1
|
|
|
"""
|
2
|
|
|
The central module containing all code dealing with combined heat and power
|
3
|
|
|
(CHP) plants.
|
4
|
|
|
"""
|
5
|
|
|
from pathlib import Path
|
6
|
|
|
import datetime
|
7
|
|
|
import json
|
8
|
|
|
import time
|
9
|
|
|
|
10
|
|
|
from geoalchemy2 import Geometry
|
11
|
|
|
from shapely.ops import nearest_points
|
12
|
|
|
from sqlalchemy import Boolean, Column, Float, Integer, Sequence, String
|
13
|
|
|
from sqlalchemy.dialects.postgresql import JSONB
|
14
|
|
|
from sqlalchemy.ext.declarative import declarative_base
|
15
|
|
|
from sqlalchemy.orm import sessionmaker
|
16
|
|
|
import geopandas as gpd
|
17
|
|
|
import pandas as pd
|
18
|
|
|
import pypsa
|
19
|
|
|
|
20
|
|
|
from egon.data import config, db
|
21
|
|
|
from egon.data.datasets import Dataset
|
22
|
|
|
from egon.data.datasets.chp.match_nep import insert_large_chp
|
23
|
|
|
from egon.data.datasets.chp.small_chp import (
|
24
|
|
|
assign_use_case,
|
25
|
|
|
existing_chp_smaller_10mw,
|
26
|
|
|
extension_per_federal_state,
|
27
|
|
|
extension_to_areas,
|
28
|
|
|
select_target,
|
29
|
|
|
)
|
30
|
|
|
from egon.data.datasets.mastr import WORKING_DIR_MASTR_OLD
|
31
|
|
|
from egon.data.datasets.power_plants import (
|
32
|
|
|
assign_bus_id,
|
33
|
|
|
assign_voltage_level,
|
34
|
|
|
filter_mastr_geometry,
|
35
|
|
|
scale_prox2now,
|
36
|
|
|
)
|
37
|
|
|
from egon.data.metadata import (
|
38
|
|
|
context,
|
39
|
|
|
generate_resource_fields_from_sqla_model,
|
40
|
|
|
license_egon_data_odbl,
|
41
|
|
|
meta_metadata,
|
42
|
|
|
sources,
|
43
|
|
|
)
|
44
|
|
|
|
45
|
|
|
Base = declarative_base()
|
46
|
|
|
|
47
|
|
|
|
48
|
|
|
class EgonChp(Base):
|
49
|
|
|
__tablename__ = "egon_chp_plants"
|
50
|
|
|
__table_args__ = {"schema": "supply"}
|
51
|
|
|
id = Column(Integer, Sequence("chp_seq"), primary_key=True)
|
52
|
|
|
sources = Column(JSONB)
|
53
|
|
|
source_id = Column(JSONB)
|
54
|
|
|
carrier = Column(String)
|
55
|
|
|
district_heating = Column(Boolean)
|
56
|
|
|
el_capacity = Column(Float)
|
57
|
|
|
th_capacity = Column(Float)
|
58
|
|
|
electrical_bus_id = Column(Integer)
|
59
|
|
|
district_heating_area_id = Column(Integer)
|
60
|
|
|
ch4_bus_id = Column(Integer)
|
61
|
|
|
voltage_level = Column(Integer)
|
62
|
|
|
scenario = Column(String)
|
63
|
|
|
geom = Column(Geometry("POINT", 4326))
|
64
|
|
|
|
65
|
|
|
|
66
|
|
|
class EgonMaStRConventinalWithoutChp(Base):
|
67
|
|
|
__tablename__ = "egon_mastr_conventional_without_chp"
|
68
|
|
|
__table_args__ = {"schema": "supply"}
|
69
|
|
|
id = Column(Integer, Sequence("mastr_conventional_seq"), primary_key=True)
|
70
|
|
|
EinheitMastrNummer = Column(String)
|
71
|
|
|
carrier = Column(String)
|
72
|
|
|
el_capacity = Column(Float)
|
73
|
|
|
plz = Column(Integer)
|
74
|
|
|
city = Column(String)
|
75
|
|
|
federal_state = Column(String)
|
76
|
|
|
geometry = Column(Geometry("POINT", 4326))
|
77
|
|
|
|
78
|
|
|
|
79
|
|
|
def metadata():
|
80
|
|
|
"""Write metadata for heat supply tables
|
81
|
|
|
|
82
|
|
|
Returns
|
83
|
|
|
-------
|
84
|
|
|
None.
|
85
|
|
|
|
86
|
|
|
"""
|
87
|
|
|
|
88
|
|
|
fields = generate_resource_fields_from_sqla_model(EgonChp)
|
89
|
|
|
|
90
|
|
|
fields_df = pd.DataFrame(data=fields).set_index("name")
|
91
|
|
|
fields_df.loc["id", "description"] = "Unique identifyer"
|
92
|
|
|
fields_df.loc["sources", "description"] = "List of sources"
|
93
|
|
|
fields_df.loc[
|
94
|
|
|
"source_id", "description"
|
95
|
|
|
] = "Names of sources, e.g. MaStr_id"
|
96
|
|
|
fields_df.loc["carrier", "description"] = "Energy carrier"
|
97
|
|
|
fields_df.loc[
|
98
|
|
|
"district_heating", "description"
|
99
|
|
|
] = "Used in district heating or not"
|
100
|
|
|
fields_df.loc[
|
101
|
|
|
"el_capacity", "description"
|
102
|
|
|
] = "Installed electrical capacity"
|
103
|
|
|
fields_df.loc["th_capacity", "description"] = "Installed thermal capacity"
|
104
|
|
|
fields_df.loc[
|
105
|
|
|
"electrical_bus_id", "description"
|
106
|
|
|
] = "Index of corresponding electricity bus"
|
107
|
|
|
fields_df.loc[
|
108
|
|
|
"district_heating_area_id", "description"
|
109
|
|
|
] = "Index of corresponding district heating bus"
|
110
|
|
|
fields_df.loc[
|
111
|
|
|
"ch4_bus_id", "description"
|
112
|
|
|
] = "Index of corresponding methane bus"
|
113
|
|
|
fields_df.loc["voltage_level", "description"] = "Voltage level"
|
114
|
|
|
fields_df.loc["scenario", "description"] = "Name of scenario"
|
115
|
|
|
fields_df.loc["geom", "description"] = "Location of CHP plant"
|
116
|
|
|
|
117
|
|
|
fields_df.loc["el_capacity", "unit"] = "MW_el"
|
118
|
|
|
fields_df.loc["th_capacity", "unit"] = "MW_th"
|
119
|
|
|
fields_df.unit.fillna("none", inplace=True)
|
120
|
|
|
|
121
|
|
|
fields = fields_df.reset_index().to_dict(orient="records")
|
122
|
|
|
|
123
|
|
|
meta_district = {
|
124
|
|
|
"name": "supply.egon_chp_plants",
|
125
|
|
|
"title": "eGon combined heat and power plants",
|
126
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION",
|
127
|
|
|
"description": "Combined heat and power plants",
|
128
|
|
|
"language": ["EN"],
|
129
|
|
|
"publicationDate": datetime.date.today().isoformat(),
|
130
|
|
|
"context": context(),
|
131
|
|
|
"spatial": {
|
132
|
|
|
"location": None,
|
133
|
|
|
"extent": "Germany",
|
134
|
|
|
"resolution": None,
|
135
|
|
|
},
|
136
|
|
|
"sources": [
|
137
|
|
|
sources()["vg250"],
|
138
|
|
|
sources()["egon-data"],
|
139
|
|
|
sources()["egon-data_bundle"],
|
140
|
|
|
sources()["openstreetmap"],
|
141
|
|
|
sources()["mastr"],
|
142
|
|
|
],
|
143
|
|
|
"licenses": [license_egon_data_odbl()],
|
144
|
|
|
"contributors": [
|
145
|
|
|
{
|
146
|
|
|
"title": "Clara Büttner",
|
147
|
|
|
"email": "http://github.com/ClaraBuettner",
|
148
|
|
|
"date": time.strftime("%Y-%m-%d"),
|
149
|
|
|
"object": None,
|
150
|
|
|
"comment": "Imported data",
|
151
|
|
|
},
|
152
|
|
|
],
|
153
|
|
|
"resources": [
|
154
|
|
|
{
|
155
|
|
|
"profile": "tabular-data-resource",
|
156
|
|
|
"name": "supply.egon_chp_plants",
|
157
|
|
|
"path": None,
|
158
|
|
|
"format": "PostgreSQL",
|
159
|
|
|
"encoding": "UTF-8",
|
160
|
|
|
"schema": {
|
161
|
|
|
"fields": fields,
|
162
|
|
|
"primaryKey": ["index"],
|
163
|
|
|
"foreignKeys": [],
|
164
|
|
|
},
|
165
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."},
|
166
|
|
|
}
|
167
|
|
|
],
|
168
|
|
|
"metaMetadata": meta_metadata(),
|
169
|
|
|
}
|
170
|
|
|
|
171
|
|
|
# Add metadata as a comment to the table
|
172
|
|
|
db.submit_comment(
|
173
|
|
|
"'" + json.dumps(meta_district) + "'",
|
174
|
|
|
EgonChp.__table__.schema,
|
175
|
|
|
EgonChp.__table__.name,
|
176
|
|
|
)
|
177
|
|
|
|
178
|
|
|
|
179
|
|
|
def create_tables():
|
180
|
|
|
"""Create tables for chp data
|
181
|
|
|
Returns
|
182
|
|
|
-------
|
183
|
|
|
None.
|
184
|
|
|
"""
|
185
|
|
|
|
186
|
|
|
db.execute_sql("CREATE SCHEMA IF NOT EXISTS supply;")
|
187
|
|
|
engine = db.engine()
|
188
|
|
|
EgonChp.__table__.drop(bind=engine, checkfirst=True)
|
189
|
|
|
EgonChp.__table__.create(bind=engine, checkfirst=True)
|
190
|
|
|
EgonMaStRConventinalWithoutChp.__table__.drop(bind=engine, checkfirst=True)
|
191
|
|
|
EgonMaStRConventinalWithoutChp.__table__.create(
|
192
|
|
|
bind=engine, checkfirst=True
|
193
|
|
|
)
|
194
|
|
|
|
195
|
|
|
|
196
|
|
|
def nearest(
|
197
|
|
|
row,
|
198
|
|
|
df,
|
199
|
|
|
centroid=False,
|
200
|
|
|
row_geom_col="geometry",
|
201
|
|
|
df_geom_col="geometry",
|
202
|
|
|
src_column=None,
|
203
|
|
|
):
|
204
|
|
|
"""
|
205
|
|
|
Finds the nearest point and returns the specified column values
|
206
|
|
|
|
207
|
|
|
Parameters
|
208
|
|
|
----------
|
209
|
|
|
row : pandas.Series
|
210
|
|
|
Data to which the nearest data of df is assigned.
|
211
|
|
|
df : pandas.DataFrame
|
212
|
|
|
Data which includes all options for the nearest neighbor alogrithm.
|
213
|
|
|
centroid : boolean
|
214
|
|
|
Use centroid geoemtry. The default is False.
|
215
|
|
|
row_geom_col : str, optional
|
216
|
|
|
Name of row's geometry column. The default is 'geometry'.
|
217
|
|
|
df_geom_col : str, optional
|
218
|
|
|
Name of df's geometry column. The default is 'geometry'.
|
219
|
|
|
src_column : str, optional
|
220
|
|
|
Name of returned df column. The default is None.
|
221
|
|
|
|
222
|
|
|
Returns
|
223
|
|
|
-------
|
224
|
|
|
value : pandas.Series
|
225
|
|
|
Values of specified column of df
|
226
|
|
|
|
227
|
|
|
"""
|
228
|
|
|
|
229
|
|
|
if centroid:
|
230
|
|
|
unary_union = df.centroid.unary_union
|
231
|
|
|
else:
|
232
|
|
|
unary_union = df[df_geom_col].unary_union
|
233
|
|
|
# Find the geometry that is closest
|
234
|
|
|
nearest = (
|
235
|
|
|
df[df_geom_col] == nearest_points(row[row_geom_col], unary_union)[1]
|
236
|
|
|
)
|
237
|
|
|
|
238
|
|
|
# Get the corresponding value from df (matching is based on the geometry)
|
239
|
|
|
value = df[nearest][src_column].values[0]
|
240
|
|
|
|
241
|
|
|
return value
|
242
|
|
|
|
243
|
|
|
|
244
|
|
|
def assign_heat_bus(scenario="eGon2035"):
|
245
|
|
|
"""Selects heat_bus for chps used in district heating.
|
246
|
|
|
|
247
|
|
|
Parameters
|
248
|
|
|
----------
|
249
|
|
|
scenario : str, optional
|
250
|
|
|
Name of the corresponding scenario. The default is 'eGon2035'.
|
251
|
|
|
|
252
|
|
|
Returns
|
253
|
|
|
-------
|
254
|
|
|
None.
|
255
|
|
|
|
256
|
|
|
"""
|
257
|
|
|
sources = config.datasets()["chp_location"]["sources"]
|
258
|
|
|
target = config.datasets()["chp_location"]["targets"]["chp_table"]
|
259
|
|
|
|
260
|
|
|
# Select CHP with use_case = 'district_heating'
|
261
|
|
|
chp = db.select_geodataframe(
|
262
|
|
|
f"""
|
263
|
|
|
SELECT * FROM
|
264
|
|
|
{target['schema']}.{target['table']}
|
265
|
|
|
WHERE scenario = '{scenario}'
|
266
|
|
|
AND district_heating = True
|
267
|
|
|
""",
|
268
|
|
|
index_col="id",
|
269
|
|
|
epsg=4326,
|
270
|
|
|
)
|
271
|
|
|
|
272
|
|
|
# Select district heating areas and their centroid
|
273
|
|
|
district_heating = db.select_geodataframe(
|
274
|
|
|
f"""
|
275
|
|
|
SELECT area_id, ST_Centroid(geom_polygon) as geom
|
276
|
|
|
FROM
|
277
|
|
|
{sources['district_heating_areas']['schema']}.
|
278
|
|
|
{sources['district_heating_areas']['table']}
|
279
|
|
|
WHERE scenario = '{scenario}'
|
280
|
|
|
""",
|
281
|
|
|
epsg=4326,
|
282
|
|
|
)
|
283
|
|
|
|
284
|
|
|
# Assign district heating area_id to district_heating_chp
|
285
|
|
|
# According to nearest centroid of district heating area
|
286
|
|
|
chp["district_heating_area_id"] = chp.apply(
|
287
|
|
|
nearest,
|
288
|
|
|
df=district_heating,
|
289
|
|
|
row_geom_col="geom",
|
290
|
|
|
df_geom_col="geom",
|
291
|
|
|
centroid=True,
|
292
|
|
|
src_column="area_id",
|
293
|
|
|
axis=1,
|
294
|
|
|
)
|
295
|
|
|
|
296
|
|
|
# Drop district heating CHP without heat_bus_id
|
297
|
|
|
db.execute_sql(
|
298
|
|
|
f"""
|
299
|
|
|
DELETE FROM {target['schema']}.{target['table']}
|
300
|
|
|
WHERE scenario = '{scenario}'
|
301
|
|
|
AND district_heating = True
|
302
|
|
|
"""
|
303
|
|
|
)
|
304
|
|
|
|
305
|
|
|
# Insert district heating CHP with heat_bus_id
|
306
|
|
|
session = sessionmaker(bind=db.engine())()
|
307
|
|
|
for i, row in chp.iterrows():
|
308
|
|
|
if row.carrier != "biomass":
|
309
|
|
|
entry = EgonChp(
|
310
|
|
|
id=i,
|
311
|
|
|
sources=row.sources,
|
312
|
|
|
source_id=row.source_id,
|
313
|
|
|
carrier=row.carrier,
|
314
|
|
|
el_capacity=row.el_capacity,
|
315
|
|
|
th_capacity=row.th_capacity,
|
316
|
|
|
electrical_bus_id=row.electrical_bus_id,
|
317
|
|
|
ch4_bus_id=row.ch4_bus_id,
|
318
|
|
|
district_heating_area_id=row.district_heating_area_id,
|
319
|
|
|
district_heating=row.district_heating,
|
320
|
|
|
voltage_level=row.voltage_level,
|
321
|
|
|
scenario=scenario,
|
322
|
|
|
geom=f"SRID=4326;POINT({row.geom.x} {row.geom.y})",
|
323
|
|
|
)
|
324
|
|
|
else:
|
325
|
|
|
entry = EgonChp(
|
326
|
|
|
id=i,
|
327
|
|
|
sources=row.sources,
|
328
|
|
|
source_id=row.source_id,
|
329
|
|
|
carrier=row.carrier,
|
330
|
|
|
el_capacity=row.el_capacity,
|
331
|
|
|
th_capacity=row.th_capacity,
|
332
|
|
|
electrical_bus_id=row.electrical_bus_id,
|
333
|
|
|
district_heating_area_id=row.district_heating_area_id,
|
334
|
|
|
district_heating=row.district_heating,
|
335
|
|
|
voltage_level=row.voltage_level,
|
336
|
|
|
scenario=scenario,
|
337
|
|
|
geom=f"SRID=4326;POINT({row.geom.x} {row.geom.y})",
|
338
|
|
|
)
|
339
|
|
|
session.add(entry)
|
340
|
|
|
session.commit()
|
341
|
|
|
|
342
|
|
|
|
343
|
|
|
def insert_biomass_chp(scenario):
|
344
|
|
|
"""Insert biomass chp plants of future scenario
|
345
|
|
|
|
346
|
|
|
Parameters
|
347
|
|
|
----------
|
348
|
|
|
scenario : str
|
349
|
|
|
Name of scenario.
|
350
|
|
|
|
351
|
|
|
Returns
|
352
|
|
|
-------
|
353
|
|
|
None.
|
354
|
|
|
|
355
|
|
|
"""
|
356
|
|
|
cfg = config.datasets()["chp_location"]
|
357
|
|
|
|
358
|
|
|
# import target values from NEP 2021, scneario C 2035
|
359
|
|
|
target = select_target("biomass", scenario)
|
360
|
|
|
|
361
|
|
|
# import data for MaStR
|
362
|
|
|
mastr = pd.read_csv(
|
363
|
|
|
WORKING_DIR_MASTR_OLD / cfg["sources"]["mastr_biomass"]
|
364
|
|
|
).query("EinheitBetriebsstatus=='InBetrieb'")
|
365
|
|
|
|
366
|
|
|
# Drop entries without federal state or 'AusschließlichWirtschaftszone'
|
367
|
|
|
mastr = mastr[
|
368
|
|
|
mastr.Bundesland.isin(
|
369
|
|
|
pd.read_sql(
|
370
|
|
|
f"""SELECT DISTINCT ON (gen)
|
371
|
|
|
REPLACE(REPLACE(gen, '-', ''), 'ü', 'ue') as states
|
372
|
|
|
FROM {cfg['sources']['vg250_lan']['schema']}.
|
373
|
|
|
{cfg['sources']['vg250_lan']['table']}""",
|
374
|
|
|
con=db.engine(),
|
375
|
|
|
).states.values
|
376
|
|
|
)
|
377
|
|
|
]
|
378
|
|
|
|
379
|
|
|
# Scaling will be done per federal state in case of eGon2035 scenario.
|
380
|
|
|
if scenario == "eGon2035":
|
381
|
|
|
level = "federal_state"
|
382
|
|
|
else:
|
383
|
|
|
level = "country"
|
384
|
|
|
# Choose only entries with valid geometries inside DE/test mode
|
385
|
|
|
mastr_loc = filter_mastr_geometry(mastr).set_geometry("geometry")
|
386
|
|
|
|
387
|
|
|
# Scale capacities to meet target values
|
388
|
|
|
mastr_loc = scale_prox2now(mastr_loc, target, level=level)
|
389
|
|
|
|
390
|
|
|
# Assign bus_id
|
391
|
|
|
if len(mastr_loc) > 0:
|
392
|
|
|
mastr_loc["voltage_level"] = assign_voltage_level(
|
393
|
|
|
mastr_loc, cfg, WORKING_DIR_MASTR_OLD
|
394
|
|
|
)
|
395
|
|
|
mastr_loc = assign_bus_id(mastr_loc, cfg)
|
396
|
|
|
mastr_loc = assign_use_case(mastr_loc, cfg["sources"])
|
397
|
|
|
|
398
|
|
|
# Insert entries with location
|
399
|
|
|
session = sessionmaker(bind=db.engine())()
|
400
|
|
|
for i, row in mastr_loc.iterrows():
|
401
|
|
|
if row.ThermischeNutzleistung > 0:
|
402
|
|
|
entry = EgonChp(
|
403
|
|
|
sources={
|
404
|
|
|
"chp": "MaStR",
|
405
|
|
|
"el_capacity": "MaStR scaled with NEP 2021",
|
406
|
|
|
"th_capacity": "MaStR",
|
407
|
|
|
},
|
408
|
|
|
source_id={"MastrNummer": row.EinheitMastrNummer},
|
409
|
|
|
carrier="biomass",
|
410
|
|
|
el_capacity=row.Nettonennleistung,
|
411
|
|
|
th_capacity=row.ThermischeNutzleistung / 1000,
|
412
|
|
|
scenario=scenario,
|
413
|
|
|
district_heating=row.district_heating,
|
414
|
|
|
electrical_bus_id=row.bus_id,
|
415
|
|
|
voltage_level=row.voltage_level,
|
416
|
|
|
geom=f"SRID=4326;POINT({row.Laengengrad} {row.Breitengrad})",
|
417
|
|
|
)
|
418
|
|
|
session.add(entry)
|
419
|
|
|
session.commit()
|
420
|
|
|
|
421
|
|
|
|
422
|
|
|
def insert_chp_egon2035():
|
423
|
|
|
"""Insert CHP plants for eGon2035 considering NEP and MaStR data
|
424
|
|
|
|
425
|
|
|
Returns
|
426
|
|
|
-------
|
427
|
|
|
None.
|
428
|
|
|
|
429
|
|
|
"""
|
430
|
|
|
|
431
|
|
|
sources = config.datasets()["chp_location"]["sources"]
|
432
|
|
|
|
433
|
|
|
targets = config.datasets()["chp_location"]["targets"]
|
434
|
|
|
|
435
|
|
|
insert_biomass_chp("eGon2035")
|
436
|
|
|
|
437
|
|
|
# Insert large CHPs based on NEP's list of conventional power plants
|
438
|
|
|
MaStR_konv = insert_large_chp(sources, targets["chp_table"], EgonChp)
|
439
|
|
|
|
440
|
|
|
# Insert smaller CHPs (< 10MW) based on existing locations from MaStR
|
441
|
|
|
existing_chp_smaller_10mw(sources, MaStR_konv, EgonChp)
|
442
|
|
|
|
443
|
|
|
gpd.GeoDataFrame(
|
444
|
|
|
MaStR_konv[
|
445
|
|
|
[
|
446
|
|
|
"EinheitMastrNummer",
|
447
|
|
|
"el_capacity",
|
448
|
|
|
"geometry",
|
449
|
|
|
"carrier",
|
450
|
|
|
"plz",
|
451
|
|
|
"city",
|
452
|
|
|
"federal_state",
|
453
|
|
|
]
|
454
|
|
|
]
|
455
|
|
|
).to_postgis(
|
456
|
|
|
targets["mastr_conventional_without_chp"]["table"],
|
457
|
|
|
schema=targets["mastr_conventional_without_chp"]["schema"],
|
458
|
|
|
con=db.engine(),
|
459
|
|
|
if_exists="replace",
|
460
|
|
|
)
|
461
|
|
|
|
462
|
|
|
|
463
|
|
|
def extension_BW():
|
464
|
|
|
extension_per_federal_state("BadenWuerttemberg", EgonChp)
|
465
|
|
|
|
466
|
|
|
|
467
|
|
|
def extension_BY():
|
468
|
|
|
extension_per_federal_state("Bayern", EgonChp)
|
469
|
|
|
|
470
|
|
|
|
471
|
|
|
def extension_HB():
|
472
|
|
|
extension_per_federal_state("Bremen", EgonChp)
|
473
|
|
|
|
474
|
|
|
|
475
|
|
|
def extension_BB():
|
476
|
|
|
extension_per_federal_state("Brandenburg", EgonChp)
|
477
|
|
|
|
478
|
|
|
|
479
|
|
|
def extension_HH():
|
480
|
|
|
extension_per_federal_state("Hamburg", EgonChp)
|
481
|
|
|
|
482
|
|
|
|
483
|
|
|
def extension_HE():
|
484
|
|
|
extension_per_federal_state("Hessen", EgonChp)
|
485
|
|
|
|
486
|
|
|
|
487
|
|
|
def extension_MV():
|
488
|
|
|
extension_per_federal_state("MecklenburgVorpommern", EgonChp)
|
489
|
|
|
|
490
|
|
|
|
491
|
|
|
def extension_NS():
|
492
|
|
|
extension_per_federal_state("Niedersachsen", EgonChp)
|
493
|
|
|
|
494
|
|
|
|
495
|
|
|
def extension_NW():
|
496
|
|
|
extension_per_federal_state("NordrheinWestfalen", EgonChp)
|
497
|
|
|
|
498
|
|
|
|
499
|
|
|
def extension_SN():
|
500
|
|
|
extension_per_federal_state("Sachsen", EgonChp)
|
501
|
|
|
|
502
|
|
|
|
503
|
|
|
def extension_TH():
|
504
|
|
|
extension_per_federal_state("Thueringen", EgonChp)
|
505
|
|
|
|
506
|
|
|
|
507
|
|
|
def extension_SL():
|
508
|
|
|
extension_per_federal_state("Saarland", EgonChp)
|
509
|
|
|
|
510
|
|
|
|
511
|
|
|
def extension_ST():
|
512
|
|
|
extension_per_federal_state("SachsenAnhalt", EgonChp)
|
513
|
|
|
|
514
|
|
|
|
515
|
|
|
def extension_RP():
|
516
|
|
|
extension_per_federal_state("RheinlandPfalz", EgonChp)
|
517
|
|
|
|
518
|
|
|
|
519
|
|
|
def extension_BE():
|
520
|
|
|
extension_per_federal_state("Berlin", EgonChp)
|
521
|
|
|
|
522
|
|
|
|
523
|
|
|
def extension_SH():
|
524
|
|
|
extension_per_federal_state("SchleswigHolstein", EgonChp)
|
525
|
|
|
|
526
|
|
|
|
527
|
|
|
def insert_chp_egon100re():
|
528
|
|
|
"""Insert CHP plants for eGon100RE considering results from pypsa-eur-sec
|
529
|
|
|
|
530
|
|
|
Returns
|
531
|
|
|
-------
|
532
|
|
|
None.
|
533
|
|
|
|
534
|
|
|
"""
|
535
|
|
|
|
536
|
|
|
sources = config.datasets()["chp_location"]["sources"]
|
537
|
|
|
|
538
|
|
|
db.execute_sql(
|
539
|
|
|
f"""
|
540
|
|
|
DELETE FROM {EgonChp.__table__.schema}.{EgonChp.__table__.name}
|
541
|
|
|
WHERE scenario = 'eGon100RE'
|
542
|
|
|
"""
|
543
|
|
|
)
|
544
|
|
|
|
545
|
|
|
# select target values from pypsa-eur-sec
|
546
|
|
|
additional_capacity = db.select_dataframe(
|
547
|
|
|
"""
|
548
|
|
|
SELECT capacity
|
549
|
|
|
FROM supply.egon_scenario_capacities
|
550
|
|
|
WHERE scenario_name = 'eGon100RE'
|
551
|
|
|
AND carrier = 'urban_central_gas_CHP'
|
552
|
|
|
"""
|
553
|
|
|
).capacity[0]
|
554
|
|
|
|
555
|
|
|
if config.settings()["egon-data"]["--dataset-boundary"] != "Everything":
|
556
|
|
|
additional_capacity /= 16
|
557
|
|
|
target_file = (
|
558
|
|
|
Path(".")
|
559
|
|
|
/ "data_bundle_egon_data"
|
560
|
|
|
/ "pypsa_eur_sec"
|
561
|
|
|
/ "2022-07-26-egondata-integration"
|
562
|
|
|
/ "postnetworks"
|
563
|
|
|
/ "elec_s_37_lv2.0__Co2L0-1H-T-H-B-I-dist1_2050.nc"
|
564
|
|
|
)
|
565
|
|
|
|
566
|
|
|
network = pypsa.Network(str(target_file))
|
567
|
|
|
chp_index = "DE0 0 urban central gas CHP"
|
568
|
|
|
|
569
|
|
|
standard_chp_th = 10
|
570
|
|
|
standard_chp_el = (
|
571
|
|
|
standard_chp_th
|
572
|
|
|
* network.links.loc[chp_index, "efficiency"]
|
573
|
|
|
/ network.links.loc[chp_index, "efficiency2"]
|
574
|
|
|
)
|
575
|
|
|
|
576
|
|
|
areas = db.select_geodataframe(
|
577
|
|
|
f"""
|
578
|
|
|
SELECT
|
579
|
|
|
residential_and_service_demand as demand, area_id,
|
580
|
|
|
ST_Transform(ST_PointOnSurface(geom_polygon), 4326) as geom
|
581
|
|
|
FROM
|
582
|
|
|
{sources['district_heating_areas']['schema']}.
|
583
|
|
|
{sources['district_heating_areas']['table']}
|
584
|
|
|
WHERE scenario = 'eGon100RE'
|
585
|
|
|
"""
|
586
|
|
|
)
|
587
|
|
|
|
588
|
|
|
existing_chp = pd.DataFrame(
|
589
|
|
|
data={
|
590
|
|
|
"el_capacity": standard_chp_el,
|
591
|
|
|
"th_capacity": standard_chp_th,
|
592
|
|
|
"voltage_level": 5,
|
593
|
|
|
},
|
594
|
|
|
index=range(1),
|
595
|
|
|
)
|
596
|
|
|
|
597
|
|
|
flh = (
|
598
|
|
|
network.links_t.p0[chp_index].sum()
|
599
|
|
|
/ network.links.p_nom_opt[chp_index]
|
600
|
|
|
)
|
601
|
|
|
|
602
|
|
|
extension_to_areas(
|
603
|
|
|
areas,
|
604
|
|
|
additional_capacity,
|
605
|
|
|
existing_chp,
|
606
|
|
|
flh,
|
607
|
|
|
EgonChp,
|
608
|
|
|
district_heating=True,
|
609
|
|
|
scenario="eGon100RE",
|
610
|
|
|
)
|
611
|
|
|
|
612
|
|
|
|
613
|
|
|
# Add one task per federal state for small CHP extension
|
614
|
|
|
if (
|
615
|
|
|
config.settings()["egon-data"]["--dataset-boundary"]
|
616
|
|
|
== "Schleswig-Holstein"
|
617
|
|
|
):
|
618
|
|
|
extension = extension_SH
|
619
|
|
|
else:
|
620
|
|
|
extension = {
|
621
|
|
|
extension_BW,
|
622
|
|
|
extension_BY,
|
623
|
|
|
extension_HB,
|
624
|
|
|
extension_BB,
|
625
|
|
|
extension_HE,
|
626
|
|
|
extension_MV,
|
627
|
|
|
extension_NS,
|
628
|
|
|
extension_NW,
|
629
|
|
|
extension_SH,
|
630
|
|
|
extension_HH,
|
631
|
|
|
extension_RP,
|
632
|
|
|
extension_SL,
|
633
|
|
|
extension_SN,
|
634
|
|
|
extension_ST,
|
635
|
|
|
extension_TH,
|
636
|
|
|
extension_BE,
|
637
|
|
|
}
|
638
|
|
|
|
639
|
|
|
|
640
|
|
|
class Chp(Dataset):
|
641
|
|
|
"""
|
642
|
|
|
Extract combined heat and power plants for each scenario
|
643
|
|
|
|
644
|
|
|
This dataset creates combined heat and power (CHP) plants for each scenario and defines their use case.
|
645
|
|
|
The method bases on existing CHP plants from Marktstammdatenregister. For the eGon2035 scenario,
|
646
|
|
|
a list of CHP plans from the grid operator is used for new largescale CHP plants. CHP < 10MW are
|
647
|
|
|
randomly distributed.
|
648
|
|
|
Depending on the distance to a district heating grid, it is decided if the CHP is used to
|
649
|
|
|
supply a district heating grid or used by an industrial site.
|
650
|
|
|
|
651
|
|
|
|
652
|
|
|
*Dependencies*
|
653
|
|
|
* :py:class:`GasAreaseGon100RE <egon.data.datasets.gas_areas.GasAreaseGon100RE>`
|
654
|
|
|
* :py:class:`GasAreaseGon2035 <egon.data.datasets.gas_areas.GasAreaseGon2035>`
|
655
|
|
|
* :py:class:`DistrictHeatingAreas <egon.data.datasets.district_heating_areas.DistrictHeatingAreas>`
|
656
|
|
|
* :py:class:`IndustrialDemandCurves <egon.data.datasets.industry.IndustrialDemandCurves>`
|
657
|
|
|
* :py:class:`OsmLanduse <egon.data.datasets.loadarea.OsmLanduse>`
|
658
|
|
|
* :py:func:`download_mastr_data <egon.data.datasets.mastr.download_mastr_data>`
|
659
|
|
|
* :py:func:`define_mv_grid_districts <egon.data.datasets.mv_grid_districts.define_mv_grid_districts>`
|
660
|
|
|
* :py:class:`ScenarioCapacities <egon.data.datasets.scenario_capacities.ScenarioCapacities>`
|
661
|
|
|
|
662
|
|
|
|
663
|
|
|
*Resulting tables*
|
664
|
|
|
* :py:class:`supply.egon_chp_plants <egon.data.datasets.chp.EgonChp>` is created and filled
|
665
|
|
|
* :py:class:`supply.egon_mastr_conventional_without_chp <egon.data.datasets.chp.EgonMaStRConventinalWithoutChp>` is created and filled
|
666
|
|
|
|
667
|
|
|
"""
|
668
|
|
|
|
669
|
|
|
#:
|
670
|
|
|
name: str = "Chp"
|
671
|
|
|
#:
|
672
|
|
|
version: str = "0.0.7"
|
673
|
|
|
|
674
|
|
|
def __init__(self, dependencies):
|
675
|
|
|
super().__init__(
|
676
|
|
|
name=self.name,
|
677
|
|
|
version=self.version,
|
678
|
|
|
dependencies=dependencies,
|
679
|
|
|
tasks=(
|
680
|
|
|
create_tables,
|
681
|
|
|
{insert_chp_egon2035, insert_chp_egon100re},
|
682
|
|
|
assign_heat_bus,
|
683
|
|
|
extension,
|
684
|
|
|
metadata,
|
685
|
|
|
),
|
686
|
|
|
)
|
687
|
|
|
|