1
|
|
|
from datetime import date, datetime |
2
|
|
|
from pathlib import Path |
3
|
|
|
import json |
4
|
|
|
import os |
5
|
|
|
import time |
6
|
|
|
|
7
|
|
|
from sqlalchemy import ARRAY, Column, Float, Integer, String, Text |
8
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
9
|
|
|
import geopandas as gpd |
10
|
|
|
import numpy as np |
11
|
|
|
import pandas as pd |
12
|
|
|
|
13
|
|
|
from egon.data import db |
14
|
|
|
import egon.data.datasets.era5 as era |
15
|
|
|
|
16
|
|
|
try: |
17
|
|
|
from disaggregator import temporal |
18
|
|
|
except ImportError as e: |
19
|
|
|
pass |
20
|
|
|
|
21
|
|
|
from math import ceil |
22
|
|
|
|
23
|
|
|
from egon.data.datasets import Dataset |
24
|
|
|
from egon.data.datasets.heat_demand_timeseries.daily import ( |
25
|
|
|
daily_demand_shares_per_climate_zone, |
26
|
|
|
map_climate_zones_to_zensus, |
27
|
|
|
) |
28
|
|
|
from egon.data.datasets.heat_demand_timeseries.idp_pool import create, select |
29
|
|
|
from egon.data.datasets.heat_demand_timeseries.service_sector import ( |
30
|
|
|
CTS_demand_scale, |
31
|
|
|
) |
32
|
|
|
from egon.data.metadata import ( |
33
|
|
|
context, |
34
|
|
|
license_egon_data_odbl, |
35
|
|
|
meta_metadata, |
36
|
|
|
sources, |
37
|
|
|
) |
38
|
|
|
|
39
|
|
|
Base = declarative_base() |
40
|
|
|
|
41
|
|
|
|
42
|
|
|
class EgonTimeseriesDistrictHeating(Base): |
43
|
|
|
__tablename__ = "egon_timeseries_district_heating" |
44
|
|
|
__table_args__ = {"schema": "demand"} |
45
|
|
|
area_id = Column(Integer, primary_key=True) |
46
|
|
|
scenario = Column(Text, primary_key=True) |
47
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
class EgonEtragoTimeseriesIndividualHeating(Base): |
51
|
|
|
__tablename__ = "egon_etrago_timeseries_individual_heating" |
52
|
|
|
__table_args__ = {"schema": "demand"} |
53
|
|
|
bus_id = Column(Integer, primary_key=True) |
54
|
|
|
scenario = Column(Text, primary_key=True) |
55
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
class EgonIndividualHeatingPeakLoads(Base): |
59
|
|
|
__tablename__ = "egon_individual_heating_peak_loads" |
60
|
|
|
__table_args__ = {"schema": "demand"} |
61
|
|
|
building_id = Column(Integer, primary_key=True) |
62
|
|
|
scenario = Column(Text, primary_key=True) |
63
|
|
|
w_th = Column(Float(53)) |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
class EgonEtragoHeatCts(Base): |
67
|
|
|
__tablename__ = "egon_etrago_heat_cts" |
68
|
|
|
__table_args__ = {"schema": "demand"} |
69
|
|
|
|
70
|
|
|
bus_id = Column(Integer, primary_key=True) |
71
|
|
|
scn_name = Column(String, primary_key=True) |
72
|
|
|
p_set = Column(ARRAY(Float)) |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
def create_timeseries_for_building(building_id, scenario): |
76
|
|
|
"""Generates final heat demand timeseries for a specific building |
77
|
|
|
|
78
|
|
|
Parameters |
79
|
|
|
---------- |
80
|
|
|
building_id : int |
81
|
|
|
Index of the selected building |
82
|
|
|
scenario : str |
83
|
|
|
Name of the selected scenario. |
84
|
|
|
|
85
|
|
|
Returns |
86
|
|
|
------- |
87
|
|
|
pandas.DataFrame |
88
|
|
|
Hourly heat demand timeseries in MW for the selected building |
89
|
|
|
|
90
|
|
|
""" |
91
|
|
|
|
92
|
|
|
return db.select_dataframe( |
93
|
|
|
f""" |
94
|
|
|
SELECT building_demand * UNNEST(idp) as demand |
95
|
|
|
FROM |
96
|
|
|
( |
97
|
|
|
SELECT |
98
|
|
|
demand.demand |
99
|
|
|
/ building.count |
100
|
|
|
* daily_demand.daily_demand_share as building_demand, |
101
|
|
|
daily_demand.day_of_year |
102
|
|
|
FROM |
103
|
|
|
|
104
|
|
|
(SELECT demand FROM |
105
|
|
|
demand.egon_peta_heat |
106
|
|
|
WHERE scenario = '{scenario}' |
107
|
|
|
AND sector = 'residential' |
108
|
|
|
AND zensus_population_id IN( |
109
|
|
|
SELECT zensus_population_id FROM |
110
|
|
|
demand.egon_heat_timeseries_selected_profiles |
111
|
|
|
WHERE building_id = {building_id})) as demand, |
112
|
|
|
|
113
|
|
|
(SELECT COUNT(building_id) |
114
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
115
|
|
|
WHERE zensus_population_id IN( |
116
|
|
|
SELECT zensus_population_id FROM |
117
|
|
|
demand.egon_heat_timeseries_selected_profiles |
118
|
|
|
WHERE building_id = {building_id})) as building, |
119
|
|
|
|
120
|
|
|
(SELECT daily_demand_share, day_of_year FROM |
121
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
122
|
|
|
WHERE climate_zone = ( |
123
|
|
|
SELECT climate_zone FROM boundaries.egon_map_zensus_climate_zones |
124
|
|
|
WHERE zensus_population_id = |
125
|
|
|
( |
126
|
|
|
SELECT zensus_population_id |
127
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
128
|
|
|
WHERE building_id = {building_id} |
129
|
|
|
) |
130
|
|
|
)) as daily_demand) as daily_demand |
131
|
|
|
|
132
|
|
|
JOIN (SELECT b.idp, ordinality as day |
133
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a, |
134
|
|
|
UNNEST (a.selected_idp_profiles) WITH ORDINALITY as selected_idp |
135
|
|
|
JOIN demand.egon_heat_idp_pool b |
136
|
|
|
ON selected_idp = b.index |
137
|
|
|
WHERE a.building_id = {building_id}) as demand_profile |
138
|
|
|
ON demand_profile.day = daily_demand.day_of_year |
139
|
|
|
""" |
140
|
|
|
) |
141
|
|
|
|
142
|
|
|
|
143
|
|
|
def create_district_heating_profile(scenario, area_id): |
144
|
|
|
"""Create a heat demand profile for a district heating grid. |
145
|
|
|
|
146
|
|
|
The created heat demand profile includes the demands of households |
147
|
|
|
and the service sector. |
148
|
|
|
|
149
|
|
|
Parameters |
150
|
|
|
---------- |
151
|
|
|
scenario : str |
152
|
|
|
The name of the selected scenario. |
153
|
|
|
area_id : int |
154
|
|
|
The index of the selected district heating grid. |
155
|
|
|
|
156
|
|
|
Returns |
157
|
|
|
------- |
158
|
|
|
pd.DataFrame |
159
|
|
|
An hourly heat demand timeseries in MW for the selected district |
160
|
|
|
heating grid. |
161
|
|
|
|
162
|
|
|
""" |
163
|
|
|
|
164
|
|
|
start_time = datetime.now() |
165
|
|
|
|
166
|
|
|
df = db.select_dataframe( |
167
|
|
|
f""" |
168
|
|
|
|
169
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
170
|
|
|
FROM |
171
|
|
|
|
172
|
|
|
( |
173
|
|
|
SELECT demand.demand * |
174
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
175
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
176
|
|
|
demand_profile.building_id, |
177
|
|
|
c.day_of_year, |
178
|
|
|
ordinality |
179
|
|
|
|
180
|
|
|
FROM |
181
|
|
|
|
182
|
|
|
(SELECT zensus_population_id, demand FROM |
183
|
|
|
demand.egon_peta_heat |
184
|
|
|
WHERE scenario = '{scenario}' |
185
|
|
|
AND sector = 'residential' |
186
|
|
|
AND zensus_population_id IN( |
187
|
|
|
SELECT zensus_population_id FROM |
188
|
|
|
demand.egon_map_zensus_district_heating_areas |
189
|
|
|
WHERE scenario = '{scenario}' |
190
|
|
|
AND area_id = {area_id} |
191
|
|
|
)) as demand |
192
|
|
|
|
193
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
194
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
195
|
|
|
|
196
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
197
|
|
|
ON c.climate_zone = b.climate_zone |
198
|
|
|
|
199
|
|
|
JOIN ( |
200
|
|
|
SELECT e.idp, ordinality as day, zensus_population_id, building_id |
201
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
202
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
203
|
|
|
JOIN demand.egon_heat_idp_pool e |
204
|
|
|
ON selected_idp = e.index |
205
|
|
|
WHERE zensus_population_id IN ( |
206
|
|
|
SELECT zensus_population_id FROM |
207
|
|
|
demand.egon_map_zensus_district_heating_areas |
208
|
|
|
WHERE scenario = '{scenario}' |
209
|
|
|
AND area_id = {area_id} |
210
|
|
|
)) demand_profile |
211
|
|
|
ON (demand_profile.day = c.day_of_year AND |
212
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
213
|
|
|
|
214
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
215
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
216
|
|
|
WHERE zensus_population_id IN( |
217
|
|
|
SELECT zensus_population_id FROM |
218
|
|
|
demand.egon_heat_timeseries_selected_profiles |
219
|
|
|
WHERE zensus_population_id IN ( |
220
|
|
|
SELECT zensus_population_id FROM |
221
|
|
|
demand.egon_map_zensus_district_heating_areas |
222
|
|
|
WHERE scenario = '{scenario}' |
223
|
|
|
AND area_id = {area_id} |
224
|
|
|
)) |
225
|
|
|
GROUP BY zensus_population_id) building |
226
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
227
|
|
|
|
228
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
229
|
|
|
) result |
230
|
|
|
|
231
|
|
|
|
232
|
|
|
GROUP BY hour_of_year |
233
|
|
|
|
234
|
|
|
""" |
235
|
|
|
) |
236
|
|
|
|
237
|
|
|
print( |
238
|
|
|
f"Time to create time series for district heating grid {scenario}" |
239
|
|
|
f" {area_id}:\n{datetime.now() - start_time}" |
240
|
|
|
) |
241
|
|
|
|
242
|
|
|
return df |
243
|
|
|
|
244
|
|
|
|
245
|
|
|
def create_district_heating_profile_python_like(scenario="eGon2035"): |
246
|
|
|
"""Creates profiles for all district heating grids in one scenario. |
247
|
|
|
Similar to create_district_heating_profile but faster and needs more RAM. |
248
|
|
|
The results are directly written into the database. |
249
|
|
|
|
250
|
|
|
Parameters |
251
|
|
|
---------- |
252
|
|
|
scenario : str |
253
|
|
|
Name of the selected scenario. |
254
|
|
|
|
255
|
|
|
Returns |
256
|
|
|
------- |
257
|
|
|
None. |
258
|
|
|
|
259
|
|
|
""" |
260
|
|
|
|
261
|
|
|
start_time = datetime.now() |
262
|
|
|
|
263
|
|
|
idp_df = db.select_dataframe( |
264
|
|
|
""" |
265
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
266
|
|
|
""", |
267
|
|
|
index_col="index", |
268
|
|
|
) |
269
|
|
|
|
270
|
|
|
district_heating_grids = db.select_dataframe( |
271
|
|
|
f""" |
272
|
|
|
SELECT area_id |
273
|
|
|
FROM demand.egon_district_heating_areas |
274
|
|
|
WHERE scenario = '{scenario}' |
275
|
|
|
""" |
276
|
|
|
) |
277
|
|
|
|
278
|
|
|
annual_demand = db.select_dataframe( |
279
|
|
|
f""" |
280
|
|
|
SELECT |
281
|
|
|
a.zensus_population_id, |
282
|
|
|
demand / c.count as per_building, |
283
|
|
|
area_id, |
284
|
|
|
demand as demand_total |
285
|
|
|
FROM |
286
|
|
|
demand.egon_peta_heat a |
287
|
|
|
INNER JOIN ( |
288
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
289
|
|
|
WHERE scenario = '{scenario}' |
290
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id |
291
|
|
|
|
292
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
293
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
294
|
|
|
WHERE zensus_population_id IN( |
295
|
|
|
SELECT zensus_population_id FROM |
296
|
|
|
demand.egon_heat_timeseries_selected_profiles |
297
|
|
|
WHERE zensus_population_id IN ( |
298
|
|
|
SELECT zensus_population_id FROM |
299
|
|
|
boundaries.egon_map_zensus_grid_districts |
300
|
|
|
)) |
301
|
|
|
GROUP BY zensus_population_id)c |
302
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
303
|
|
|
|
304
|
|
|
WHERE a.scenario = '{scenario}' |
305
|
|
|
AND a.sector = 'residential' |
306
|
|
|
|
307
|
|
|
""", |
308
|
|
|
index_col="zensus_population_id", |
309
|
|
|
) |
310
|
|
|
|
311
|
|
|
annual_demand = annual_demand[ |
312
|
|
|
~annual_demand.index.duplicated(keep="first") |
313
|
|
|
] |
314
|
|
|
|
315
|
|
|
daily_demand_shares = db.select_dataframe( |
316
|
|
|
""" |
317
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
318
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
319
|
|
|
""" |
320
|
|
|
) |
321
|
|
|
|
322
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
323
|
|
|
aggregation_level="district" |
324
|
|
|
) |
325
|
|
|
|
326
|
|
|
# TODO: use session_scope! |
327
|
|
|
from sqlalchemy.orm import sessionmaker |
328
|
|
|
|
329
|
|
|
session = sessionmaker(bind=db.engine())() |
330
|
|
|
|
331
|
|
|
print(datetime.now() - start_time) |
332
|
|
|
|
333
|
|
|
start_time = datetime.now() |
334
|
|
|
for area in district_heating_grids.area_id.unique(): |
335
|
|
|
selected_profiles = db.select_dataframe( |
336
|
|
|
f""" |
337
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
338
|
|
|
selected_idp, ordinality as day, b.area_id |
339
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
340
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
341
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
342
|
|
|
INNER JOIN ( |
343
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
344
|
|
|
WHERE scenario = '{scenario}' |
345
|
|
|
AND area_id = '{area}' |
346
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id , |
347
|
|
|
|
348
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
349
|
|
|
|
350
|
|
|
""" |
351
|
|
|
) |
352
|
|
|
|
353
|
|
|
if not selected_profiles.empty: |
354
|
|
|
df = pd.merge( |
355
|
|
|
selected_profiles, |
356
|
|
|
daily_demand_shares, |
357
|
|
|
on=["day", "climate_zone"], |
358
|
|
|
) |
359
|
|
|
|
360
|
|
|
slice_df = pd.merge( |
361
|
|
|
df[df.area_id == area], |
362
|
|
|
idp_df, |
363
|
|
|
left_on="selected_idp", |
364
|
|
|
right_on="index", |
365
|
|
|
) |
366
|
|
|
|
367
|
|
|
for hour in range(24): |
368
|
|
|
slice_df[hour] = ( |
369
|
|
|
slice_df.idp.str[hour] |
370
|
|
|
.mul(slice_df.daily_demand_share) |
371
|
|
|
.mul( |
372
|
|
|
annual_demand.loc[ |
373
|
|
|
slice_df.zensus_population_id.values, |
374
|
|
|
"per_building", |
375
|
|
|
].values |
376
|
|
|
) |
377
|
|
|
) |
378
|
|
|
|
379
|
|
|
diff = ( |
380
|
|
|
slice_df.groupby("day").sum()[range(24)].sum().sum() |
381
|
|
|
- annual_demand[ |
382
|
|
|
annual_demand.area_id == area |
383
|
|
|
].demand_total.sum() |
384
|
|
|
) / ( |
385
|
|
|
annual_demand[annual_demand.area_id == area].demand_total.sum() |
386
|
|
|
) |
387
|
|
|
|
388
|
|
|
assert ( |
389
|
|
|
abs(diff) < 0.03 |
390
|
|
|
), f"""Deviation of residential heat demand time |
391
|
|
|
series for district heating grid {str(area)} is {diff}""" |
392
|
|
|
|
393
|
|
|
hh = np.concatenate( |
394
|
|
|
slice_df.groupby("day").sum()[range(24)].values |
395
|
|
|
).ravel() |
396
|
|
|
|
397
|
|
|
cts = CTS_demand_dist[ |
398
|
|
|
(CTS_demand_dist.scenario == scenario) |
399
|
|
|
& (CTS_demand_dist.index == area) |
400
|
|
|
].drop("scenario", axis="columns") |
401
|
|
|
|
402
|
|
|
if (not selected_profiles.empty) and not cts.empty: |
403
|
|
|
entry = EgonTimeseriesDistrictHeating( |
404
|
|
|
area_id=int(area), |
405
|
|
|
scenario=scenario, |
406
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
|
|
|
|
407
|
|
|
) |
408
|
|
|
elif (not selected_profiles.empty) and cts.empty: |
409
|
|
|
entry = EgonTimeseriesDistrictHeating( |
410
|
|
|
area_id=int(area), |
411
|
|
|
scenario=scenario, |
412
|
|
|
dist_aggregated_mw=(hh).tolist(), |
413
|
|
|
) |
414
|
|
|
elif not cts.empty: |
415
|
|
|
entry = EgonTimeseriesDistrictHeating( |
416
|
|
|
area_id=int(area), |
417
|
|
|
scenario=scenario, |
418
|
|
|
dist_aggregated_mw=(cts.values[0]).tolist(), |
419
|
|
|
) |
420
|
|
|
|
421
|
|
|
session.add(entry) |
|
|
|
|
422
|
|
|
session.commit() |
423
|
|
|
|
424
|
|
|
print( |
425
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
426
|
|
|
) |
427
|
|
|
print(datetime.now() - start_time) |
428
|
|
|
|
429
|
|
|
|
430
|
|
|
def create_individual_heat_per_mv_grid(scenario="eGon2035", mv_grid_id=1564): |
431
|
|
|
start_time = datetime.now() |
432
|
|
|
df = db.select_dataframe( |
433
|
|
|
f""" |
434
|
|
|
|
435
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
436
|
|
|
FROM |
437
|
|
|
|
438
|
|
|
( |
439
|
|
|
SELECT demand.demand * |
440
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
441
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
442
|
|
|
demand_profile.building_id, |
443
|
|
|
c.day_of_year, |
444
|
|
|
ordinality |
445
|
|
|
|
446
|
|
|
FROM |
447
|
|
|
|
448
|
|
|
(SELECT zensus_population_id, demand FROM |
449
|
|
|
demand.egon_peta_heat |
450
|
|
|
WHERE scenario = '{scenario}' |
451
|
|
|
AND sector = 'residential' |
452
|
|
|
AND zensus_population_id IN ( |
453
|
|
|
SELECT zensus_population_id FROM |
454
|
|
|
boundaries.egon_map_zensus_grid_districts |
455
|
|
|
WHERE bus_id = {mv_grid_id} |
456
|
|
|
)) as demand |
457
|
|
|
|
458
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
459
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
460
|
|
|
|
461
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
462
|
|
|
ON c.climate_zone = b.climate_zone |
463
|
|
|
|
464
|
|
|
JOIN ( |
465
|
|
|
SELECT |
466
|
|
|
e.idp, ordinality as day, zensus_population_id, building_id |
467
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
468
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
469
|
|
|
JOIN demand.egon_heat_idp_pool e |
470
|
|
|
ON selected_idp = e.index |
471
|
|
|
WHERE zensus_population_id IN ( |
472
|
|
|
SELECT zensus_population_id FROM |
473
|
|
|
boundaries.egon_map_zensus_grid_districts |
474
|
|
|
WHERE bus_id = {mv_grid_id} |
475
|
|
|
)) demand_profile |
476
|
|
|
ON (demand_profile.day = c.day_of_year AND |
477
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
478
|
|
|
|
479
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
480
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
481
|
|
|
WHERE zensus_population_id IN( |
482
|
|
|
SELECT zensus_population_id FROM |
483
|
|
|
demand.egon_heat_timeseries_selected_profiles |
484
|
|
|
WHERE zensus_population_id IN ( |
485
|
|
|
SELECT zensus_population_id FROM |
486
|
|
|
boundaries.egon_map_zensus_grid_districts |
487
|
|
|
WHERE bus_id = {mv_grid_id} |
488
|
|
|
)) |
489
|
|
|
GROUP BY zensus_population_id) building |
490
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
491
|
|
|
|
492
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
493
|
|
|
) result |
494
|
|
|
|
495
|
|
|
|
496
|
|
|
GROUP BY hour_of_year |
497
|
|
|
|
498
|
|
|
""" |
499
|
|
|
) |
500
|
|
|
|
501
|
|
|
print(f"Time to create time series for mv grid {scenario} {mv_grid_id}:") |
502
|
|
|
print(datetime.now() - start_time) |
503
|
|
|
|
504
|
|
|
return df |
505
|
|
|
|
506
|
|
|
|
507
|
|
|
def calulate_peak_load(df, scenario): |
508
|
|
|
# peat load in W_th |
509
|
|
|
data = ( |
510
|
|
|
df.groupby("building_id") |
511
|
|
|
.max()[range(24)] |
512
|
|
|
.max(axis=1) |
513
|
|
|
.mul(1000000) |
514
|
|
|
.astype(int) |
515
|
|
|
.reset_index() |
516
|
|
|
) |
517
|
|
|
|
518
|
|
|
data["scenario"] = scenario |
519
|
|
|
|
520
|
|
|
data.rename({0: "w_th"}, axis="columns", inplace=True) |
521
|
|
|
|
522
|
|
|
data.to_sql( |
523
|
|
|
EgonIndividualHeatingPeakLoads.__table__.name, |
524
|
|
|
schema=EgonIndividualHeatingPeakLoads.__table__.schema, |
525
|
|
|
con=db.engine(), |
526
|
|
|
if_exists="append", |
527
|
|
|
index=False, |
528
|
|
|
) |
529
|
|
|
|
530
|
|
|
|
531
|
|
|
def create_individual_heating_peak_loads(scenario="eGon2035"): |
532
|
|
|
engine = db.engine() |
533
|
|
|
|
534
|
|
|
EgonIndividualHeatingPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
535
|
|
|
|
536
|
|
|
EgonIndividualHeatingPeakLoads.__table__.create( |
537
|
|
|
bind=engine, checkfirst=True |
538
|
|
|
) |
539
|
|
|
|
540
|
|
|
start_time = datetime.now() |
541
|
|
|
|
542
|
|
|
idp_df = db.select_dataframe( |
543
|
|
|
""" |
544
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
545
|
|
|
""", |
546
|
|
|
index_col="index", |
547
|
|
|
) |
548
|
|
|
|
549
|
|
|
annual_demand = db.select_dataframe( |
550
|
|
|
f""" |
551
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building, bus_id |
552
|
|
|
FROM demand.egon_peta_heat a |
553
|
|
|
|
554
|
|
|
|
555
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
556
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
557
|
|
|
WHERE zensus_population_id IN( |
558
|
|
|
SELECT zensus_population_id FROM |
559
|
|
|
demand.egon_heat_timeseries_selected_profiles |
560
|
|
|
WHERE zensus_population_id IN ( |
561
|
|
|
SELECT zensus_population_id FROM |
562
|
|
|
boundaries.egon_map_zensus_grid_districts |
563
|
|
|
)) |
564
|
|
|
GROUP BY zensus_population_id)c |
565
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
566
|
|
|
|
567
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
568
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
569
|
|
|
|
570
|
|
|
WHERE a.scenario = '{scenario}' |
571
|
|
|
AND a.sector = 'residential' |
572
|
|
|
AND a.zensus_population_id NOT IN ( |
573
|
|
|
SELECT zensus_population_id |
574
|
|
|
FROM demand.egon_map_zensus_district_heating_areas |
575
|
|
|
WHERE scenario = '{scenario}' |
576
|
|
|
) |
577
|
|
|
|
578
|
|
|
""", |
579
|
|
|
index_col="zensus_population_id", |
580
|
|
|
) |
581
|
|
|
|
582
|
|
|
daily_demand_shares = db.select_dataframe( |
583
|
|
|
""" |
584
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
585
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
586
|
|
|
""" |
587
|
|
|
) |
588
|
|
|
|
589
|
|
|
start_time = datetime.now() |
590
|
|
|
for grid in annual_demand.bus_id.unique(): |
591
|
|
|
selected_profiles = db.select_dataframe( |
592
|
|
|
f""" |
593
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
594
|
|
|
selected_idp, ordinality as day |
595
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
596
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
597
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
598
|
|
|
, |
599
|
|
|
|
600
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
601
|
|
|
|
602
|
|
|
WHERE a.zensus_population_id NOT IN ( |
603
|
|
|
SELECT zensus_population_id |
604
|
|
|
FROM demand.egon_map_zensus_district_heating_areas |
605
|
|
|
WHERE scenario = '{scenario}' |
606
|
|
|
) |
607
|
|
|
AND a.zensus_population_id IN ( |
608
|
|
|
SELECT zensus_population_id |
609
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
610
|
|
|
WHERE bus_id = '{grid}' |
611
|
|
|
) |
612
|
|
|
|
613
|
|
|
""" |
614
|
|
|
) |
615
|
|
|
|
616
|
|
|
df = pd.merge( |
617
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
618
|
|
|
) |
619
|
|
|
|
620
|
|
|
slice_df = pd.merge( |
621
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
622
|
|
|
) |
623
|
|
|
|
624
|
|
|
for hour in range(24): |
625
|
|
|
slice_df[hour] = ( |
626
|
|
|
slice_df.idp.str[hour] |
627
|
|
|
.mul(slice_df.daily_demand_share) |
628
|
|
|
.mul( |
629
|
|
|
annual_demand.loc[ |
630
|
|
|
slice_df.zensus_population_id.values, "per_building" |
631
|
|
|
].values |
632
|
|
|
) |
633
|
|
|
) |
634
|
|
|
|
635
|
|
|
calulate_peak_load(slice_df, scenario) |
636
|
|
|
|
637
|
|
|
print(f"Time to create peak loads per building for {scenario}") |
638
|
|
|
print(datetime.now() - start_time) |
639
|
|
|
|
640
|
|
|
|
641
|
|
|
def create_individual_heating_profile_python_like(scenario="eGon2035"): |
642
|
|
|
start_time = datetime.now() |
643
|
|
|
|
644
|
|
|
idp_df = db.select_dataframe( |
645
|
|
|
f""" |
646
|
|
|
SELECT index, idp FROM demand.egon_heat_idp_pool |
647
|
|
|
""", |
648
|
|
|
index_col="index", |
649
|
|
|
) |
650
|
|
|
|
651
|
|
|
annual_demand = db.select_dataframe( |
652
|
|
|
f""" |
653
|
|
|
SELECT |
654
|
|
|
a.zensus_population_id, |
655
|
|
|
demand / c.count as per_building, |
656
|
|
|
demand as demand_total, |
657
|
|
|
bus_id |
658
|
|
|
FROM demand.egon_peta_heat a |
659
|
|
|
|
660
|
|
|
|
661
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
662
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
663
|
|
|
WHERE zensus_population_id IN( |
664
|
|
|
SELECT zensus_population_id FROM |
665
|
|
|
demand.egon_heat_timeseries_selected_profiles |
666
|
|
|
WHERE zensus_population_id IN ( |
667
|
|
|
SELECT zensus_population_id FROM |
668
|
|
|
boundaries.egon_map_zensus_grid_districts |
669
|
|
|
)) |
670
|
|
|
GROUP BY zensus_population_id)c |
671
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
672
|
|
|
|
673
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
674
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
675
|
|
|
|
676
|
|
|
WHERE a.scenario = '{scenario}' |
677
|
|
|
AND a.sector = 'residential' |
678
|
|
|
AND a.zensus_population_id NOT IN ( |
679
|
|
|
SELECT zensus_population_id |
680
|
|
|
FROM demand.egon_map_zensus_district_heating_areas |
681
|
|
|
WHERE scenario = '{scenario}' |
682
|
|
|
) |
683
|
|
|
|
684
|
|
|
""", |
685
|
|
|
index_col="zensus_population_id", |
686
|
|
|
) |
687
|
|
|
|
688
|
|
|
daily_demand_shares = db.select_dataframe( |
689
|
|
|
""" |
690
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
691
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
692
|
|
|
""" |
693
|
|
|
) |
694
|
|
|
|
695
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
696
|
|
|
aggregation_level="district" |
697
|
|
|
) |
698
|
|
|
|
699
|
|
|
# TODO: use session_scope! |
700
|
|
|
from sqlalchemy.orm import sessionmaker |
701
|
|
|
|
702
|
|
|
session = sessionmaker(bind=db.engine())() |
703
|
|
|
|
704
|
|
|
print( |
705
|
|
|
f"Time to create overhead for time series for district heating scenario {scenario}" |
706
|
|
|
) |
707
|
|
|
print(datetime.now() - start_time) |
708
|
|
|
|
709
|
|
|
start_time = datetime.now() |
710
|
|
|
for grid in annual_demand.bus_id.unique(): |
711
|
|
|
|
712
|
|
|
selected_profiles = db.select_dataframe( |
713
|
|
|
f""" |
714
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
715
|
|
|
selected_idp, ordinality as day |
716
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles a |
717
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
718
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
719
|
|
|
, |
720
|
|
|
|
721
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
722
|
|
|
|
723
|
|
|
WHERE a.zensus_population_id NOT IN ( |
724
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
725
|
|
|
WHERE scenario = '{scenario}' |
726
|
|
|
) |
727
|
|
|
AND a.zensus_population_id IN ( |
728
|
|
|
SELECT zensus_population_id |
729
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
730
|
|
|
WHERE bus_id = '{grid}' |
731
|
|
|
) |
732
|
|
|
|
733
|
|
|
""" |
734
|
|
|
) |
735
|
|
|
|
736
|
|
|
df = pd.merge( |
737
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
738
|
|
|
) |
739
|
|
|
|
740
|
|
|
slice_df = pd.merge( |
741
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
742
|
|
|
) |
743
|
|
|
|
744
|
|
|
for hour in range(24): |
745
|
|
|
slice_df[hour] = ( |
746
|
|
|
slice_df.idp.str[hour] |
747
|
|
|
.mul(slice_df.daily_demand_share) |
748
|
|
|
.mul( |
749
|
|
|
annual_demand.loc[ |
750
|
|
|
slice_df.zensus_population_id.values, "per_building" |
751
|
|
|
].values |
752
|
|
|
) |
753
|
|
|
) |
754
|
|
|
|
755
|
|
|
cts = CTS_demand_grid[ |
756
|
|
|
(CTS_demand_grid.scenario == scenario) |
757
|
|
|
& (CTS_demand_grid.index == grid) |
758
|
|
|
].drop("scenario", axis="columns") |
759
|
|
|
|
760
|
|
|
hh = np.concatenate( |
761
|
|
|
slice_df.groupby("day").sum()[range(24)].values |
762
|
|
|
).ravel() |
763
|
|
|
|
764
|
|
|
diff = ( |
765
|
|
|
slice_df.groupby("day").sum()[range(24)].sum().sum() |
766
|
|
|
- annual_demand[annual_demand.bus_id == grid].demand_total.sum() |
767
|
|
|
) / (annual_demand[annual_demand.bus_id == grid].demand_total.sum()) |
768
|
|
|
|
769
|
|
|
assert abs(diff) < 0.03, ( |
770
|
|
|
"Deviation of residential heat demand time series for mv" |
771
|
|
|
f" grid {grid} is {diff}" |
772
|
|
|
) |
773
|
|
|
|
774
|
|
|
if not (slice_df[hour].empty or cts.empty): |
|
|
|
|
775
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
776
|
|
|
bus_id=int(grid), |
777
|
|
|
scenario=scenario, |
778
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
779
|
|
|
) |
780
|
|
|
elif not slice_df[hour].empty: |
781
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
782
|
|
|
bus_id=int(grid), |
783
|
|
|
scenario=scenario, |
784
|
|
|
dist_aggregated_mw=(hh).tolist(), |
785
|
|
|
) |
786
|
|
|
elif not cts.empty: |
787
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
788
|
|
|
bus_id=int(grid), |
789
|
|
|
scenario=scenario, |
790
|
|
|
dist_aggregated_mw=(cts).tolist(), |
791
|
|
|
) |
792
|
|
|
|
793
|
|
|
session.add(entry) |
|
|
|
|
794
|
|
|
|
795
|
|
|
session.commit() |
796
|
|
|
|
797
|
|
|
print( |
798
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
799
|
|
|
) |
800
|
|
|
print(datetime.now() - start_time) |
801
|
|
|
|
802
|
|
|
|
803
|
|
|
def district_heating(method="python"): |
804
|
|
|
engine = db.engine() |
805
|
|
|
EgonTimeseriesDistrictHeating.__table__.drop(bind=engine, checkfirst=True) |
806
|
|
|
EgonTimeseriesDistrictHeating.__table__.create( |
807
|
|
|
bind=engine, checkfirst=True |
808
|
|
|
) |
809
|
|
|
|
810
|
|
|
if method == "python": |
811
|
|
|
create_district_heating_profile_python_like("eGon2035") |
812
|
|
|
create_district_heating_profile_python_like("eGon100RE") |
813
|
|
|
|
814
|
|
|
else: |
815
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
816
|
|
|
aggregation_level="district" |
817
|
|
|
) |
818
|
|
|
|
819
|
|
|
ids = db.select_dataframe( |
820
|
|
|
""" |
821
|
|
|
SELECT area_id, scenario |
822
|
|
|
FROM demand.egon_district_heating_areas |
823
|
|
|
""" |
824
|
|
|
) |
825
|
|
|
|
826
|
|
|
df = pd.DataFrame( |
827
|
|
|
columns=["area_id", "scenario", "dist_aggregated_mw"] |
828
|
|
|
) |
829
|
|
|
|
830
|
|
|
for index, row in ids.iterrows(): |
831
|
|
|
series = create_district_heating_profile( |
832
|
|
|
scenario=row.scenario, area_id=row.area_id |
833
|
|
|
) |
834
|
|
|
|
835
|
|
|
cts = ( |
836
|
|
|
CTS_demand_dist[ |
837
|
|
|
(CTS_demand_dist.scenario == row.scenario) |
838
|
|
|
& (CTS_demand_dist.index == row.area_id) |
839
|
|
|
] |
840
|
|
|
.drop("scenario", axis="columns") |
841
|
|
|
.transpose() |
842
|
|
|
) |
843
|
|
|
|
844
|
|
|
if not cts.empty: |
845
|
|
|
data = ( |
846
|
|
|
cts[row.area_id] + series.demand_profile |
847
|
|
|
).values.tolist() |
848
|
|
|
else: |
849
|
|
|
data = series.demand_profile.values.tolist() |
850
|
|
|
|
851
|
|
|
df = df.append( |
852
|
|
|
pd.Series( |
853
|
|
|
data={ |
854
|
|
|
"area_id": row.area_id, |
855
|
|
|
"scenario": row.scenario, |
856
|
|
|
"dist_aggregated_mw": data, |
857
|
|
|
}, |
858
|
|
|
), |
859
|
|
|
ignore_index=True, |
860
|
|
|
) |
861
|
|
|
|
862
|
|
|
df.to_sql( |
863
|
|
|
"egon_timeseries_district_heating", |
864
|
|
|
schema="demand", |
865
|
|
|
con=db.engine(), |
866
|
|
|
if_exists="append", |
867
|
|
|
index=False, |
868
|
|
|
) |
869
|
|
|
|
870
|
|
|
|
871
|
|
|
def individual_heating_per_mv_grid_tables(method="python"): |
872
|
|
|
engine = db.engine() |
873
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
874
|
|
|
bind=engine, checkfirst=True |
875
|
|
|
) |
876
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
877
|
|
|
bind=engine, checkfirst=True |
878
|
|
|
) |
879
|
|
|
|
880
|
|
|
|
881
|
|
|
def individual_heating_per_mv_grid_2035(method="python"): |
882
|
|
|
create_individual_heating_profile_python_like("eGon2035") |
883
|
|
|
|
884
|
|
|
|
885
|
|
|
def individual_heating_per_mv_grid_100(method="python"): |
886
|
|
|
create_individual_heating_profile_python_like("eGon100RE") |
887
|
|
|
|
888
|
|
|
|
889
|
|
|
def individual_heating_per_mv_grid(method="python"): |
890
|
|
|
if method == "python": |
891
|
|
|
engine = db.engine() |
892
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
893
|
|
|
bind=engine, checkfirst=True |
894
|
|
|
) |
895
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
896
|
|
|
bind=engine, checkfirst=True |
897
|
|
|
) |
898
|
|
|
|
899
|
|
|
create_individual_heating_profile_python_like("eGon2035") |
900
|
|
|
create_individual_heating_profile_python_like("eGon100RE") |
901
|
|
|
|
902
|
|
|
else: |
903
|
|
|
engine = db.engine() |
904
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
905
|
|
|
bind=engine, checkfirst=True |
906
|
|
|
) |
907
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
908
|
|
|
bind=engine, checkfirst=True |
909
|
|
|
) |
910
|
|
|
|
911
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
912
|
|
|
aggregation_level="district" |
913
|
|
|
) |
914
|
|
|
df = pd.DataFrame(columns=["bus_id", "scenario", "dist_aggregated_mw"]) |
915
|
|
|
|
916
|
|
|
ids = db.select_dataframe( |
917
|
|
|
""" |
918
|
|
|
SELECT bus_id |
919
|
|
|
FROM grid.egon_mv_grid_district |
920
|
|
|
""" |
921
|
|
|
) |
922
|
|
|
|
923
|
|
|
for index, row in ids.iterrows(): |
924
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
925
|
|
|
series = create_individual_heat_per_mv_grid( |
926
|
|
|
scenario, row.bus_id |
927
|
|
|
) |
928
|
|
|
cts = ( |
929
|
|
|
CTS_demand_grid[ |
930
|
|
|
(CTS_demand_grid.scenario == scenario) |
931
|
|
|
& (CTS_demand_grid.index == row.bus_id) |
932
|
|
|
] |
933
|
|
|
.drop("scenario", axis="columns") |
934
|
|
|
.transpose() |
935
|
|
|
) |
936
|
|
|
if not cts.empty: |
937
|
|
|
data = ( |
938
|
|
|
cts[row.bus_id] + series.demand_profile |
939
|
|
|
).values.tolist() |
940
|
|
|
else: |
941
|
|
|
data = series.demand_profile.values.tolist() |
942
|
|
|
|
943
|
|
|
df = df.append( |
944
|
|
|
pd.Series( |
945
|
|
|
data={ |
946
|
|
|
"bus_id": row.bus_id, |
947
|
|
|
"scenario": scenario, |
948
|
|
|
"dist_aggregated_mw": data, |
949
|
|
|
}, |
950
|
|
|
), |
951
|
|
|
ignore_index=True, |
952
|
|
|
) |
953
|
|
|
|
954
|
|
|
df.to_sql( |
955
|
|
|
"egon_etrago_timeseries_individual_heating", |
956
|
|
|
schema="demand", |
957
|
|
|
con=db.engine(), |
958
|
|
|
if_exists="append", |
959
|
|
|
index=False, |
960
|
|
|
) |
961
|
|
|
|
962
|
|
|
|
963
|
|
|
def store_national_profiles(): |
964
|
|
|
scenario = "eGon100RE" |
965
|
|
|
|
966
|
|
|
df = db.select_dataframe( |
967
|
|
|
f""" |
968
|
|
|
|
969
|
|
|
SELECT SUM(building_demand_per_hour) as "residential rural" |
970
|
|
|
FROM |
971
|
|
|
|
972
|
|
|
( |
973
|
|
|
SELECT demand.demand * |
974
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
975
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
976
|
|
|
demand_profile.building_id, |
977
|
|
|
c.day_of_year, |
978
|
|
|
ordinality |
979
|
|
|
|
980
|
|
|
FROM |
981
|
|
|
|
982
|
|
|
(SELECT zensus_population_id, demand FROM |
983
|
|
|
demand.egon_peta_heat |
984
|
|
|
WHERE scenario = '{scenario}' |
985
|
|
|
AND sector = 'residential' |
986
|
|
|
) as demand |
987
|
|
|
|
988
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
989
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
990
|
|
|
|
991
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
992
|
|
|
ON c.climate_zone = b.climate_zone |
993
|
|
|
|
994
|
|
|
JOIN ( |
995
|
|
|
SELECT e.idp, ordinality as day, zensus_population_id, building_id |
996
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles d, |
997
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
998
|
|
|
JOIN demand.egon_heat_idp_pool e |
999
|
|
|
ON selected_idp = e.index |
1000
|
|
|
) demand_profile |
1001
|
|
|
ON (demand_profile.day = c.day_of_year AND |
1002
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
1003
|
|
|
|
1004
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
1005
|
|
|
FROM demand.egon_heat_timeseries_selected_profiles |
1006
|
|
|
WHERE zensus_population_id IN( |
1007
|
|
|
SELECT zensus_population_id FROM |
1008
|
|
|
demand.egon_heat_timeseries_selected_profiles |
1009
|
|
|
) |
1010
|
|
|
GROUP BY zensus_population_id) building |
1011
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
1012
|
|
|
|
1013
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
1014
|
|
|
) result |
1015
|
|
|
|
1016
|
|
|
|
1017
|
|
|
GROUP BY hour_of_year |
1018
|
|
|
|
1019
|
|
|
""" |
1020
|
|
|
) |
1021
|
|
|
|
1022
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
1023
|
|
|
aggregation_level="district" |
1024
|
|
|
) |
1025
|
|
|
|
1026
|
|
|
df["service rural"] = ( |
1027
|
|
|
CTS_demand_dist.loc[CTS_demand_dist.scenario == scenario] |
1028
|
|
|
.drop("scenario", axis=1) |
1029
|
|
|
.sum() |
1030
|
|
|
) |
1031
|
|
|
|
1032
|
|
|
df["urban central"] = db.select_dataframe( |
1033
|
|
|
f""" |
1034
|
|
|
SELECT sum(demand) as "urban central" |
1035
|
|
|
|
1036
|
|
|
FROM demand.egon_timeseries_district_heating, |
1037
|
|
|
UNNEST (dist_aggregated_mw) WITH ORDINALITY as demand |
1038
|
|
|
|
1039
|
|
|
WHERE scenario = '{scenario}' |
1040
|
|
|
|
1041
|
|
|
GROUP BY ordinality |
1042
|
|
|
|
1043
|
|
|
""" |
1044
|
|
|
) |
1045
|
|
|
|
1046
|
|
|
folder = Path(".") / "input-pypsa-eur-sec" |
1047
|
|
|
# Create the folder, if it does not exists already |
1048
|
|
|
if not os.path.exists(folder): |
1049
|
|
|
os.mkdir(folder) |
1050
|
|
|
|
1051
|
|
|
df.to_csv(folder / f"heat_demand_timeseries_DE_{scenario}.csv") |
1052
|
|
|
|
1053
|
|
|
|
1054
|
|
|
def export_etrago_cts_heat_profiles(): |
1055
|
|
|
"""Export heat cts load profiles at mv substation level |
1056
|
|
|
to etrago-table in the database |
1057
|
|
|
|
1058
|
|
|
Returns |
1059
|
|
|
------- |
1060
|
|
|
None. |
1061
|
|
|
|
1062
|
|
|
""" |
1063
|
|
|
|
1064
|
|
|
# Calculate cts heat profiles at substation |
1065
|
|
|
_, CTS_grid, _ = CTS_demand_scale("district") |
1066
|
|
|
|
1067
|
|
|
# Change format |
1068
|
|
|
data = CTS_grid.drop(columns="scenario") |
1069
|
|
|
df_etrago_cts_heat_profiles = pd.DataFrame( |
1070
|
|
|
index=data.index, columns=["scn_name", "p_set"] |
1071
|
|
|
) |
1072
|
|
|
df_etrago_cts_heat_profiles.p_set = data.values.tolist() |
1073
|
|
|
df_etrago_cts_heat_profiles.scn_name = CTS_grid["scenario"] |
1074
|
|
|
df_etrago_cts_heat_profiles.reset_index(inplace=True) |
1075
|
|
|
|
1076
|
|
|
# Drop and recreate Table if exists |
1077
|
|
|
EgonEtragoHeatCts.__table__.drop(bind=db.engine(), checkfirst=True) |
1078
|
|
|
EgonEtragoHeatCts.__table__.create(bind=db.engine(), checkfirst=True) |
1079
|
|
|
|
1080
|
|
|
# Write heat ts into db |
1081
|
|
|
with db.session_scope() as session: |
1082
|
|
|
session.bulk_insert_mappings( |
1083
|
|
|
EgonEtragoHeatCts, |
1084
|
|
|
df_etrago_cts_heat_profiles.to_dict(orient="records"), |
1085
|
|
|
) |
1086
|
|
|
|
1087
|
|
|
|
1088
|
|
|
def metadata(): |
1089
|
|
|
fields = [ |
1090
|
|
|
{ |
1091
|
|
|
"description": "Index of corresponding district heating area", |
1092
|
|
|
"name": "area_id", |
1093
|
|
|
"type": "integer", |
1094
|
|
|
"unit": "none", |
1095
|
|
|
}, |
1096
|
|
|
{ |
1097
|
|
|
"description": "Name of scenario", |
1098
|
|
|
"name": "scenario", |
1099
|
|
|
"type": "str", |
1100
|
|
|
"unit": "none", |
1101
|
|
|
}, |
1102
|
|
|
{ |
1103
|
|
|
"description": "Heat demand time series", |
1104
|
|
|
"name": "dist_aggregated_mw", |
1105
|
|
|
"type": "array of floats", |
1106
|
|
|
"unit": "MW", |
1107
|
|
|
}, |
1108
|
|
|
] |
1109
|
|
|
|
1110
|
|
|
meta_district = { |
1111
|
|
|
"name": "demand.egon_timeseries_district_heating", |
1112
|
|
|
"title": "eGon heat demand time series for district heating grids", |
1113
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
1114
|
|
|
"description": "Heat demand time series for district heating grids", |
1115
|
|
|
"language": ["EN"], |
1116
|
|
|
"publicationDate": date.today().isoformat(), |
1117
|
|
|
"context": context(), |
1118
|
|
|
"spatial": { |
1119
|
|
|
"location": None, |
1120
|
|
|
"extent": "Germany", |
1121
|
|
|
"resolution": None, |
1122
|
|
|
}, |
1123
|
|
|
"sources": [ |
1124
|
|
|
sources()["era5"], |
1125
|
|
|
sources()["vg250"], |
1126
|
|
|
sources()["egon-data"], |
1127
|
|
|
sources()["egon-data_bundle"], |
1128
|
|
|
sources()["peta"], |
1129
|
|
|
], |
1130
|
|
|
"licenses": [license_egon_data_odbl()], |
1131
|
|
|
"contributors": [ |
1132
|
|
|
{ |
1133
|
|
|
"title": "Clara Büttner", |
1134
|
|
|
"email": "http://github.com/ClaraBuettner", |
1135
|
|
|
"date": time.strftime("%Y-%m-%d"), |
1136
|
|
|
"object": None, |
1137
|
|
|
"comment": "Imported data", |
1138
|
|
|
}, |
1139
|
|
|
], |
1140
|
|
|
"resources": [ |
1141
|
|
|
{ |
1142
|
|
|
"profile": "tabular-data-resource", |
1143
|
|
|
"name": "demand.egon_timeseries_district_heating", |
1144
|
|
|
"path": None, |
1145
|
|
|
"format": "PostgreSQL", |
1146
|
|
|
"encoding": "UTF-8", |
1147
|
|
|
"schema": { |
1148
|
|
|
"fields": fields, |
1149
|
|
|
"primaryKey": ["index"], |
1150
|
|
|
"foreignKeys": [], |
1151
|
|
|
}, |
1152
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."}, |
1153
|
|
|
} |
1154
|
|
|
], |
1155
|
|
|
"metaMetadata": meta_metadata(), |
1156
|
|
|
} |
1157
|
|
|
|
1158
|
|
|
# Add metadata as a comment to the table |
1159
|
|
|
db.submit_comment( |
1160
|
|
|
"'" + json.dumps(meta_district) + "'", |
1161
|
|
|
EgonTimeseriesDistrictHeating.__table__.schema, |
1162
|
|
|
EgonTimeseriesDistrictHeating.__table__.name, |
1163
|
|
|
) |
1164
|
|
|
|
1165
|
|
|
|
1166
|
|
|
|
1167
|
|
|
class HeatTimeSeries(Dataset): |
1168
|
|
|
""" |
1169
|
|
|
Chooses heat demand profiles for each residential and CTS building |
1170
|
|
|
|
1171
|
|
|
This dataset creates heat demand profiles in an hourly resoultion. |
1172
|
|
|
Time series for CTS buildings are created using the SLP-gas method implemented |
1173
|
|
|
in the demandregio disagregator with the function :py:func:`export_etrago_cts_heat_profiles` |
1174
|
|
|
and stored in the database. |
1175
|
|
|
Time series for residential buildings are created based on a variety of synthetical created |
1176
|
|
|
individual demand profiles that are part of :py:class:`DataBundle <egon.data.datasets.data_bundle.DataBundle>`. |
1177
|
|
|
This method is desribed within the functions and in this publication: |
1178
|
|
|
C. Büttner, J. Amme, J. Endres, A. Malla, B. Schachler, I. Cußmann, |
1179
|
|
|
Open modeling of electricity and heat demand curves for all |
1180
|
|
|
residential buildings in Germany, Energy Informatics 5 (1) (2022) 21. |
1181
|
|
|
doi:10.1186/s42162-022-00201-y. |
1182
|
|
|
|
1183
|
|
|
|
1184
|
|
|
*Dependencies* |
1185
|
|
|
* :py:class:`DataBundle <egon.data.datasets.data_bundle.DataBundle>` |
1186
|
|
|
* :py:class:`DemandRegio <egon.data.datasets.demandregio.DemandRegio>` |
1187
|
|
|
* :py:class:`HeatDemandImport <egon.data.datasets.heat_demand.HeatDemandImport>` |
1188
|
|
|
* :py:class:`DistrictHeatingAreas <egon.data.datasets.district_heating_areas.DistrictHeatingAreas>` |
1189
|
|
|
* :py:class:`Vg250 <egon.data.datasets.vg250.Vg250>` |
1190
|
|
|
* :py:class:`ZensusMvGridDistricts <egon.data.datasets.zensus_mv_grid_districts.ZensusMvGridDistricts>` |
1191
|
|
|
* :py:func:`hh_demand_buildings_setup <egon.data.datasets.electricity_demand_timeseries.hh_buildings.map_houseprofiles_to_buildings>` |
1192
|
|
|
* :py:class:`WeatherData <egon.data.datasets.era5.WeatherData>` |
1193
|
|
|
|
1194
|
|
|
|
1195
|
|
|
*Resulting tables* |
1196
|
|
|
* :py:class:`demand.egon_timeseries_district_heating <egon.data.datasets.heat_demand_timeseries.EgonTimeseriesDistrictHeating>` is created and filled |
1197
|
|
|
* :py:class:`demand.egon_etrago_heat_cts <egon.data.datasets.heat_demand_timeseries.EgonEtragoHeatCts>` is created and filled |
1198
|
|
|
* :py:class:`demand.egon_heat_timeseries_selected_profiles <egon.data.datasets.heat_demand_timeseries.idp_pool.EgonHeatTimeseries>` is created and filled |
1199
|
|
|
* :py:class:`demand.egon_daily_heat_demand_per_climate_zone <egon.data.datasets.heat_demand_timeseries.daily.EgonDailyHeatDemandPerClimateZone>` |
1200
|
|
|
is created and filled |
1201
|
|
|
* :py:class:`boundaries.egon_map_zensus_climate_zones <egon.data.datasets.heat_demand_timeseries.daily.EgonMapZensusClimateZones>` is created and filled |
1202
|
|
|
|
1203
|
|
|
""" |
1204
|
|
|
|
1205
|
|
|
#: |
1206
|
|
|
name: str = "HeatTimeSeries" |
1207
|
|
|
#: |
1208
|
|
|
version: str = "0.0.8" |
1209
|
|
|
|
1210
|
|
|
def __init__(self, dependencies): |
1211
|
|
|
super().__init__( |
1212
|
|
|
name=self.name, |
1213
|
|
|
version=self.version, |
1214
|
|
|
dependencies=dependencies, |
1215
|
|
|
tasks=( |
1216
|
|
|
{ |
1217
|
|
|
export_etrago_cts_heat_profiles, |
1218
|
|
|
map_climate_zones_to_zensus, |
1219
|
|
|
daily_demand_shares_per_climate_zone, |
1220
|
|
|
create, |
1221
|
|
|
}, |
1222
|
|
|
select, |
1223
|
|
|
district_heating, |
1224
|
|
|
metadata, |
1225
|
|
|
# store_national_profiles, |
1226
|
|
|
), |
1227
|
|
|
) |
1228
|
|
|
|