| Conditions | 24 | 
| Total Lines | 556 | 
| Code Lines | 359 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.sanity_checks.sanitycheck_emobility_mit() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """  | 
            ||
| 505 | input_geo_thermal = db.select_dataframe(  | 
            ||
| 506 | """SELECT carrier,  | 
            ||
| 507 | SUM(capacity::numeric) as Urban_central_geo_thermal_MW  | 
            ||
| 508 | FROM supply.egon_scenario_capacities  | 
            ||
| 509 | WHERE carrier= 'urban_central_geo_thermal'  | 
            ||
| 510 |             AND scenario_name IN ('eGon2035') | 
            ||
| 511 | GROUP BY (carrier);  | 
            ||
| 512 | """,  | 
            ||
| 513 | warning=False,  | 
            ||
| 514 | )["urban_central_geo_thermal_mw"].values[0]  | 
            ||
| 515 | |||
| 516 | output_geo_thermal = db.select_dataframe(  | 
            ||
| 517 | """SELECT carrier, SUM(p_nom::numeric) as geo_thermal_MW  | 
            ||
| 518 | FROM grid.egon_etrago_generator  | 
            ||
| 519 | WHERE carrier= 'geo_thermal'  | 
            ||
| 520 |             AND scn_name IN ('eGon2035') | 
            ||
| 521 | GROUP BY (carrier);  | 
            ||
| 522 | """,  | 
            ||
| 523 | warning=False,  | 
            ||
| 524 | )["geo_thermal_mw"].values[0]  | 
            ||
| 525 | |||
| 526 | e_geo_thermal = (  | 
            ||
| 527 | round((output_geo_thermal - input_geo_thermal) / input_geo_thermal, 2)  | 
            ||
| 528 | * 100  | 
            ||
| 529 | )  | 
            ||
| 530 |     logger.info(f"'geothermal': {e_geo_thermal} %") | 
            ||
| 531 | |||
| 532 | |||
| 533 | def residential_electricity_annual_sum(rtol=1e-5):  | 
            ||
| 534 | """Sanity check for dataset electricity_demand_timeseries :  | 
            ||
| 535 | Demand_Building_Assignment  | 
            ||
| 536 | |||
| 537 | Aggregate the annual demand of all census cells at NUTS3 to compare  | 
            ||
| 538 | with initial scaling parameters from DemandRegio.  | 
            ||
| 539 | """  | 
            ||
| 540 | |||
| 541 | df_nuts3_annual_sum = db.select_dataframe(  | 
            ||
| 542 | sql="""  | 
            ||
| 543 | SELECT dr.nuts3, dr.scenario, dr.demand_regio_sum, profiles.profile_sum  | 
            ||
| 544 | FROM (  | 
            ||
| 545 | SELECT scenario, SUM(demand) AS profile_sum, vg250_nuts3  | 
            ||
| 546 | FROM demand.egon_demandregio_zensus_electricity AS egon,  | 
            ||
| 547 | boundaries.egon_map_zensus_vg250 AS boundaries  | 
            ||
| 548 | Where egon.zensus_population_id = boundaries.zensus_population_id  | 
            ||
| 549 | AND sector = 'residential'  | 
            ||
| 550 | GROUP BY vg250_nuts3, scenario  | 
            ||
| 551 | ) AS profiles  | 
            ||
| 552 | JOIN (  | 
            ||
| 553 | SELECT nuts3, scenario, sum(demand) AS demand_regio_sum  | 
            ||
| 554 | FROM demand.egon_demandregio_hh  | 
            ||
| 555 | GROUP BY year, scenario, nuts3  | 
            ||
| 556 | ) AS dr  | 
            ||
| 557 | ON profiles.vg250_nuts3 = dr.nuts3 and profiles.scenario = dr.scenario  | 
            ||
| 558 | """  | 
            ||
| 559 | )  | 
            ||
| 560 | |||
| 561 | np.testing.assert_allclose(  | 
            ||
| 562 | actual=df_nuts3_annual_sum["profile_sum"],  | 
            ||
| 563 | desired=df_nuts3_annual_sum["demand_regio_sum"],  | 
            ||
| 564 | rtol=rtol,  | 
            ||
| 565 | verbose=False,  | 
            ||
| 566 | )  | 
            ||
| 567 | |||
| 568 | logger.info(  | 
            ||
| 569 | "Aggregated annual residential electricity demand"  | 
            ||
| 570 | " matches with DemandRegio at NUTS-3."  | 
            ||
| 571 | )  | 
            ||
| 572 | |||
| 573 | |||
| 574 | def residential_electricity_hh_refinement(rtol=1e-5):  | 
            ||
| 575 | """Sanity check for dataset electricity_demand_timeseries :  | 
            ||
| 576 | Household Demands  | 
            ||
| 577 | |||
| 578 | Check sum of aggregated household types after refinement method  | 
            ||
| 579 | was applied and compare it to the original census values."""  | 
            ||
| 580 | |||
| 581 | df_refinement = db.select_dataframe(  | 
            ||
| 582 | sql="""  | 
            ||
| 583 | SELECT refined.nuts3, refined.characteristics_code,  | 
            ||
| 584 | refined.sum_refined::int, census.sum_census::int  | 
            ||
| 585 | FROM(  | 
            ||
| 586 | SELECT nuts3, characteristics_code, SUM(hh_10types) as sum_refined  | 
            ||
| 587 | FROM society.egon_destatis_zensus_household_per_ha_refined  | 
            ||
| 588 | GROUP BY nuts3, characteristics_code)  | 
            ||
| 589 | AS refined  | 
            ||
| 590 | JOIN(  | 
            ||
| 591 | SELECT t.nuts3, t.characteristics_code, sum(orig) as sum_census  | 
            ||
| 592 | FROM(  | 
            ||
| 593 | SELECT nuts3, cell_id, characteristics_code,  | 
            ||
| 594 | sum(DISTINCT(hh_5types))as orig  | 
            ||
| 595 | FROM society.egon_destatis_zensus_household_per_ha_refined  | 
            ||
| 596 | GROUP BY cell_id, characteristics_code, nuts3) AS t  | 
            ||
| 597 | GROUP BY t.nuts3, t.characteristics_code ) AS census  | 
            ||
| 598 | ON refined.nuts3 = census.nuts3  | 
            ||
| 599 | AND refined.characteristics_code = census.characteristics_code  | 
            ||
| 600 | """  | 
            ||
| 601 | )  | 
            ||
| 602 | |||
| 603 | np.testing.assert_allclose(  | 
            ||
| 604 | actual=df_refinement["sum_refined"],  | 
            ||
| 605 | desired=df_refinement["sum_census"],  | 
            ||
| 606 | rtol=rtol,  | 
            ||
| 607 | verbose=False,  | 
            ||
| 608 | )  | 
            ||
| 609 | |||
| 610 |     logger.info("All Aggregated household types match at NUTS-3.") | 
            ||
| 611 | |||
| 612 | |||
| 613 | def cts_electricity_demand_share(rtol=1e-5):  | 
            ||
| 614 | """Sanity check for dataset electricity_demand_timeseries :  | 
            ||
| 615 | CtsBuildings  | 
            ||
| 616 | |||
| 617 | Check sum of aggregated cts electricity demand share which equals to one  | 
            ||
| 618 | for every substation as the substation profile is linearly disaggregated  | 
            ||
| 619 | to all buildings."""  | 
            ||
| 620 | |||
| 621 | with db.session_scope() as session:  | 
            ||
| 622 | cells_query = session.query(EgonCtsElectricityDemandBuildingShare)  | 
            ||
| 623 | |||
| 624 | df_demand_share = pd.read_sql(  | 
            ||
| 625 | cells_query.statement, cells_query.session.bind, index_col=None  | 
            ||
| 626 | )  | 
            ||
| 627 | |||
| 628 | np.testing.assert_allclose(  | 
            ||
| 629 | actual=df_demand_share.groupby(["bus_id", "scenario"])[  | 
            ||
| 630 | "profile_share"  | 
            ||
| 631 | ].sum(),  | 
            ||
| 632 | desired=1,  | 
            ||
| 633 | rtol=rtol,  | 
            ||
| 634 | verbose=False,  | 
            ||
| 635 | )  | 
            ||
| 636 | |||
| 637 |     logger.info("The aggregated demand shares equal to one!.") | 
            ||
| 638 | |||
| 639 | |||
| 640 | def cts_heat_demand_share(rtol=1e-5):  | 
            ||
| 641 | """Sanity check for dataset electricity_demand_timeseries  | 
            ||
| 642 | : CtsBuildings  | 
            ||
| 643 | |||
| 644 | Check sum of aggregated cts heat demand share which equals to one  | 
            ||
| 645 | for every substation as the substation profile is linearly disaggregated  | 
            ||
| 646 | to all buildings."""  | 
            ||
| 647 | |||
| 648 | with db.session_scope() as session:  | 
            ||
| 649 | cells_query = session.query(EgonCtsHeatDemandBuildingShare)  | 
            ||
| 650 | |||
| 651 | df_demand_share = pd.read_sql(  | 
            ||
| 652 | cells_query.statement, cells_query.session.bind, index_col=None  | 
            ||
| 653 | )  | 
            ||
| 654 | |||
| 655 | np.testing.assert_allclose(  | 
            ||
| 656 | actual=df_demand_share.groupby(["bus_id", "scenario"])[  | 
            ||
| 657 | "profile_share"  | 
            ||
| 658 | ].sum(),  | 
            ||
| 659 | desired=1,  | 
            ||
| 660 | rtol=rtol,  | 
            ||
| 661 | verbose=False,  | 
            ||
| 662 | )  | 
            ||
| 663 | |||
| 664 |     logger.info("The aggregated demand shares equal to one!.") | 
            ||
| 665 | |||
| 666 | |||
| 667 | def sanitycheck_emobility_mit():  | 
            ||
| 668 | """Execute sanity checks for eMobility: motorized individual travel  | 
            ||
| 669 | |||
| 670 | Checks data integrity for eGon2035, eGon2035_lowflex and eGon100RE scenario  | 
            ||
| 671 | using assertions:  | 
            ||
| 672 | 1. Allocated EV numbers and EVs allocated to grid districts  | 
            ||
| 673 | 2. Trip data (original inout data from simBEV)  | 
            ||
| 674 | 3. Model data in eTraGo PF tables (grid.egon_etrago_*)  | 
            ||
| 675 | |||
| 676 | Parameters  | 
            ||
| 677 | ----------  | 
            ||
| 678 | None  | 
            ||
| 679 | |||
| 680 | Returns  | 
            ||
| 681 | -------  | 
            ||
| 682 | None  | 
            ||
| 683 | """  | 
            ||
| 684 | |||
| 685 | def check_ev_allocation():  | 
            ||
| 686 | # Get target number for scenario  | 
            ||
| 687 | ev_count_target = scenario_variation_parameters["ev_count"]  | 
            ||
| 688 |         print(f"  Target count: {str(ev_count_target)}") | 
            ||
| 689 | |||
| 690 | # Get allocated numbers  | 
            ||
| 691 |         ev_counts_dict = {} | 
            ||
| 692 | with db.session_scope() as session:  | 
            ||
| 693 | for table, level in zip(  | 
            ||
| 694 | [  | 
            ||
| 695 | EgonEvCountMvGridDistrict,  | 
            ||
| 696 | EgonEvCountMunicipality,  | 
            ||
| 697 | EgonEvCountRegistrationDistrict,  | 
            ||
| 698 | ],  | 
            ||
| 699 | ["Grid District", "Municipality", "Registration District"],  | 
            ||
| 700 | ):  | 
            ||
| 701 | query = session.query(  | 
            ||
| 702 | func.sum(  | 
            ||
| 703 | table.bev_mini  | 
            ||
| 704 | + table.bev_medium  | 
            ||
| 705 | + table.bev_luxury  | 
            ||
| 706 | + table.phev_mini  | 
            ||
| 707 | + table.phev_medium  | 
            ||
| 708 | + table.phev_luxury  | 
            ||
| 709 |                     ).label("ev_count") | 
            ||
| 710 | ).filter(  | 
            ||
| 711 | table.scenario == scenario_name,  | 
            ||
| 712 | table.scenario_variation == scenario_var_name,  | 
            ||
| 713 | )  | 
            ||
| 714 | |||
| 715 | ev_counts = pd.read_sql(  | 
            ||
| 716 | query.statement, query.session.bind, index_col=None  | 
            ||
| 717 | )  | 
            ||
| 718 | ev_counts_dict[level] = ev_counts.iloc[0].ev_count  | 
            ||
| 719 | print(  | 
            ||
| 720 |                     f"    Count table: Total count for level {level} " | 
            ||
| 721 |                     f"(table: {table.__table__}): " | 
            ||
| 722 |                     f"{str(ev_counts_dict[level])}" | 
            ||
| 723 | )  | 
            ||
| 724 | |||
| 725 | # Compare with scenario target (only if not in testmode)  | 
            ||
| 726 | if TESTMODE_OFF:  | 
            ||
| 727 | for level, count in ev_counts_dict.items():  | 
            ||
| 728 | np.testing.assert_allclose(  | 
            ||
| 729 | count,  | 
            ||
| 730 | ev_count_target,  | 
            ||
| 731 | rtol=0.0001,  | 
            ||
| 732 |                     err_msg=f"EV numbers in {level} seems to be flawed.", | 
            ||
| 733 | )  | 
            ||
| 734 | else:  | 
            ||
| 735 |             print("    Testmode is on, skipping sanity check...") | 
            ||
| 736 | |||
| 737 | # Get allocated EVs in grid districts  | 
            ||
| 738 | with db.session_scope() as session:  | 
            ||
| 739 | query = session.query(  | 
            ||
| 740 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label(  | 
            ||
| 741 | "ev_count"  | 
            ||
| 742 | ),  | 
            ||
| 743 | ).filter(  | 
            ||
| 744 | EgonEvMvGridDistrict.scenario == scenario_name,  | 
            ||
| 745 | EgonEvMvGridDistrict.scenario_variation == scenario_var_name,  | 
            ||
| 746 | )  | 
            ||
| 747 | ev_count_alloc = (  | 
            ||
| 748 | pd.read_sql(query.statement, query.session.bind, index_col=None)  | 
            ||
| 749 | .iloc[0]  | 
            ||
| 750 | .ev_count  | 
            ||
| 751 | )  | 
            ||
| 752 | print(  | 
            ||
| 753 | f" EVs allocated to Grid Districts "  | 
            ||
| 754 |             f"(table: {EgonEvMvGridDistrict.__table__}) total count: " | 
            ||
| 755 |             f"{str(ev_count_alloc)}" | 
            ||
| 756 | )  | 
            ||
| 757 | |||
| 758 | # Compare with scenario target (only if not in testmode)  | 
            ||
| 759 | if TESTMODE_OFF:  | 
            ||
| 760 | np.testing.assert_allclose(  | 
            ||
| 761 | ev_count_alloc,  | 
            ||
| 762 | ev_count_target,  | 
            ||
| 763 | rtol=0.0001,  | 
            ||
| 764 | err_msg=(  | 
            ||
| 765 | "EV numbers allocated to Grid Districts seems to be flawed."  | 
            ||
| 766 | ),  | 
            ||
| 767 | )  | 
            ||
| 768 | else:  | 
            ||
| 769 |             print("    Testmode is on, skipping sanity check...") | 
            ||
| 770 | |||
| 771 | return ev_count_alloc  | 
            ||
| 772 | |||
| 773 | def check_trip_data():  | 
            ||
| 774 | # Check if trips start at timestep 0 and have a max. of 35040 steps  | 
            ||
| 775 | # (8760h in 15min steps)  | 
            ||
| 776 |         print("  Checking timeranges...") | 
            ||
| 777 | with db.session_scope() as session:  | 
            ||
| 778 | query = session.query(  | 
            ||
| 779 |                 func.count(EgonEvTrip.event_id).label("cnt") | 
            ||
| 780 | ).filter(  | 
            ||
| 781 | or_(  | 
            ||
| 782 | and_(  | 
            ||
| 783 | EgonEvTrip.park_start > 0,  | 
            ||
| 784 | EgonEvTrip.simbev_event_id == 0,  | 
            ||
| 785 | ),  | 
            ||
| 786 | EgonEvTrip.park_end  | 
            ||
| 787 | > (60 / int(meta_run_config.stepsize)) * 8760,  | 
            ||
| 788 | ),  | 
            ||
| 789 | EgonEvTrip.scenario == scenario_name,  | 
            ||
| 790 | )  | 
            ||
| 791 | invalid_trips = pd.read_sql(  | 
            ||
| 792 | query.statement, query.session.bind, index_col=None  | 
            ||
| 793 | )  | 
            ||
| 794 | np.testing.assert_equal(  | 
            ||
| 795 | invalid_trips.iloc[0].cnt,  | 
            ||
| 796 | 0,  | 
            ||
| 797 | err_msg=(  | 
            ||
| 798 |                 f"{str(invalid_trips.iloc[0].cnt)} trips in table " | 
            ||
| 799 |                 f"{EgonEvTrip.__table__} have invalid timesteps." | 
            ||
| 800 | ),  | 
            ||
| 801 | )  | 
            ||
| 802 | |||
| 803 | # Check if charging demand can be covered by available charging energy  | 
            ||
| 804 | # while parking  | 
            ||
| 805 |         print("  Compare charging demand with available power...") | 
            ||
| 806 | with db.session_scope() as session:  | 
            ||
| 807 | query = session.query(  | 
            ||
| 808 |                 func.count(EgonEvTrip.event_id).label("cnt") | 
            ||
| 809 | ).filter(  | 
            ||
| 810 | func.round(  | 
            ||
| 811 | cast(  | 
            ||
| 812 | (EgonEvTrip.park_end - EgonEvTrip.park_start + 1)  | 
            ||
| 813 | * EgonEvTrip.charging_capacity_nominal  | 
            ||
| 814 | * (int(meta_run_config.stepsize) / 60),  | 
            ||
| 815 | Numeric,  | 
            ||
| 816 | ),  | 
            ||
| 817 | 3,  | 
            ||
| 818 | )  | 
            ||
| 819 | < cast(EgonEvTrip.charging_demand, Numeric),  | 
            ||
| 820 | EgonEvTrip.scenario == scenario_name,  | 
            ||
| 821 | )  | 
            ||
| 822 | invalid_trips = pd.read_sql(  | 
            ||
| 823 | query.statement, query.session.bind, index_col=None  | 
            ||
| 824 | )  | 
            ||
| 825 | np.testing.assert_equal(  | 
            ||
| 826 | invalid_trips.iloc[0].cnt,  | 
            ||
| 827 | 0,  | 
            ||
| 828 | err_msg=(  | 
            ||
| 829 |                 f"In {str(invalid_trips.iloc[0].cnt)} trips (table: " | 
            ||
| 830 |                 f"{EgonEvTrip.__table__}) the charging demand cannot be " | 
            ||
| 831 | f"covered by available charging power."  | 
            ||
| 832 | ),  | 
            ||
| 833 | )  | 
            ||
| 834 | |||
| 835 | def check_model_data():  | 
            ||
| 836 | # Check if model components were fully created  | 
            ||
| 837 |         print("  Check if all model components were created...") | 
            ||
| 838 | # Get MVGDs which got EV allocated  | 
            ||
| 839 | with db.session_scope() as session:  | 
            ||
| 840 | query = (  | 
            ||
| 841 | session.query(  | 
            ||
| 842 | EgonEvMvGridDistrict.bus_id,  | 
            ||
| 843 | )  | 
            ||
| 844 | .filter(  | 
            ||
| 845 | EgonEvMvGridDistrict.scenario == scenario_name,  | 
            ||
| 846 | EgonEvMvGridDistrict.scenario_variation  | 
            ||
| 847 | == scenario_var_name,  | 
            ||
| 848 | )  | 
            ||
| 849 | .group_by(EgonEvMvGridDistrict.bus_id)  | 
            ||
| 850 | )  | 
            ||
| 851 | mvgds_with_ev = (  | 
            ||
| 852 | pd.read_sql(query.statement, query.session.bind, index_col=None)  | 
            ||
| 853 | .bus_id.sort_values()  | 
            ||
| 854 | .to_list()  | 
            ||
| 855 | )  | 
            ||
| 856 | |||
| 857 | # Load model components  | 
            ||
| 858 | with db.session_scope() as session:  | 
            ||
| 859 | query = (  | 
            ||
| 860 | session.query(  | 
            ||
| 861 |                     EgonPfHvLink.bus0.label("mvgd_bus_id"), | 
            ||
| 862 |                     EgonPfHvLoad.bus.label("emob_bus_id"), | 
            ||
| 863 |                     EgonPfHvLoad.load_id.label("load_id"), | 
            ||
| 864 |                     EgonPfHvStore.store_id.label("store_id"), | 
            ||
| 865 | )  | 
            ||
| 866 | .select_from(EgonPfHvLoad, EgonPfHvStore)  | 
            ||
| 867 | .join(  | 
            ||
| 868 | EgonPfHvLoadTimeseries,  | 
            ||
| 869 | EgonPfHvLoadTimeseries.load_id == EgonPfHvLoad.load_id,  | 
            ||
| 870 | )  | 
            ||
| 871 | .join(  | 
            ||
| 872 | EgonPfHvStoreTimeseries,  | 
            ||
| 873 | EgonPfHvStoreTimeseries.store_id == EgonPfHvStore.store_id,  | 
            ||
| 874 | )  | 
            ||
| 875 | .filter(  | 
            ||
| 876 | EgonPfHvLoad.carrier == "land transport EV",  | 
            ||
| 877 | EgonPfHvLoad.scn_name == scenario_name,  | 
            ||
| 878 | EgonPfHvLoadTimeseries.scn_name == scenario_name,  | 
            ||
| 879 | EgonPfHvStore.carrier == "battery storage",  | 
            ||
| 880 | EgonPfHvStore.scn_name == scenario_name,  | 
            ||
| 881 | EgonPfHvStoreTimeseries.scn_name == scenario_name,  | 
            ||
| 882 | EgonPfHvLink.scn_name == scenario_name,  | 
            ||
| 883 | EgonPfHvLink.bus1 == EgonPfHvLoad.bus,  | 
            ||
| 884 | EgonPfHvLink.bus1 == EgonPfHvStore.bus,  | 
            ||
| 885 | )  | 
            ||
| 886 | )  | 
            ||
| 887 | model_components = pd.read_sql(  | 
            ||
| 888 | query.statement, query.session.bind, index_col=None  | 
            ||
| 889 | )  | 
            ||
| 890 | |||
| 891 | # Check number of buses with model components connected  | 
            ||
| 892 | mvgd_buses_with_ev = model_components.loc[  | 
            ||
| 893 | model_components.mvgd_bus_id.isin(mvgds_with_ev)  | 
            ||
| 894 | ]  | 
            ||
| 895 | np.testing.assert_equal(  | 
            ||
| 896 | len(mvgds_with_ev),  | 
            ||
| 897 | len(mvgd_buses_with_ev),  | 
            ||
| 898 | err_msg=(  | 
            ||
| 899 | f"Number of Grid Districts with connected model components "  | 
            ||
| 900 |                 f"({str(len(mvgd_buses_with_ev))} in tables egon_etrago_*) " | 
            ||
| 901 | f"differ from number of Grid Districts that got EVs "  | 
            ||
| 902 |                 f"allocated ({len(mvgds_with_ev)} in table " | 
            ||
| 903 |                 f"{EgonEvMvGridDistrict.__table__})." | 
            ||
| 904 | ),  | 
            ||
| 905 | )  | 
            ||
| 906 | |||
| 907 | # Check if all required components exist (if no id is NaN)  | 
            ||
| 908 | np.testing.assert_equal(  | 
            ||
| 909 | model_components.drop_duplicates().isna().any().any(),  | 
            ||
| 910 | False,  | 
            ||
| 911 | err_msg=(  | 
            ||
| 912 | f"Some components are missing (see True values): "  | 
            ||
| 913 |                 f"{model_components.drop_duplicates().isna().any()}" | 
            ||
| 914 | ),  | 
            ||
| 915 | )  | 
            ||
| 916 | |||
| 917 | # Get all model timeseries  | 
            ||
| 918 |         print("  Loading model timeseries...") | 
            ||
| 919 | # Get all model timeseries  | 
            ||
| 920 |         model_ts_dict = { | 
            ||
| 921 |             "Load": { | 
            ||
| 922 | "carrier": "land transport EV",  | 
            ||
| 923 | "table": EgonPfHvLoad,  | 
            ||
| 924 | "table_ts": EgonPfHvLoadTimeseries,  | 
            ||
| 925 | "column_id": "load_id",  | 
            ||
| 926 | "columns_ts": ["p_set"],  | 
            ||
| 927 | "ts": None,  | 
            ||
| 928 | },  | 
            ||
| 929 |             "Link": { | 
            ||
| 930 | "carrier": "BEV charger",  | 
            ||
| 931 | "table": EgonPfHvLink,  | 
            ||
| 932 | "table_ts": EgonPfHvLinkTimeseries,  | 
            ||
| 933 | "column_id": "link_id",  | 
            ||
| 934 | "columns_ts": ["p_max_pu"],  | 
            ||
| 935 | "ts": None,  | 
            ||
| 936 | },  | 
            ||
| 937 |             "Store": { | 
            ||
| 938 | "carrier": "battery storage",  | 
            ||
| 939 | "table": EgonPfHvStore,  | 
            ||
| 940 | "table_ts": EgonPfHvStoreTimeseries,  | 
            ||
| 941 | "column_id": "store_id",  | 
            ||
| 942 | "columns_ts": ["e_min_pu", "e_max_pu"],  | 
            ||
| 943 | "ts": None,  | 
            ||
| 944 | },  | 
            ||
| 945 | }  | 
            ||
| 946 | |||
| 947 | with db.session_scope() as session:  | 
            ||
| 948 | for node, attrs in model_ts_dict.items():  | 
            ||
| 949 |                 print(f"    Loading {node} timeseries...") | 
            ||
| 950 | subquery = (  | 
            ||
| 951 | session.query(  | 
            ||
| 952 | getattr(attrs["table"], attrs["column_id"])  | 
            ||
| 953 | )  | 
            ||
| 954 | .filter(attrs["table"].carrier == attrs["carrier"])  | 
            ||
| 955 | .filter(attrs["table"].scn_name == scenario_name)  | 
            ||
| 956 | .subquery()  | 
            ||
| 957 | )  | 
            ||
| 958 | |||
| 959 | cols = [  | 
            ||
| 960 | getattr(attrs["table_ts"], c) for c in attrs["columns_ts"]  | 
            ||
| 961 | ]  | 
            ||
| 962 | query = session.query(  | 
            ||
| 963 | getattr(attrs["table_ts"], attrs["column_id"]), *cols  | 
            ||
| 964 | ).filter(  | 
            ||
| 965 | getattr(attrs["table_ts"], attrs["column_id"]).in_(  | 
            ||
| 966 | subquery  | 
            ||
| 967 | ),  | 
            ||
| 968 | attrs["table_ts"].scn_name == scenario_name,  | 
            ||
| 969 | )  | 
            ||
| 970 | attrs["ts"] = pd.read_sql(  | 
            ||
| 971 | query.statement,  | 
            ||
| 972 | query.session.bind,  | 
            ||
| 973 | index_col=attrs["column_id"],  | 
            ||
| 974 | )  | 
            ||
| 975 | |||
| 976 | # Check if all timeseries have 8760 steps  | 
            ||
| 977 |         print("    Checking timeranges...") | 
            ||
| 978 | for node, attrs in model_ts_dict.items():  | 
            ||
| 979 | for col in attrs["columns_ts"]:  | 
            ||
| 980 | ts = attrs["ts"]  | 
            ||
| 981 | invalid_ts = ts.loc[ts[col].apply(lambda _: len(_)) != 8760][  | 
            ||
| 982 | col  | 
            ||
| 983 | ].apply(len)  | 
            ||
| 984 | np.testing.assert_equal(  | 
            ||
| 985 | len(invalid_ts),  | 
            ||
| 986 | 0,  | 
            ||
| 987 | err_msg=(  | 
            ||
| 988 |                         f"{str(len(invalid_ts))} rows in timeseries do not " | 
            ||
| 989 | f"have 8760 timesteps. Table: "  | 
            ||
| 990 |                         f"{attrs['table_ts'].__table__}, Column: {col}, IDs: " | 
            ||
| 991 |                         f"{str(list(invalid_ts.index))}" | 
            ||
| 992 | ),  | 
            ||
| 993 | )  | 
            ||
| 994 | |||
| 995 | # Compare total energy demand in model with some approximate values  | 
            ||
| 996 | # (per EV: 14,000 km/a, 0.17 kWh/km)  | 
            ||
| 997 |         print("  Checking energy demand in model...") | 
            ||
| 998 | total_energy_model = (  | 
            ||
| 999 | model_ts_dict["Load"]["ts"].p_set.apply(lambda _: sum(_)).sum()  | 
            ||
| 1000 | / 1e6  | 
            ||
| 1001 | )  | 
            ||
| 1002 |         print(f"    Total energy amount in model: {total_energy_model} TWh") | 
            ||
| 1003 | total_energy_scenario_approx = ev_count_alloc * 14000 * 0.17 / 1e9  | 
            ||
| 1004 | print(  | 
            ||
| 1005 | f" Total approximated energy amount in scenario: "  | 
            ||
| 1006 |             f"{total_energy_scenario_approx} TWh" | 
            ||
| 1007 | )  | 
            ||
| 1008 | np.testing.assert_allclose(  | 
            ||
| 1009 | total_energy_model,  | 
            ||
| 1010 | total_energy_scenario_approx,  | 
            ||
| 1011 | rtol=0.1,  | 
            ||
| 1012 | err_msg=(  | 
            ||
| 1013 | "The total energy amount in the model deviates heavily "  | 
            ||
| 1014 | "from the approximated value for current scenario."  | 
            ||
| 1015 | ),  | 
            ||
| 1016 | )  | 
            ||
| 1017 | |||
| 1018 | # Compare total storage capacity  | 
            ||
| 1019 |         print("  Checking storage capacity...") | 
            ||
| 1020 | # Load storage capacities from model  | 
            ||
| 1021 | with db.session_scope() as session:  | 
            ||
| 1022 | query = session.query(  | 
            ||
| 1023 |                 func.sum(EgonPfHvStore.e_nom).label("e_nom") | 
            ||
| 1024 | ).filter(  | 
            ||
| 1025 | EgonPfHvStore.scn_name == scenario_name,  | 
            ||
| 1026 | EgonPfHvStore.carrier == "battery storage",  | 
            ||
| 1027 | )  | 
            ||
| 1028 | storage_capacity_model = (  | 
            ||
| 1029 | pd.read_sql(  | 
            ||
| 1030 | query.statement, query.session.bind, index_col=None  | 
            ||
| 1031 | ).e_nom.sum()  | 
            ||
| 1032 | / 1e3  | 
            ||
| 1033 | )  | 
            ||
| 1034 | print(  | 
            ||
| 1035 |             f"    Total storage capacity ({EgonPfHvStore.__table__}): " | 
            ||
| 1036 |             f"{round(storage_capacity_model, 1)} GWh" | 
            ||
| 1037 | )  | 
            ||
| 1038 | |||
| 1039 | # Load occurences of each EV  | 
            ||
| 1040 | with db.session_scope() as session:  | 
            ||
| 1041 | query = (  | 
            ||
| 1042 | session.query(  | 
            ||
| 1043 | EgonEvMvGridDistrict.bus_id,  | 
            ||
| 1044 | EgonEvPool.type,  | 
            ||
| 1045 | func.count(EgonEvMvGridDistrict.egon_ev_pool_ev_id).label(  | 
            ||
| 1046 | "count"  | 
            ||
| 1047 | ),  | 
            ||
| 1048 | )  | 
            ||
| 1049 | .join(  | 
            ||
| 1050 | EgonEvPool,  | 
            ||
| 1051 | EgonEvPool.ev_id  | 
            ||
| 1052 | == EgonEvMvGridDistrict.egon_ev_pool_ev_id,  | 
            ||
| 1053 | )  | 
            ||
| 1054 | .filter(  | 
            ||
| 1055 | EgonEvMvGridDistrict.scenario == scenario_name,  | 
            ||
| 1056 | EgonEvMvGridDistrict.scenario_variation  | 
            ||
| 1057 | == scenario_var_name,  | 
            ||
| 1058 | EgonEvPool.scenario == scenario_name,  | 
            ||
| 1059 | )  | 
            ||
| 1060 | .group_by(EgonEvMvGridDistrict.bus_id, EgonEvPool.type)  | 
            ||
| 1061 | )  | 
            ||
| 1224 |