|
1
|
|
|
from io import StringIO |
|
2
|
|
|
import csv |
|
3
|
|
|
|
|
4
|
|
|
from shapely.geometry import Point |
|
5
|
|
|
import geopandas as gpd |
|
6
|
|
|
import numpy as np |
|
7
|
|
|
import pandas as pd |
|
8
|
|
|
|
|
9
|
|
|
from egon.data import db |
|
10
|
|
|
|
|
11
|
|
|
engine = db.engine() |
|
12
|
|
|
|
|
13
|
|
|
|
|
14
|
|
|
def random_point_in_square(geom, tol): |
|
15
|
|
|
""" |
|
16
|
|
|
Generate a random point within a square |
|
17
|
|
|
|
|
18
|
|
|
Parameters |
|
19
|
|
|
---------- |
|
20
|
|
|
geom: gpd.Series |
|
21
|
|
|
Geometries of square |
|
22
|
|
|
tol: float |
|
23
|
|
|
tolerance to square bounds |
|
24
|
|
|
|
|
25
|
|
|
Returns |
|
26
|
|
|
------- |
|
27
|
|
|
points: gpd.Series |
|
28
|
|
|
Series of random points |
|
29
|
|
|
""" |
|
30
|
|
|
# cell bounds - half edge_length to not build buildings on the cell border |
|
31
|
|
|
xmin = geom.bounds["minx"] + tol / 2 |
|
32
|
|
|
xmax = geom.bounds["maxx"] - tol / 2 |
|
33
|
|
|
ymin = geom.bounds["miny"] + tol / 2 |
|
34
|
|
|
ymax = geom.bounds["maxy"] - tol / 2 |
|
35
|
|
|
|
|
36
|
|
|
# generate random coordinates within bounds - half edge_length |
|
37
|
|
|
x = (xmax - xmin) * np.random.rand(geom.shape[0]) + xmin |
|
38
|
|
|
y = (ymax - ymin) * np.random.rand(geom.shape[0]) + ymin |
|
39
|
|
|
|
|
40
|
|
|
points = pd.Series([Point(cords) for cords in zip(x, y)]) |
|
41
|
|
|
points = gpd.GeoSeries(points, crs="epsg:3035") |
|
42
|
|
|
|
|
43
|
|
|
return points |
|
44
|
|
|
|
|
45
|
|
|
|
|
46
|
|
|
# distribute amenities evenly |
|
47
|
|
|
def specific_int_until_sum(s_sum, i_int): |
|
48
|
|
|
""" |
|
49
|
|
|
Generate list `i_int` summing to `s_sum`. Last value will be <= `i_int` |
|
50
|
|
|
""" |
|
51
|
|
|
list_i = [] if [s_sum % i_int] == [0] else [s_sum % i_int] |
|
52
|
|
|
list_i += s_sum // i_int * [i_int] |
|
53
|
|
|
return list_i |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
|
def random_ints_until_sum(s_sum, m_max): |
|
57
|
|
|
""" |
|
58
|
|
|
Generate non-negative random integers < `m_max` summing to `s_sum`. |
|
59
|
|
|
""" |
|
60
|
|
|
list_r = [] |
|
61
|
|
|
while s_sum > 0: |
|
62
|
|
|
r = np.random.randint(1, m_max + 1) |
|
63
|
|
|
r = r if r <= m_max and r < s_sum else s_sum |
|
64
|
|
|
list_r.append(r) |
|
65
|
|
|
s_sum -= r |
|
66
|
|
|
return list_r |
|
67
|
|
|
|
|
68
|
|
|
|
|
69
|
|
|
def write_table_to_postgis(df, table, engine, drop=True): |
|
70
|
|
|
""" |
|
71
|
|
|
Append table |
|
72
|
|
|
""" |
|
73
|
|
|
|
|
74
|
|
|
# Only take in db table defined columns |
|
75
|
|
|
columns = [column.key for column in table.__table__.columns] |
|
76
|
|
|
df = df.loc[:, columns] |
|
77
|
|
|
|
|
78
|
|
|
if drop: |
|
79
|
|
|
table.__table__.drop(bind=engine, checkfirst=True) |
|
80
|
|
|
table.__table__.create(bind=engine) |
|
81
|
|
|
|
|
82
|
|
|
dtypes = { |
|
83
|
|
|
i: table.__table__.columns[i].type |
|
84
|
|
|
for i in table.__table__.columns.keys() |
|
85
|
|
|
} |
|
86
|
|
|
|
|
87
|
|
|
# Write new buildings incl coord into db |
|
88
|
|
|
df.to_postgis( |
|
89
|
|
|
name=table.__tablename__, |
|
90
|
|
|
con=engine, |
|
91
|
|
|
if_exists="append", |
|
92
|
|
|
schema=table.__table_args__["schema"], |
|
93
|
|
|
dtype=dtypes, |
|
94
|
|
|
) |
|
95
|
|
|
|
|
96
|
|
|
|
|
97
|
|
|
# def write_table_to_postgres(df, table, drop=True): |
|
98
|
|
|
# """""" |
|
99
|
|
|
# |
|
100
|
|
|
# # Only take in db table defined columns |
|
101
|
|
|
# columns = [column.key for column in table.__table__.columns] |
|
102
|
|
|
# df = df.loc[:, columns] |
|
103
|
|
|
# |
|
104
|
|
|
# if drop: |
|
105
|
|
|
# table.__table__.drop(bind=engine, checkfirst=True) |
|
106
|
|
|
# table.__table__.create(bind=engine) |
|
107
|
|
|
# |
|
108
|
|
|
# # Write peak loads into db |
|
109
|
|
|
# with db.session_scope() as session: |
|
110
|
|
|
# session.bulk_insert_mappings( |
|
111
|
|
|
# table, |
|
112
|
|
|
# df.to_dict(orient="records"), |
|
113
|
|
|
# ) |
|
114
|
|
|
|
|
115
|
|
|
|
|
116
|
|
|
def psql_insert_copy(table, conn, keys, data_iter): |
|
117
|
|
|
""" |
|
118
|
|
|
Execute SQL statement inserting data |
|
119
|
|
|
|
|
120
|
|
|
Parameters |
|
121
|
|
|
---------- |
|
122
|
|
|
table : pandas.io.sql.SQLTable |
|
123
|
|
|
conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection |
|
124
|
|
|
keys : list of str |
|
125
|
|
|
Column names |
|
126
|
|
|
data_iter : Iterable that iterates the values to be inserted |
|
127
|
|
|
""" |
|
128
|
|
|
# gets a DBAPI connection that can provide a cursor |
|
129
|
|
|
dbapi_conn = conn.connection |
|
130
|
|
|
with dbapi_conn.cursor() as cur: |
|
131
|
|
|
s_buf = StringIO() |
|
132
|
|
|
writer = csv.writer(s_buf) |
|
133
|
|
|
writer.writerows(data_iter) |
|
134
|
|
|
s_buf.seek(0) |
|
135
|
|
|
|
|
136
|
|
|
columns = ", ".join('"{}"'.format(k) for k in keys) |
|
137
|
|
|
if table.schema: |
|
138
|
|
|
table_name = "{}.{}".format(table.schema, table.name) |
|
139
|
|
|
else: |
|
140
|
|
|
table_name = table.name |
|
141
|
|
|
|
|
142
|
|
|
sql = "COPY {} ({}) FROM STDIN WITH CSV".format(table_name, columns) |
|
143
|
|
|
cur.copy_expert(sql=sql, file=s_buf) |
|
144
|
|
|
|
|
145
|
|
|
|
|
146
|
|
|
def write_table_to_postgres( |
|
147
|
|
|
df, db_table, engine, drop=False, index=False, if_exists="append" |
|
148
|
|
|
): |
|
149
|
|
|
"""""" |
|
150
|
|
|
|
|
151
|
|
|
# Only take in db table defined columns and dtypes |
|
152
|
|
|
columns = { |
|
153
|
|
|
column.key: column.type for column in db_table.__table__.columns |
|
154
|
|
|
} |
|
155
|
|
|
df = df.loc[:, columns.keys()] |
|
156
|
|
|
|
|
157
|
|
|
if drop: |
|
158
|
|
|
db_table.__table__.drop(bind=engine, checkfirst=True) |
|
159
|
|
|
db_table.__table__.create(bind=engine) |
|
160
|
|
|
|
|
161
|
|
|
df.to_sql( |
|
162
|
|
|
name=db_table.__table__.name, |
|
163
|
|
|
schema=db_table.__table__.schema, |
|
164
|
|
|
con=engine, |
|
165
|
|
|
if_exists=if_exists, |
|
166
|
|
|
index=index, |
|
167
|
|
|
method=psql_insert_copy, |
|
168
|
|
|
dtype=columns, |
|
169
|
|
|
) |
|
170
|
|
|
|