
80
|
|
|
def __init__(self, dependencies): |
|
81
|
|
|
super().__init__( |
|
82
|
|
|
name="ZensusMiscellaneous", |
|
83
|
|
|
version="0.0.1", |
|
84
|
|
|
dependencies=dependencies, |
|
85
|
|
|
tasks=( |
|
86
|
|
|
create_zensus_misc_tables, |
|
87
|
|
|
zensus_misc_to_postgres, |
|
88
|
|
|
), |
|
89
|
|
|
validation={ |
|
90
|
|
|
"data-quality":[ |
|
91
|
|
|
|
|
92
|
|
|
RowCountValidation( |
|
93
|
|
|
table="society.egon_destatis_zensus_apartment_per_ha", |
|
94
|
|
|
rule_id="TEST_ROW_COUNT.egon_destatis_zensus_apartment_per_ha", |
|
95
|
|
|
expected_count={"Schleswig-Holstein": 1946300, "Everything": 51095280} |
|
96
|
|
|
), |
|
97
|
|
|
DataTypeValidation( |
|
98
|
|
|
table="society.egon_destatis_zensus_apartment_per_ha", |
|
99
|
|
|
rule_id="TEST_DATA_MULTIPLE_TYPES.egon_destatis_zensus_apartment_per_ha", |
|
100
|
|
|
column_types={ |
|
101
|
|
|
"id": "integer", "grid_id": "character varying", "grid_id_new": "character varying", |
|
102
|
|
|
"attribute": "character varying", "characteristics_code": "smallint", |
|
103
|
|
|
"characteristics_text": "text", "quantity": "smallint", "quantity_q": "smallint", |
|
104
|
|
|
"zensus_population_id": "integer" |
|
105
|
|
|
} |
|
106
|
|
|
), |
|
107
|
|
|
NotNullAndNotNaNValidation( |
|
108
|
|
|
table="society.egon_destatis_zensus_apartment_per_ha", |
|
109
|
|
|
rule_id="TEST_NOT_NAN.egon_destatis_zensus_apartment_per_ha", |
|
110
|
|
|
columns=[ |
|
111
|
|
|
"id", "grid_id", "grid_id_new", "attribute", "characteristics_code", "characteristics_text", |
|
112
|
|
|
"quantity", "quantity_q", "zensus_population_id" |
|
113
|
|
|
] |
|
114
|
|
|
), |
|
115
|
|
|
WholeTableNotNullAndNotNaNValidation( |
|
116
|
|
|
table="society.egon_destatis_zensus_apartment_per_ha", |
|
117
|
|
|
rule_id="TEST_WHOLE_TABLE_NOT_NAN.egon_destatis_zensus_apartment_per_ha" |
|
118
|
|
|
), |
|
119
|
|
|
RowCountValidation( |
|
120
|
|
|
table="society.egon_destatis_zensus_building_per_ha", |
|
121
|
|
|
rule_id="TEST_ROW_COUNT.egon_destatis_zensus_building_per_ha", |
|
122
|
|
|
expected_count={"Schleswig-Holstein": 978493, "Everything": 24297136} |
|
123
|
|
|
), |
|
124
|
|
|
DataTypeValidation( |
|
125
|
|
|
table="society.egon_destatis_zensus_building_per_ha", |
|
126
|
|
|
rule_id="TEST_DATA_MULTIPLE_TYPES.egon_destatis_zensus_building_per_ha", |
|
127
|
|
|
column_types={ |
|
128
|
|
|
"id": "integer", |
|
129
|
|
|
"grid_id": "character varying", |
|
130
|
|
|
"grid_id_new": "character varying", |
|
131
|
|
|
"attribute": "character varying", |
|
132
|
|
|
"characteristics_code": "smallint", |
|
133
|
|
|
"characteristics_text": "text", |
|
134
|
|
|
"quantity": "smallint", |
|
135
|
|
|
"quantity_q": "smallint", |
|
136
|
|
|
"zensus_population_id": "integer" |
|
137
|
|
|
} |
|
138
|
|
|
), |
|
139
|
|
|
NotNullAndNotNaNValidation( |
|
140
|
|
|
table="society.egon_destatis_zensus_building_per_ha", |
|
141
|
|
|
rule_id="TEST_NOT_NAN.egon_destatis_zensus_building_per_ha", |
|
142
|
|
|
columns=[ |
|
143
|
|
|
"id", |
|
144
|
|
|
"grid_id", |
|
145
|
|
|
"grid_id_new", |
|
146
|
|
|
"attribute", |
|
147
|
|
|
"characteristics_code", |
|
148
|
|
|
"characteristics_text", |
|
149
|
|
|
"quantity", |
|
150
|
|
|
"quantity_q", |
|
151
|
|
|
"zensus_population_id" |
|
152
|
|
|
] |
|
153
|
|
|
), |
|
154
|
|
|
WholeTableNotNullAndNotNaNValidation( |
|
155
|
|
|
table="society.egon_destatis_zensus_building_per_ha", |
|
156
|
|
|
rule_id="TEST_WHOLE_TABLE_NOT_NAN.egon_destatis_zensus_building_per_ha" |
|
157
|
|
|
), |
|
158
|
|
|
RowCountValidation( |
|
159
|
|
|
table="society.egon_destatis_zensus_household_per_ha", |
|
160
|
|
|
rule_id="TEST_ROW_COUNT.egon_destatis_zensus_household_per_ha", |
|
161
|
|
|
expected_count={"Schleswig-Holstein": 724970, "Everything": 18788917} |
|
162
|
|
|
), |
|
163
|
|
|
DataTypeValidation( |
|
164
|
|
|
table="society.egon_destatis_zensus_household_per_ha", |
|
165
|
|
|
rule_id="TEST_DATA_MULTIPLE_TYPES.egon_destatis_zensus_household_per_ha", |
|
166
|
|
|
column_types={ |
|
167
|
|
|
"id": "integer", |
|
168
|
|
|
"grid_id": "character varying", |
|
169
|
|
|
"grid_id_new": "character varying", |
|
170
|
|
|
"attribute": "character varying", |
|
171
|
|
|
"characteristics_code": "smallint", |
|
172
|
|
|
"characteristics_text": "text", |
|
173
|
|
|
"quantity": "smallint", |
|
174
|
|
|
"quantity_q": "smallint", |
|
175
|
|
|
"zensus_population_id": "integer" |
|
176
|
|
|
} |
|
177
|
|
|
), |
|
178
|
|
|
NotNullAndNotNaNValidation( |
|
179
|
|
|
table="society.egon_destatis_zensus_household_per_ha", |
|
180
|
|
|
rule_id="TEST_NOT_NAN.egon_destatis_zensus_household_per_ha", |
|
181
|
|
|
columns=[ |
|
182
|
|
|
"id", |
|
183
|
|
|
"grid_id", |
|
184
|
|
|
"grid_id_new", |
|
185
|
|
|
"attribute", |
|
186
|
|
|
"characteristics_code", |
|
187
|
|
|
"characteristics_text", |
|
188
|
|
|
"quantity", |
|
189
|
|
|
"quantity_q", |
|
190
|
|
|
"zensus_population_id" |
|
191
|
|
|
] |
|
192
|
|
|
), |
|
193
|
|
|
WholeTableNotNullAndNotNaNValidation( |
|
194
|
|
|
table="society.egon_destatis_zensus_household_per_ha", |
|
195
|
|
|
rule_id="TEST_WHOLE_TABLE_NOT_NAN.egon_destatis_zensus_household_per_ha" |
|
196
|
|
|
), |
|
197
|
|
|
RowCountValidation( |
|
198
|
|
|
table="society.egon_destatis_zensus_household_per_ha_refined", |
|
199
|
|
|
rule_id="TEST_ROW_COUNT.egon_destatis_zensus_household_per_ha_refined", |
|
200
|
|
|
expected_count={"Schleswig-Holstein": 551678, "Everything": 13304814} |
|
201
|
|
|
), |
|
202
|
|
|
DataTypeValidation( |
|
203
|
|
|
table="society.egon_destatis_zensus_household_per_ha_refined", |
|
204
|
|
|
rule_id="TEST_DATA_MULTIPLE_TYPES.egon_destatis_zensus_household_per_ha_refined", |
|
205
|
|
|
column_types={ |
|
206
|
|
|
"id": "integer", |
|
207
|
|
|
"cell_id": "integer", |
|
208
|
|
|
"grid_id": "character varying", |
|
209
|
|
|
"nuts3": "character varying", |
|
210
|
|
|
"nuts1": "character varying", |
|
211
|
|
|
"characteristics_code": "integer", |
|
212
|
|
|
"hh_5types": "integer", |
|
213
|
|
|
"hh_type": "character", |
|
214
|
|
|
"hh_10types": "integer" |
|
215
|
|
|
} |
|
216
|
|
|
), |
|
217
|
|
|
NotNullAndNotNaNValidation( |
|
218
|
|
|
table="society.egon_destatis_zensus_household_per_ha_refined", |
|
219
|
|
|
rule_id="TEST_NOT_NAN.egon_destatis_zensus_household_per_ha_refined", |
|
220
|
|
|
columns=[ |
|
221
|
|
|
"id", |
|
222
|
|
|
"cell_id", |
|
223
|
|
|
"grid_id", |
|
224
|
|
|
"nuts3", |
|
225
|
|
|
"nuts1", |
|
226
|
|
|
"characteristics_code", |
|
227
|
|
|
"hh_5types", |
|
228
|
|
|
"hh_type", |
|
229
|
|
|
"hh_10types" |
|
230
|
|
|
] |
|
231
|
|
|
), |
|
232
|
|
|
WholeTableNotNullAndNotNaNValidation( |
|
233
|
|
|
table="society.egon_destatis_zensus_household_per_ha_refined", |
|
234
|
|
|
rule_id="TEST_WHOLE_TABLE_NOT_NAN.egon_destatis_zensus_household_per_ha_refined" |
|
235
|
|
|
), |
|
236
|
|
|
] |
|
237
|
|
|
}, |
|
238
|
|
|
on_validation_failure="continue" |
|
239
|
|
|
) |
|
240
|
|
|
|
|
241
|
|
|
|
|
242
|
|
|
def download_and_check(url, target_file, max_iteration=5): |
|
243
|
|
|
"""Download file from url (http) if it doesn't exist and check afterwards. |
|
244
|
|
|
If bad zip remove file and re-download. Repeat until file is fine or |
|
245
|
|
|
reached maximum iterations.""" |
|
246
|
|
|
bad_file = True |
|
247
|
|
|
count = 0 |
|
248
|
|
|
while bad_file: |
|
249
|
|
|
|
|
250
|
|
|
# download file if it doesn't exist |
|
251
|
|
|
if not os.path.isfile(target_file): |
|
252
|
|
|
# check if url |
|
253
|
|
|
if url.lower().startswith("http"): |
|
254
|
|
|
print("Downloading: ", url) |
|
255
|
|
|
req = requests.get( |
|
256
|
|
|
url, headers={"User-Agent": "Mozilla/5.0"}, stream=True |
|
257
|
|
|
) |
|
258
|
|
|
open(target_file, "wb").write(req.content) |
|
259
|
|
|
else: |
|
260
|
|
|
raise ValueError("No http url") |
|
261
|
|
|
|
|
262
|
|
|
# check zipfile |
|
263
|
|
|
try: |
|
264
|
|
|
with zipfile.ZipFile(target_file): |
|
265
|
|
|
print(f"Zip file {target_file} is good.") |
|
266
|
|
|
bad_file = False |
|
267
|
|
|
except zipfile.BadZipFile as ex: |
|
268
|
|
|
os.remove(target_file) |
|
269
|
|
|
count += 1 |
|
270
|
|
|
if count > max_iteration: |
|
271
|
|
|
raise StopIteration( |
|
272
|
|
|
f"Max iteration of {max_iteration} is exceeded" |
|
273
|
|
|
) from ex |
|
274
|
|
|
|
|
275
|
|
|
|
|
276
|
|
|
def download_zensus_pop(): |
|
277
|
|
|
"""Download Zensus csv file on population per hectare grid cell.""" |
|
278
|
|
|
|
|
279
|
|
|
data_config = egon.data.config.datasets() |
|
280
|
|
|
zensus_population_config = data_config["zensus_population"][ |
|
281
|
|
|
"original_data" |
|
282
|
|
|
] |
|
283
|
|
|
download_directory = Path(".") / "zensus_population" |
|
284
|
|
|
# Create the folder, if it does not exist already |
|
285
|
|
|
if not os.path.exists(download_directory): |
|
286
|
|
|
os.mkdir(download_directory) |
|
287
|
|
|
|
|
288
|
|
|
target_file = ( |
|
289
|
|
|
download_directory / zensus_population_config["target"]["file"] |
|
290
|
|
|
) |
|
291
|
|
|
|
|
292
|
|
|
url = zensus_population_config["source"]["url"] |
|
293
|
|
|
download_and_check(url, target_file, max_iteration=5) |
|
294
|
|
|
|
|
295
|
|
|
|
|
296
|
|
|
def download_zensus_misc(): |
|
297
|
|
|
"""Download Zensus csv files on data per hectare grid cell.""" |
|
298
|
|
|
|
|
299
|
|
|
# Get data config |
|
300
|
|
|
data_config = egon.data.config.datasets() |
|
301
|
|
|
download_directory = Path(".") / "zensus_population" |
|
302
|
|
|
# Create the folder, if it does not exist already |
|
303
|
|
|
if not os.path.exists(download_directory): |
|
304
|
|
|
os.mkdir(download_directory) |
|
305
|
|
|
# Download remaining zensus data set on households, buildings, apartments |
|
306
|
|
|
|
|
307
|
|
|
zensus_config = data_config["zensus_misc"]["original_data"] |
|
308
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
|
309
|
|
|
zensus_url = zensus_config["source"]["url"] |
|
310
|
|
|
zensus_files = zensus_misc_processed["file_table_map"].keys() |
|
311
|
|
|
url_path_map = list(zip(zensus_url, zensus_files)) |
|
312
|
|
|
|
|
313
|
|
|
for url, path in url_path_map: |
|
314
|
|
|
target_file_misc = download_directory / path |
|
315
|
|
|
|
|
316
|
|
|
download_and_check(url, target_file_misc, max_iteration=5) |
|
317
|
|
|
|
|
318
|
|
|
|
|
319
|
|
|
def create_zensus_pop_table(): |
|
320
|
|
|
"""Create tables for zensus data in postgres database""" |
|
321
|
|
|
|
|
322
|
|
|
# Get information from data configuration file |
|
323
|
|
|
data_config = egon.data.config.datasets() |
|
324
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
|
325
|
|
|
|
|
326
|
|
|
# Create target schema |
|
327
|
|
|
db.execute_sql( |
|
328
|
|
|
f"CREATE SCHEMA IF NOT EXISTS {zensus_population_processed['schema']};" |
|
329
|
|
|
) |
|
330
|
|
|
|
|
331
|
|
|
# Create table for population data |
|
332
|
|
|
population_table = ( |
|
333
|
|
|
f"{zensus_population_processed['schema']}" |
|
334
|
|
|
f".{zensus_population_processed['table']}" |
|
335
|
|
|
) |
|
336
|
|
|
|
|
337
|
|
|
db.execute_sql(f"DROP TABLE IF EXISTS {population_table} CASCADE;") |
|
338
|
|
|
|
|
339
|
|
|
db.execute_sql( |
|
340
|
|
|
f"CREATE TABLE {population_table}" |
|
341
|
|
|
f""" (id SERIAL NOT NULL, |
|
342
|
|
|
grid_id character varying(254) NOT NULL, |
|
343
|
|
|
x_mp int, |
|
344
|
|
|
y_mp int, |
|
345
|
|
|
population smallint, |
|
346
|
|
|
geom_point geometry(Point,3035), |
|
347
|
|
|
geom geometry (Polygon, 3035), |
|
348
|
|
|
CONSTRAINT {zensus_population_processed['table']}_pkey |
|
349
|
|
|
PRIMARY KEY (id) |
|
350
|
|
|
); |
|
351
|
|
|
""" |
|
352
|
|
|
) |
|
353
|
|
|
|
|
354
|
|
|
|
|
355
|
|
|
def create_zensus_misc_tables(): |
|
356
|
|
|
"""Create tables for zensus data in postgres database""" |
|
357
|
|
|
|
|
358
|
|
|
# Get information from data configuration file |
|
359
|
|
|
data_config = egon.data.config.datasets() |
|
360
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
|
361
|
|
|
|
|
362
|
|
|
# Create target schema |
|
363
|
|
|
db.execute_sql( |
|
364
|
|
|
f"CREATE SCHEMA IF NOT EXISTS {zensus_misc_processed['schema']};" |
|
365
|
|
|
) |
|
366
|
|
|
|
|
367
|
|
|
# Create tables for household, apartment and building |
|
368
|
|
|
for table in zensus_misc_processed["file_table_map"].values(): |
|
369
|
|
|
misc_table = f"{zensus_misc_processed['schema']}.{table}" |
|
370
|
|
|
|
|
371
|
|
|
db.execute_sql(f"DROP TABLE IF EXISTS {misc_table} CASCADE;") |
|
372
|
|
|
db.execute_sql( |
|
373
|
|
|
f"CREATE TABLE {misc_table}" |
|
374
|
|
|
f""" (id SERIAL, |
|
375
|
|
|
grid_id VARCHAR(50), |
|
376
|
|
|
grid_id_new VARCHAR (50), |
|
377
|
|
|
attribute VARCHAR(50), |
|
378
|
|
|
characteristics_code smallint, |
|
379
|
|
|
characteristics_text text, |
|
380
|
|
|
quantity smallint, |
|
381
|
|
|
quantity_q smallint, |
|
382
|
|
|
zensus_population_id int, |
|
383
|
|
|
CONSTRAINT {table}_pkey PRIMARY KEY (id) |
|
384
|
|
|
); |
|
385
|
|
|
""" |
|
386
|
|
|
) |
|
387
|
|
|
|
|
388
|
|
|
|
|
389
|
|
|
def target(source, dataset): |
|
390
|
|
|
"""Generate the target path corresponding to a source path. |
|
391
|
|
|
|
|
392
|
|
|
Parameters |
|
393
|
|
|
---------- |
|
394
|
|
|
dataset: str |
|
395
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
|
396
|
|
|
(`dataset='Schleswig-Holstein'`). |
|
397
|
|
|
In production mode, data covering entire Germany |
|
398
|
|
|
is used. In the test mode a subset of this data is used for testing the |
|
399
|
|
|
workflow. |
|
400
|
|
|
Returns |
|
401
|
|
|
------- |
|
402
|
|
|
Path |
|
403
|
|
|
Path to target csv-file |
|
404
|
|
|
|
|
405
|
|
|
""" |
|
406
|
|
|
return Path( |
|
407
|
|
|
os.path.join(Path("."), "data_bundle_egon_data", source.stem) |
|
408
|
|
|
+ "zensus_population" |
|
409
|
|
|
+ "." |
|
410
|
|
|
+ dataset |
|
411
|
|
|
+ source.suffix |
|
412
|
|
|
) |
|
413
|
|
|
|
|
414
|
|
|
|
|
415
|
|
|
def select_geom(): |
|
416
|
|
|
"""Select the union of the geometries of Schleswig-Holstein from the |
|
417
|
|
|
database, convert their projection to the one used in the CSV file, |
|
418
|
|
|
output the result to stdout as a GeoJSON string and read it into a |
|
419
|
|
|
prepared shape for filtering. |
|
420
|
|
|
|
|
421
|
|
|
""" |
|
422
|
|
|
docker_db_config = db.credentials() |
|
423
|
|
|
|
|
424
|
|
|
geojson = subprocess.run( |
|
425
|
|
|
["ogr2ogr"] |
|
426
|
|
|
+ ["-s_srs", "epsg:4326"] |
|
427
|
|
|
+ ["-t_srs", "epsg:3035"] |
|
428
|
|
|
+ ["-f", "GeoJSON"] |
|
429
|
|
|
+ ["/vsistdout/"] |
|
430
|
|
|
+ [ |
|
431
|
|
|
f"PG:host={docker_db_config['HOST']}" |
|
432
|
|
|
f" user='{docker_db_config['POSTGRES_USER']}'" |
|
433
|
|
|
f" password='{docker_db_config['POSTGRES_PASSWORD']}'" |
|
434
|
|
|
f" port={docker_db_config['PORT']}" |
|
435
|
|
|
f" dbname='{docker_db_config['POSTGRES_DB']}'" |
|
436
|
|
|
] |
|
437
|
|
|
+ ["-sql", "SELECT ST_Union(geometry) FROM boundaries.vg250_lan"], |
|
438
|
|
|
text=True, |
|
439
|
|
|
) |
|
440
|
|
|
features = json.loads(geojson.stdout)["features"] |
|
441
|
|
|
assert ( |
|
442
|
|
|
len(features) == 1 |
|
443
|
|
|
), f"Found {len(features)} geometry features, expected exactly one." |
|
444
|
|
|
|
|
445
|
|
|
return prep(shape(features[0]["geometry"])) |
|
446
|
|
|
|
|
447
|
|
|
|
|
448
|
|
|
def filter_zensus_population(filename, dataset): |
|
449
|
|
|
"""This block filters lines in the source CSV file and copies |
|
450
|
|
|
the appropriate ones to the destination based on geometry. |
|
451
|
|
|
|
|
452
|
|
|
|
|
453
|
|
|
Parameters |
|
454
|
|
|
---------- |
|
455
|
|
|
filename : str |
|
456
|
|
|
Path to input csv-file |
|
457
|
|
|
dataset: str, optional |
|
458
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
|
459
|
|
|
(`dataset='Schleswig-Holstein'`). |
|
460
|
|
|
In production mode, data covering entire Germany |
|
461
|
|
|
is used. In the test mode a subset of this data is used for testing the |
|
462
|
|
|
workflow. |
|
463
|
|
|
Returns |
|
464
|
|
|
------- |
|
465
|
|
|
str |
|
466
|
|
|
Path to output csv-file |
|
467
|
|
|
|
|
468
|
|
|
""" |
|
469
|
|
|
|
|
470
|
|
|
csv_file = Path(filename).resolve(strict=True) |
|
471
|
|
|
|
|
472
|
|
|
schleswig_holstein = select_geom() |
|
473
|
|
|
|
|
474
|
|
|
if not os.path.isfile(target(csv_file, dataset)): |
|
475
|
|
|
|
|
476
|
|
|
with open(csv_file, mode="r", newline="") as input_lines: |
|
477
|
|
|
rows = csv.DictReader(input_lines, delimiter=";") |
|
478
|
|
|
gitter_ids = set() |
|
479
|
|
|
with open( |
|
480
|
|
|
target(csv_file, dataset), mode="w", newline="" |
|
481
|
|
|
) as destination: |
|
482
|
|
|
output = csv.DictWriter( |
|
483
|
|
|
destination, delimiter=";", fieldnames=rows.fieldnames |
|
484
|
|
|
) |
|
485
|
|
|
output.writeheader() |
|
486
|
|
|
output.writerows( |
|
487
|
|
|
gitter_ids.add(row["Gitter_ID_100m"]) or row |
|
488
|
|
|
for row in rows |
|
489
|
|
|
if schleswig_holstein.intersects( |
|
490
|
|
|
Point(float(row["x_mp_100m"]), float(row["y_mp_100m"])) |
|
491
|
|
|
) |
|
492
|
|
|
) |
|
493
|
|
|
return target(csv_file, dataset) |
|
494
|
|
|
|
|
495
|
|
|
|
|
496
|
|
|
def filter_zensus_misc(filename, dataset): |
|
497
|
|
|
"""This block filters lines in the source CSV file and copies |
|
498
|
|
|
the appropriate ones to the destination based on grid_id values. |
|
499
|
|
|
|
|
500
|
|
|
|
|
501
|
|
|
Parameters |
|
502
|
|
|
---------- |
|
503
|
|
|
filename : str |
|
504
|
|
|
Path to input csv-file |
|
505
|
|
|
dataset: str, optional |
|
506
|
|
|
Toggles between production (`dataset='Everything'`) and test mode e.g. |
|
507
|
|
|
(`dataset='Schleswig-Holstein'`). |
|
508
|
|
|
In production mode, data covering entire Germany |
|
509
|
|
|
is used. In the test mode a subset of this data is used for testing the |
|
510
|
|
|
workflow. |
|
511
|
|
|
Returns |
|
512
|
|
|
------- |
|
513
|
|
|
str |
|
514
|
|
|
Path to output csv-file |
|
515
|
|
|
|
|
516
|
|
|
""" |
|
517
|
|
|
csv_file = Path(filename).resolve(strict=True) |
|
518
|
|
|
|
|
519
|
|
|
gitter_ids = set( |
|
520
|
|
|
pd.read_sql( |
|
521
|
|
|
"SELECT grid_id from society.destatis_zensus_population_per_ha", |
|
522
|
|
|
con=db.engine(), |
|
523
|
|
|
).grid_id.values |
|
524
|
|
|
) |
|
525
|
|
|
|
|
526
|
|
|
if not os.path.isfile(target(csv_file, dataset)): |
|
527
|
|
|
with open( |
|
528
|
|
|
csv_file, mode="r", newline="", encoding="iso-8859-1" |
|
529
|
|
|
) as inputs: |
|
530
|
|
|
rows = csv.DictReader(inputs, delimiter=",") |
|
531
|
|
|
with open( |
|
532
|
|
|
target(csv_file, dataset), |
|
533
|
|
|
mode="w", |
|
534
|
|
|
newline="", |
|
535
|
|
|
encoding="iso-8859-1", |
|
536
|
|
|
) as destination: |
|
537
|
|
|
output = csv.DictWriter( |
|
538
|
|
|
destination, delimiter=",", fieldnames=rows.fieldnames |
|
539
|
|
|
) |
|
540
|
|
|
output.writeheader() |
|
541
|
|
|
output.writerows( |
|
542
|
|
|
row for row in rows if row["Gitter_ID_100m"] in gitter_ids |
|
543
|
|
|
) |
|
544
|
|
|
return target(csv_file, dataset) |
|
545
|
|
|
|
|
546
|
|
|
|
|
547
|
|
|
def population_to_postgres(): |
|
548
|
|
|
"""Import Zensus population data to postgres database""" |
|
549
|
|
|
# Get information from data configuration file |
|
550
|
|
|
data_config = egon.data.config.datasets() |
|
551
|
|
|
zensus_population_orig = data_config["zensus_population"]["original_data"] |
|
552
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
|
553
|
|
|
input_file = ( |
|
554
|
|
|
Path(".") |
|
555
|
|
|
/ "data_bundle_egon_data" |
|
556
|
|
|
/ "zensus_population" |
|
557
|
|
|
/ zensus_population_orig["target"]["file"] |
|
558
|
|
|
) |
|
559
|
|
|
dataset = settings()["egon-data"]["--dataset-boundary"] |
|
560
|
|
|
|
|
561
|
|
|
# Read database configuration from docker-compose.yml |
|
562
|
|
|
docker_db_config = db.credentials() |
|
563
|
|
|
|
|
564
|
|
|
population_table = ( |
|
565
|
|
|
f"{zensus_population_processed['schema']}" |
|
566
|
|
|
f".{zensus_population_processed['table']}" |
|
567
|
|
|
) |
|
568
|
|
|
|
|
569
|
|
|
with zipfile.ZipFile(input_file) as zf: |
|
570
|
|
|
for filename in zf.namelist(): |
|
571
|
|
|
|
|
572
|
|
|
zf.extract(filename) |
|
573
|
|
|
|
|
574
|
|
|
if dataset == "Everything": |
|
575
|
|
|
filename_insert = filename |
|
576
|
|
|
else: |
|
577
|
|
|
filename_insert = filter_zensus_population(filename, dataset) |
|
578
|
|
|
|
|
579
|
|
|
host = ["-h", f"{docker_db_config['HOST']}"] |
|
580
|
|
|
port = ["-p", f"{docker_db_config['PORT']}"] |
|
581
|
|
|
pgdb = ["-d", f"{docker_db_config['POSTGRES_DB']}"] |
|
582
|
|
|
user = ["-U", f"{docker_db_config['POSTGRES_USER']}"] |
|
583
|
|
|
command = [ |
|
584
|
|
|
"-c", |
|
585
|
|
|
rf"\copy {population_table} (grid_id, x_mp, y_mp, population)" |
|
586
|
|
|
rf" FROM '{filename_insert}' DELIMITER ';' CSV HEADER;", |
|
587
|
|
|
] |
|
588
|
|
|
subprocess.run( |
|
589
|
|
|
["psql"] + host + port + pgdb + user + command, |
|
590
|
|
|
env={"PGPASSWORD": docker_db_config["POSTGRES_PASSWORD"]}, |
|
591
|
|
|
) |
|
592
|
|
|
|
|
593
|
|
|
os.remove(filename) |
|
|
|
|
|
|
594
|
|
|
|
|
595
|
|
|
db.execute_sql( |
|
596
|
|
|
f"UPDATE {population_table} zs" |
|
597
|
|
|
" SET geom_point=ST_SetSRID(ST_MakePoint(zs.x_mp, zs.y_mp), 3035);" |
|
598
|
|
|
) |
|
599
|
|
|
|
|
600
|
|
|
db.execute_sql( |
|
601
|
|
|
f"UPDATE {population_table} zs" |
|
602
|
|
|
""" SET geom=ST_SetSRID( |
|
603
|
|
|
(ST_MakeEnvelope(zs.x_mp-50,zs.y_mp-50,zs.x_mp+50,zs.y_mp+50)), |
|
604
|
|
|
3035 |
|
605
|
|
|
); |
|
606
|
|
|
""" |
|
607
|
|
|
) |
|
608
|
|
|
|
|
609
|
|
|
db.execute_sql( |
|
610
|
|
|
f"CREATE INDEX {zensus_population_processed['table']}_geom_idx ON" |
|
611
|
|
|
f" {population_table} USING gist (geom);" |
|
612
|
|
|
) |
|
613
|
|
|
|
|
614
|
|
|
db.execute_sql( |
|
615
|
|
|
f"CREATE INDEX" |
|
616
|
|
|
f" {zensus_population_processed['table']}_geom_point_idx" |
|
617
|
|
|
f" ON {population_table} USING gist (geom_point);" |
|
618
|
|
|
) |
|
619
|
|
|
|
|
620
|
|
|
|
|
621
|
|
|
def zensus_misc_to_postgres(): |
|
622
|
|
|
"""Import data on buildings, households and apartments to postgres db""" |
|
623
|
|
|
|
|
624
|
|
|
# Get information from data configuration file |
|
625
|
|
|
data_config = egon.data.config.datasets() |
|
626
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
|
627
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
|
628
|
|
|
file_path = Path(".") / "data_bundle_egon_data" / "zensus_population" |
|
629
|
|
|
dataset = settings()["egon-data"]["--dataset-boundary"] |
|
630
|
|
|
|
|
631
|
|
|
population_table = ( |
|
632
|
|
|
f"{zensus_population_processed['schema']}" |
|
633
|
|
|
f".{zensus_population_processed['table']}" |
|
634
|
|
|
) |
|
635
|
|
|
|
|
636
|
|
|
# Read database configuration from docker-compose.yml |
|
637
|
|
|
docker_db_config = db.credentials() |
|
638
|
|
|
|
|
639
|
|
|
for input_file, table in zensus_misc_processed["file_table_map"].items(): |
|
640
|
|
|
with zipfile.ZipFile(file_path / input_file) as zf: |
|
641
|
|
|
csvfiles = [n for n in zf.namelist() if n.lower()[-3:] == "csv"] |
|
642
|
|
|
for filename in csvfiles: |
|
643
|
|
|
zf.extract(filename) |
|
644
|
|
|
|
|
645
|
|
|
if dataset == "Everything": |
|
646
|
|
|
filename_insert = filename |
|
647
|
|
|
else: |
|
648
|
|
|
filename_insert = filter_zensus_misc(filename, dataset) |
|
649
|
|
|
|
|
650
|
|
|
host = ["-h", f"{docker_db_config['HOST']}"] |
|
651
|
|
|
port = ["-p", f"{docker_db_config['PORT']}"] |
|
652
|
|
|
pgdb = ["-d", f"{docker_db_config['POSTGRES_DB']}"] |
|
653
|
|
|
user = ["-U", f"{docker_db_config['POSTGRES_USER']}"] |
|
654
|
|
|
command = [ |
|
655
|
|
|
"-c", |
|
656
|
|
|
rf"\copy {zensus_population_processed['schema']}.{table}" |
|
657
|
|
|
f"""(grid_id, |
|
658
|
|
|
grid_id_new, |
|
659
|
|
|
attribute, |
|
660
|
|
|
characteristics_code, |
|
661
|
|
|
characteristics_text, |
|
662
|
|
|
quantity, |
|
663
|
|
|
quantity_q) |
|
664
|
|
|
FROM '{filename_insert}' DELIMITER ',' |
|
665
|
|
|
CSV HEADER |
|
666
|
|
|
ENCODING 'iso-8859-1';""", |
|
667
|
|
|
] |
|
668
|
|
|
subprocess.run( |
|
669
|
|
|
["psql"] + host + port + pgdb + user + command, |
|
670
|
|
|
env={"PGPASSWORD": docker_db_config["POSTGRES_PASSWORD"]}, |
|
671
|
|
|
) |
|
672
|
|
|
|
|
673
|
|
|
os.remove(filename) |
|
|
|
|
|
|
674
|
|
|
|
|
675
|
|
|
db.execute_sql( |
|
676
|
|
|
f"""UPDATE {zensus_population_processed['schema']}.{table} as b |
|
677
|
|
|
SET zensus_population_id = zs.id |
|
678
|
|
|
FROM {population_table} zs |
|
679
|
|
|
WHERE b.grid_id = zs.grid_id;""" |
|
680
|
|
|
) |
|
681
|
|
|
|
|
682
|
|
|
db.execute_sql( |
|
683
|
|
|
f"""ALTER TABLE {zensus_population_processed['schema']}.{table} |
|
684
|
|
|
ADD CONSTRAINT {table}_fkey |
|
685
|
|
|
FOREIGN KEY (zensus_population_id) |
|
686
|
|
|
REFERENCES {population_table}(id);""" |
|
687
|
|
|
) |
|
688
|
|
|
|
|
689
|
|
|
# Create combined table |
|
690
|
|
|
create_combined_zensus_table() |
|
691
|
|
|
|
|
692
|
|
|
# Delete entries for unpopulated cells |
|
693
|
|
|
adjust_zensus_misc() |
|
694
|
|
|
|
|
695
|
|
|
|
|
696
|
|
|
def create_combined_zensus_table(): |
|
697
|
|
|
"""Create combined table with buildings, apartments and population per cell |
|
698
|
|
|
|
|
699
|
|
|
Only apartment and building data with acceptable data quality |
|
700
|
|
|
(quantity_q<2) is used, all other data is dropped. For more details on data |
|
701
|
|
|
quality see Zensus docs: |
|
702
|
|
|
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html |
|
703
|
|
|
|
|
704
|
|
|
If there's no data on buildings or apartments for a certain cell, the value |
|
705
|
|
|
for building_count resp. apartment_count contains NULL. |
|
706
|
|
|
""" |
|
707
|
|
|
sql_script = os.path.join( |
|
708
|
|
|
os.path.dirname(__file__), "create_combined_zensus_table.sql" |
|
709
|
|
|
) |
|
710
|
|
|
db.execute_sql_script(sql_script) |
|
711
|
|
|
|
|
712
|
|
|
|
|
713
|
|
|
def adjust_zensus_misc(): |
|
714
|
|
|
"""Delete unpopulated cells in zensus-households, -buildings and -apartments |
|
715
|
|
|
|
|
716
|
|
|
Some unpopulated zensus cells are listed in: |
|
717
|
|
|
- egon_destatis_zensus_household_per_ha |
|
718
|
|
|
- egon_destatis_zensus_building_per_ha |
|
719
|
|
|
- egon_destatis_zensus_apartment_per_ha |
|
720
|
|
|
|
|
721
|
|
|
This can be caused by missing population |
|
722
|
|
|
information due to privacy or other special cases (e.g. holiday homes |
|
723
|
|
|
are listed as buildings but are not permanently populated.) |
|
724
|
|
|
In the following tasks of egon-data, only data of populated cells is used. |
|
725
|
|
|
|
|
726
|
|
|
Returns |
|
727
|
|
|
------- |
|
728
|
|
|
None. |
|
729
|
|
|
|
|
730
|
|
|
""" |
|
731
|
|
|
# Get information from data configuration file |
|
732
|
|
|
data_config = egon.data.config.datasets() |
|
733
|
|
|
zensus_population_processed = data_config["zensus_population"]["processed"] |
|
734
|
|
|
zensus_misc_processed = data_config["zensus_misc"]["processed"] |
|
735
|
|
|
|
|
736
|
|
|
population_table = ( |
|
737
|
|
|
f"{zensus_population_processed['schema']}" |
|
738
|
|
|
f".{zensus_population_processed['table']}" |
|
739
|
|
|
) |
|
740
|
|
|
|
|
741
|
|
|
for input_file, table in zensus_misc_processed["file_table_map"].items(): |
|
742
|
|
|
db.execute_sql( |
|
743
|
|
|
f""" |
|
744
|
|
|
DELETE FROM {zensus_population_processed['schema']}.{table} as b |
|
745
|
|
|
WHERE b.zensus_population_id IN ( |
|
746
|
|
|
SELECT id FROM {population_table} |
|
747
|
|
|
WHERE population < 0);""" |
|
748
|
|
|
) |
|
749
|
|
|
|