Total Complexity | 85 |
Total Lines | 1854 |
Duplicated Lines | 1.29 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with |
||
2 | individual heat supply. |
||
3 | |||
4 | """ |
||
5 | from pathlib import Path |
||
6 | import os |
||
7 | import random |
||
8 | import time |
||
9 | |||
10 | from airflow.operators.python_operator import PythonOperator |
||
11 | from psycopg2.extensions import AsIs, register_adapter |
||
12 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
13 | from sqlalchemy.ext.declarative import declarative_base |
||
14 | import geopandas as gpd |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import saio |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.district_heating_areas import ( |
||
22 | MapZensusDistrictHeatingAreas, |
||
23 | ) |
||
24 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
25 | calc_cts_building_profiles, |
||
26 | ) |
||
27 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
28 | EgonMapZensusMvgdBuildings, |
||
29 | ) |
||
30 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
31 | write_table_to_postgres, |
||
32 | ) |
||
33 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
34 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
35 | EgonDailyHeatDemandPerClimateZone, |
||
36 | EgonMapZensusClimateZones, |
||
37 | ) |
||
38 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
39 | EgonHeatTimeseries, |
||
40 | ) |
||
41 | |||
42 | # get zensus cells with district heating |
||
43 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
44 | |||
45 | engine = db.engine() |
||
46 | Base = declarative_base() |
||
47 | |||
48 | |||
49 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
50 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
51 | __table_args__ = {"schema": "demand"} |
||
52 | bus_id = Column(Integer, primary_key=True) |
||
53 | scenario = Column(String, primary_key=True) |
||
54 | carrier = Column(String, primary_key=True) |
||
55 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
56 | |||
57 | |||
58 | class EgonHpCapacityBuildings(Base): |
||
59 | __tablename__ = "egon_hp_capacity_buildings" |
||
60 | __table_args__ = {"schema": "demand"} |
||
61 | building_id = Column(Integer, primary_key=True) |
||
62 | scenario = Column(String, primary_key=True) |
||
63 | hp_capacity = Column(REAL) |
||
64 | |||
65 | |||
66 | class HeatPumpsPypsaEurSec(Dataset): |
||
67 | def __init__(self, dependencies): |
||
68 | def dyn_parallel_tasks_pypsa_eur_sec(): |
||
69 | """Dynamically generate tasks |
||
70 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
71 | |||
72 | The number of parallel tasks is defined via parameter |
||
73 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
74 | |||
75 | Returns |
||
76 | ------- |
||
77 | set of airflow.PythonOperators |
||
78 | The tasks. Each element is of |
||
79 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
80 | determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec` |
||
81 | """ |
||
82 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
83 | "parallel_tasks", 1 |
||
84 | ) |
||
85 | |||
86 | tasks = set() |
||
87 | for i in range(parallel_tasks): |
||
88 | tasks.add( |
||
89 | PythonOperator( |
||
90 | task_id=( |
||
91 | f"individual_heating." |
||
92 | f"determine-hp-capacity-pypsa-eur-sec-" |
||
93 | f"mvgd-bulk{i}" |
||
94 | ), |
||
95 | python_callable=split_mvgds_into_bulks, |
||
96 | op_kwargs={ |
||
97 | "n": i, |
||
98 | "max_n": parallel_tasks, |
||
99 | "func": determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec, # noqa: E501 |
||
100 | }, |
||
101 | ) |
||
102 | ) |
||
103 | return tasks |
||
104 | |||
105 | super().__init__( |
||
106 | name="HeatPumpsPypsaEurSec", |
||
107 | version="0.0.2", |
||
108 | dependencies=dependencies, |
||
109 | tasks=({*dyn_parallel_tasks_pypsa_eur_sec()},), |
||
110 | ) |
||
111 | |||
112 | |||
113 | class HeatPumps2035(Dataset): |
||
114 | def __init__(self, dependencies): |
||
115 | def dyn_parallel_tasks_2035(): |
||
116 | """Dynamically generate tasks |
||
117 | |||
118 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
119 | |||
120 | The number of parallel tasks is defined via parameter |
||
121 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
122 | |||
123 | Returns |
||
124 | ------- |
||
125 | set of airflow.PythonOperators |
||
126 | The tasks. Each element is of |
||
127 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
128 | determine_hp_cap_peak_load_mvgd_ts_2035` |
||
129 | """ |
||
130 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
131 | "parallel_tasks", 1 |
||
132 | ) |
||
133 | tasks = set() |
||
134 | for i in range(parallel_tasks): |
||
135 | tasks.add( |
||
136 | PythonOperator( |
||
137 | task_id=( |
||
138 | "individual_heating." |
||
139 | f"determine-hp-capacity-2035-" |
||
140 | f"mvgd-bulk{i}" |
||
141 | ), |
||
142 | python_callable=split_mvgds_into_bulks, |
||
143 | op_kwargs={ |
||
144 | "n": i, |
||
145 | "max_n": parallel_tasks, |
||
146 | "func": determine_hp_cap_peak_load_mvgd_ts_2035, |
||
147 | }, |
||
148 | ) |
||
149 | ) |
||
150 | return tasks |
||
151 | |||
152 | super().__init__( |
||
153 | name="HeatPumps2035", |
||
154 | version="0.0.2", |
||
155 | dependencies=dependencies, |
||
156 | tasks=( |
||
157 | delete_heat_peak_loads_eGon2035, |
||
158 | delete_hp_capacity_2035, |
||
159 | delete_mvgd_ts_2035, |
||
160 | {*dyn_parallel_tasks_2035()}, |
||
161 | ), |
||
162 | ) |
||
163 | |||
164 | |||
165 | class HeatPumps2050(Dataset): |
||
166 | def __init__(self, dependencies): |
||
167 | super().__init__( |
||
168 | name="HeatPumps2050", |
||
169 | version="0.0.2", |
||
170 | dependencies=dependencies, |
||
171 | tasks=( |
||
172 | delete_hp_capacity_100RE, |
||
173 | determine_hp_cap_buildings_eGon100RE, |
||
174 | ), |
||
175 | ) |
||
176 | |||
177 | |||
178 | class BuildingHeatPeakLoads(Base): |
||
179 | __tablename__ = "egon_building_heat_peak_loads" |
||
180 | __table_args__ = {"schema": "demand"} |
||
181 | |||
182 | building_id = Column(Integer, primary_key=True) |
||
183 | scenario = Column(String, primary_key=True) |
||
184 | sector = Column(String, primary_key=True) |
||
185 | peak_load_in_w = Column(REAL) |
||
186 | |||
187 | |||
188 | def adapt_numpy_float64(numpy_float64): |
||
189 | return AsIs(numpy_float64) |
||
190 | |||
191 | |||
192 | def adapt_numpy_int64(numpy_int64): |
||
193 | return AsIs(numpy_int64) |
||
194 | |||
195 | |||
196 | def timeit(func): |
||
197 | """ |
||
198 | Decorator for measuring function's running time. |
||
199 | """ |
||
200 | |||
201 | def measure_time(*args, **kw): |
||
202 | start_time = time.time() |
||
203 | result = func(*args, **kw) |
||
204 | print( |
||
205 | "Processing time of %s(): %.2f seconds." |
||
206 | % (func.__qualname__, time.time() - start_time) |
||
207 | ) |
||
208 | return result |
||
209 | |||
210 | return measure_time |
||
211 | |||
212 | |||
213 | def cascade_per_technology( |
||
214 | heat_per_mv, |
||
215 | technologies, |
||
216 | scenario, |
||
217 | distribution_level, |
||
218 | max_size_individual_chp=0.05, |
||
219 | ): |
||
220 | |||
221 | """Add plants for individual heat. |
||
222 | Currently only on mv grid district level. |
||
223 | |||
224 | Parameters |
||
225 | ---------- |
||
226 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
227 | MV grid districts including the heat demand |
||
228 | technologies : pandas.DataFrame |
||
229 | List of supply technologies and their parameters |
||
230 | scenario : str |
||
231 | Name of the scenario |
||
232 | max_size_individual_chp : float |
||
233 | Maximum capacity of an individual chp in MW |
||
234 | Returns |
||
235 | ------- |
||
236 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
237 | MV grid district which need additional individual heat supply |
||
238 | technologies : pandas.DataFrame |
||
239 | List of supply technologies and their parameters |
||
240 | append_df : pandas.DataFrame |
||
241 | List of plants per mv grid for the selected technology |
||
242 | |||
243 | """ |
||
244 | sources = config.datasets()["heat_supply"]["sources"] |
||
245 | |||
246 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
247 | |||
248 | # Distribute heat pumps linear to remaining demand. |
||
249 | if tech.index == "heat_pump": |
||
250 | |||
251 | if distribution_level == "federal_state": |
||
252 | # Select target values per federal state |
||
253 | target = db.select_dataframe( |
||
254 | f""" |
||
255 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
256 | FROM {sources['scenario_capacities']['schema']}. |
||
257 | {sources['scenario_capacities']['table']} a |
||
258 | JOIN {sources['federal_states']['schema']}. |
||
259 | {sources['federal_states']['table']} b |
||
260 | ON a.nuts = b.nuts |
||
261 | WHERE scenario_name = '{scenario}' |
||
262 | AND carrier = 'residential_rural_heat_pump' |
||
263 | """, |
||
264 | index_col="state", |
||
265 | ) |
||
266 | |||
267 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
268 | "state" |
||
269 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
270 | |||
271 | append_df = ( |
||
272 | heat_per_mv["share"] |
||
273 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
274 | .reset_index() |
||
275 | ) |
||
276 | else: |
||
277 | # Select target value for Germany |
||
278 | target = db.select_dataframe( |
||
279 | f""" |
||
280 | SELECT SUM(capacity) AS capacity |
||
281 | FROM {sources['scenario_capacities']['schema']}. |
||
282 | {sources['scenario_capacities']['table']} a |
||
283 | WHERE scenario_name = '{scenario}' |
||
284 | AND carrier = 'residential_rural_heat_pump' |
||
285 | """ |
||
286 | ) |
||
287 | |||
288 | heat_per_mv["share"] = ( |
||
289 | heat_per_mv.remaining_demand |
||
290 | / heat_per_mv.remaining_demand.sum() |
||
291 | ) |
||
292 | |||
293 | append_df = ( |
||
294 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
295 | ) |
||
296 | |||
297 | append_df.rename( |
||
298 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
299 | ) |
||
300 | |||
301 | elif tech.index == "gas_boiler": |
||
302 | |||
303 | append_df = pd.DataFrame( |
||
304 | data={ |
||
305 | "capacity": heat_per_mv.remaining_demand.div( |
||
306 | tech.estimated_flh.values[0] |
||
307 | ), |
||
308 | "carrier": "residential_rural_gas_boiler", |
||
309 | "mv_grid_id": heat_per_mv.index, |
||
310 | "scenario": scenario, |
||
311 | } |
||
312 | ) |
||
313 | |||
314 | if append_df.size > 0: |
||
|
|||
315 | append_df["carrier"] = tech.index[0] |
||
316 | heat_per_mv.loc[ |
||
317 | append_df.mv_grid_id, "remaining_demand" |
||
318 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
319 | tech.estimated_flh.values[0] |
||
320 | ) |
||
321 | |||
322 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
323 | |||
324 | technologies = technologies.drop(tech.index) |
||
325 | |||
326 | return heat_per_mv, technologies, append_df |
||
327 | |||
328 | |||
329 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
330 | """Assigns supply strategy for individual heating in four steps. |
||
331 | |||
332 | 1.) all small scale CHP are connected. |
||
333 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
334 | are attached. This is not implemented yet, since individual |
||
335 | solar thermal plants are not considered in eGon2035 scenario. |
||
336 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
337 | 4.) The last option are individual gas boilers. |
||
338 | |||
339 | Parameters |
||
340 | ---------- |
||
341 | scenario : str |
||
342 | Name of scenario |
||
343 | plotting : bool, optional |
||
344 | Choose if individual heating supply is plotted. The default is True. |
||
345 | |||
346 | Returns |
||
347 | ------- |
||
348 | resulting_capacities : pandas.DataFrame |
||
349 | List of plants per mv grid |
||
350 | |||
351 | """ |
||
352 | |||
353 | sources = config.datasets()["heat_supply"]["sources"] |
||
354 | |||
355 | # Select residential heat demand per mv grid district and federal state |
||
356 | heat_per_mv = db.select_geodataframe( |
||
357 | f""" |
||
358 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
359 | c.vg250_lan as state, d.geom |
||
360 | FROM {sources['heat_demand']['schema']}. |
||
361 | {sources['heat_demand']['table']} a |
||
362 | JOIN {sources['map_zensus_grid']['schema']}. |
||
363 | {sources['map_zensus_grid']['table']} b |
||
364 | ON a.zensus_population_id = b.zensus_population_id |
||
365 | JOIN {sources['map_vg250_grid']['schema']}. |
||
366 | {sources['map_vg250_grid']['table']} c |
||
367 | ON b.bus_id = c.bus_id |
||
368 | JOIN {sources['mv_grids']['schema']}. |
||
369 | {sources['mv_grids']['table']} d |
||
370 | ON d.bus_id = c.bus_id |
||
371 | WHERE scenario = '{scenario}' |
||
372 | AND a.zensus_population_id NOT IN ( |
||
373 | SELECT zensus_population_id |
||
374 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
375 | WHERE scenario = '{scenario}') |
||
376 | GROUP BY d.bus_id, vg250_lan, geom |
||
377 | """, |
||
378 | index_col="bus_id", |
||
379 | ) |
||
380 | |||
381 | # Store geometry of mv grid |
||
382 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
383 | |||
384 | # Initalize Dataframe for results |
||
385 | resulting_capacities = pd.DataFrame( |
||
386 | columns=["mv_grid_id", "carrier", "capacity"] |
||
387 | ) |
||
388 | |||
389 | # Set technology data according to |
||
390 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
391 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
392 | technologies = pd.DataFrame( |
||
393 | index=["heat_pump", "gas_boiler"], |
||
394 | columns=["estimated_flh", "priority"], |
||
395 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
396 | ) |
||
397 | |||
398 | # In the beginning, the remaining demand equals demand |
||
399 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
400 | |||
401 | # Connect new technologies, if there is still heat demand left |
||
402 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
403 | # Attach new supply technology |
||
404 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
405 | heat_per_mv, technologies, scenario, distribution_level |
||
406 | ) |
||
407 | # Collect resulting capacities |
||
408 | resulting_capacities = resulting_capacities.append( |
||
409 | append_df, ignore_index=True |
||
410 | ) |
||
411 | |||
412 | if plotting: |
||
413 | plot_heat_supply(resulting_capacities) |
||
414 | |||
415 | return gpd.GeoDataFrame( |
||
416 | resulting_capacities, |
||
417 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
418 | ) |
||
419 | |||
420 | |||
421 | def get_peta_demand(mvgd, scenario): |
||
422 | """ |
||
423 | Retrieve annual peta heat demand for residential buildings for either |
||
424 | eGon2035 or eGon100RE scenario. |
||
425 | |||
426 | Parameters |
||
427 | ---------- |
||
428 | mvgd : int |
||
429 | MV grid ID. |
||
430 | scenario : str |
||
431 | Possible options are eGon2035 or eGon100RE |
||
432 | |||
433 | Returns |
||
434 | ------- |
||
435 | df_peta_demand : pd.DataFrame |
||
436 | Annual residential heat demand per building and scenario. Columns of |
||
437 | the dataframe are zensus_population_id and demand. |
||
438 | |||
439 | """ |
||
440 | |||
441 | with db.session_scope() as session: |
||
442 | query = ( |
||
443 | session.query( |
||
444 | MapZensusGridDistricts.zensus_population_id, |
||
445 | EgonPetaHeat.demand, |
||
446 | ) |
||
447 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
448 | .filter( |
||
449 | MapZensusGridDistricts.zensus_population_id |
||
450 | == EgonPetaHeat.zensus_population_id |
||
451 | ) |
||
452 | .filter( |
||
453 | EgonPetaHeat.sector == "residential", |
||
454 | EgonPetaHeat.scenario == scenario, |
||
455 | ) |
||
456 | ) |
||
457 | |||
458 | df_peta_demand = pd.read_sql( |
||
459 | query.statement, query.session.bind, index_col=None |
||
460 | ) |
||
461 | |||
462 | return df_peta_demand |
||
463 | |||
464 | |||
465 | def get_residential_heat_profile_ids(mvgd): |
||
466 | """ |
||
467 | Retrieve 365 daily heat profiles ids per residential building and selected |
||
468 | mvgd. |
||
469 | |||
470 | Parameters |
||
471 | ---------- |
||
472 | mvgd : int |
||
473 | ID of MVGD |
||
474 | |||
475 | Returns |
||
476 | ------- |
||
477 | df_profiles_ids : pd.DataFrame |
||
478 | Residential daily heat profile ID's per building. Columns of the |
||
479 | dataframe are zensus_population_id, building_id, |
||
480 | selected_idp_profiles, buildings and day_of_year. |
||
481 | |||
482 | """ |
||
483 | with db.session_scope() as session: |
||
484 | query = ( |
||
485 | session.query( |
||
486 | MapZensusGridDistricts.zensus_population_id, |
||
487 | EgonHeatTimeseries.building_id, |
||
488 | EgonHeatTimeseries.selected_idp_profiles, |
||
489 | ) |
||
490 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
491 | .filter( |
||
492 | MapZensusGridDistricts.zensus_population_id |
||
493 | == EgonHeatTimeseries.zensus_population_id |
||
494 | ) |
||
495 | ) |
||
496 | |||
497 | df_profiles_ids = pd.read_sql( |
||
498 | query.statement, query.session.bind, index_col=None |
||
499 | ) |
||
500 | # Add building count per cell |
||
501 | df_profiles_ids = pd.merge( |
||
502 | left=df_profiles_ids, |
||
503 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
504 | .count() |
||
505 | .rename("buildings"), |
||
506 | left_on="zensus_population_id", |
||
507 | right_index=True, |
||
508 | ) |
||
509 | |||
510 | # unnest array of ids per building |
||
511 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
512 | # add day of year column by order of list |
||
513 | df_profiles_ids["day_of_year"] = ( |
||
514 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
515 | ) |
||
516 | return df_profiles_ids |
||
517 | |||
518 | |||
519 | def get_daily_profiles(profile_ids): |
||
520 | """ |
||
521 | Parameters |
||
522 | ---------- |
||
523 | profile_ids : list(int) |
||
524 | daily heat profile ID's |
||
525 | |||
526 | Returns |
||
527 | ------- |
||
528 | df_profiles : pd.DataFrame |
||
529 | Residential daily heat profiles. Columns of the dataframe are idp, |
||
530 | house, temperature_class and hour. |
||
531 | |||
532 | """ |
||
533 | |||
534 | saio.register_schema("demand", db.engine()) |
||
535 | from saio.demand import egon_heat_idp_pool |
||
536 | |||
537 | with db.session_scope() as session: |
||
538 | query = session.query(egon_heat_idp_pool).filter( |
||
539 | egon_heat_idp_pool.index.in_(profile_ids) |
||
540 | ) |
||
541 | |||
542 | df_profiles = pd.read_sql( |
||
543 | query.statement, query.session.bind, index_col="index" |
||
544 | ) |
||
545 | |||
546 | # unnest array of profile values per id |
||
547 | df_profiles = df_profiles.explode("idp") |
||
548 | # Add column for hour of day |
||
549 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
550 | |||
551 | return df_profiles |
||
552 | |||
553 | |||
554 | def get_daily_demand_share(mvgd): |
||
555 | """per census cell |
||
556 | Parameters |
||
557 | ---------- |
||
558 | mvgd : int |
||
559 | MVGD id |
||
560 | |||
561 | Returns |
||
562 | ------- |
||
563 | df_daily_demand_share : pd.DataFrame |
||
564 | Daily annual demand share per cencus cell. Columns of the dataframe |
||
565 | are zensus_population_id, day_of_year and daily_demand_share. |
||
566 | |||
567 | """ |
||
568 | |||
569 | with db.session_scope() as session: |
||
570 | query = session.query( |
||
571 | MapZensusGridDistricts.zensus_population_id, |
||
572 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
573 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
574 | ).filter( |
||
575 | EgonMapZensusClimateZones.climate_zone |
||
576 | == EgonDailyHeatDemandPerClimateZone.climate_zone, |
||
577 | MapZensusGridDistricts.zensus_population_id |
||
578 | == EgonMapZensusClimateZones.zensus_population_id, |
||
579 | MapZensusGridDistricts.bus_id == mvgd, |
||
580 | ) |
||
581 | |||
582 | df_daily_demand_share = pd.read_sql( |
||
583 | query.statement, query.session.bind, index_col=None |
||
584 | ) |
||
585 | return df_daily_demand_share |
||
586 | |||
587 | |||
588 | def calc_residential_heat_profiles_per_mvgd(mvgd, scenario): |
||
589 | """ |
||
590 | Gets residential heat profiles per building in MV grid for either eGon2035 |
||
591 | or eGon100RE scenario. |
||
592 | |||
593 | Parameters |
||
594 | ---------- |
||
595 | mvgd : int |
||
596 | MV grid ID. |
||
597 | scenario : str |
||
598 | Possible options are eGon2035 or eGon100RE. |
||
599 | |||
600 | Returns |
||
601 | -------- |
||
602 | pd.DataFrame |
||
603 | Heat demand profiles of buildings. Columns are: |
||
604 | * zensus_population_id : int |
||
605 | Zensus cell ID building is in. |
||
606 | * building_id : int |
||
607 | ID of building. |
||
608 | * day_of_year : int |
||
609 | Day of the year (1 - 365). |
||
610 | * hour : int |
||
611 | Hour of the day (1 - 24). |
||
612 | * demand_ts : float |
||
613 | Building's residential heat demand in MW, for specified hour |
||
614 | of the year (specified through columns `day_of_year` and |
||
615 | `hour`). |
||
616 | """ |
||
617 | |||
618 | columns = [ |
||
619 | "zensus_population_id", |
||
620 | "building_id", |
||
621 | "day_of_year", |
||
622 | "hour", |
||
623 | "demand_ts", |
||
624 | ] |
||
625 | |||
626 | df_peta_demand = get_peta_demand(mvgd, scenario) |
||
627 | |||
628 | # TODO maybe return empty dataframe |
||
629 | if df_peta_demand.empty: |
||
630 | logger.info(f"No demand for MVGD: {mvgd}") |
||
631 | return pd.DataFrame(columns=columns) |
||
632 | |||
633 | df_profiles_ids = get_residential_heat_profile_ids(mvgd) |
||
634 | |||
635 | if df_profiles_ids.empty: |
||
636 | logger.info(f"No profiles for MVGD: {mvgd}") |
||
637 | return pd.DataFrame(columns=columns) |
||
638 | |||
639 | df_profiles = get_daily_profiles( |
||
640 | df_profiles_ids["selected_idp_profiles"].unique() |
||
641 | ) |
||
642 | |||
643 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
644 | |||
645 | # Merge profile ids to peta demand by zensus_population_id |
||
646 | df_profile_merge = pd.merge( |
||
647 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
648 | ) |
||
649 | |||
650 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
651 | df_profile_merge = pd.merge( |
||
652 | left=df_profile_merge, |
||
653 | right=df_daily_demand_share, |
||
654 | on=["zensus_population_id", "day_of_year"], |
||
655 | ) |
||
656 | |||
657 | # Merge daily profiles by profile id |
||
658 | df_profile_merge = pd.merge( |
||
659 | left=df_profile_merge, |
||
660 | right=df_profiles[["idp", "hour"]], |
||
661 | left_on="selected_idp_profiles", |
||
662 | right_index=True, |
||
663 | ) |
||
664 | |||
665 | # Scale profiles |
||
666 | df_profile_merge["demand_ts"] = ( |
||
667 | df_profile_merge["idp"] |
||
668 | .mul(df_profile_merge["daily_demand_share"]) |
||
669 | .mul(df_profile_merge["demand"]) |
||
670 | .div(df_profile_merge["buildings"]) |
||
671 | ) |
||
672 | |||
673 | return df_profile_merge.loc[:, columns] |
||
674 | |||
675 | |||
676 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
677 | |||
678 | from matplotlib import pyplot as plt |
||
679 | |||
680 | mv_grids = db.select_geodataframe( |
||
681 | """ |
||
682 | SELECT * FROM grid.egon_mv_grid_district |
||
683 | """, |
||
684 | index_col="bus_id", |
||
685 | ) |
||
686 | |||
687 | for c in ["CHP", "heat_pump"]: |
||
688 | mv_grids[c] = ( |
||
689 | resulting_capacities[resulting_capacities.carrier == c] |
||
690 | .set_index("mv_grid_id") |
||
691 | .capacity |
||
692 | ) |
||
693 | |||
694 | fig, ax = plt.subplots(1, 1) |
||
695 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
696 | mv_grids.plot( |
||
697 | ax=ax, |
||
698 | column=c, |
||
699 | cmap="magma_r", |
||
700 | legend=True, |
||
701 | legend_kwds={ |
||
702 | "label": f"Installed {c} in MW", |
||
703 | "orientation": "vertical", |
||
704 | }, |
||
705 | ) |
||
706 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
707 | |||
708 | |||
709 | def get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
710 | scenario, mv_grid_id |
||
711 | ): |
||
712 | """ |
||
713 | Returns zensus cell IDs with decentral heating systems in given MV grid. |
||
714 | |||
715 | As cells with district heating differ between scenarios, this is also |
||
716 | depending on the scenario. |
||
717 | |||
718 | Parameters |
||
719 | ----------- |
||
720 | scenario : str |
||
721 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
722 | mv_grid_id : int |
||
723 | ID of MV grid. |
||
724 | |||
725 | Returns |
||
726 | -------- |
||
727 | pd.Index(int) |
||
728 | Zensus cell IDs (as int) of buildings with decentral heating systems in |
||
729 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
730 | used in a query. |
||
731 | |||
732 | """ |
||
733 | |||
734 | # get zensus cells in grid |
||
735 | zensus_population_ids = db.select_dataframe( |
||
736 | f""" |
||
737 | SELECT zensus_population_id |
||
738 | FROM boundaries.egon_map_zensus_grid_districts |
||
739 | WHERE bus_id = {mv_grid_id} |
||
740 | """, |
||
741 | index_col=None, |
||
742 | ).zensus_population_id.values |
||
743 | |||
744 | # maybe use adapter |
||
745 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
746 | # reason throw an error when used in a query) |
||
747 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
748 | |||
749 | # get zensus cells with district heating |
||
750 | with db.session_scope() as session: |
||
751 | query = session.query( |
||
752 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
753 | ).filter( |
||
754 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
755 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
756 | zensus_population_ids |
||
757 | ), |
||
758 | ) |
||
759 | |||
760 | cells_with_dh = pd.read_sql( |
||
761 | query.statement, query.session.bind, index_col=None |
||
762 | ).zensus_population_id.values |
||
763 | |||
764 | # remove zensus cells with district heating |
||
765 | zensus_population_ids = zensus_population_ids.drop( |
||
766 | cells_with_dh, errors="ignore" |
||
767 | ) |
||
768 | return pd.Index(zensus_population_ids) |
||
769 | |||
770 | |||
771 | def get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
772 | scenario, mv_grid_id |
||
773 | ): |
||
774 | """ |
||
775 | Returns building IDs of buildings with decentral residential heat demand in |
||
776 | given MV grid. |
||
777 | |||
778 | As cells with district heating differ between scenarios, this is also |
||
779 | depending on the scenario. |
||
780 | |||
781 | Parameters |
||
782 | ----------- |
||
783 | scenario : str |
||
784 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
785 | mv_grid_id : int |
||
786 | ID of MV grid. |
||
787 | |||
788 | Returns |
||
789 | -------- |
||
790 | pd.Index(int) |
||
791 | Building IDs (as int) of buildings with decentral heating system in |
||
792 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
793 | used in a query. |
||
794 | |||
795 | """ |
||
796 | # get zensus cells with decentral heating |
||
797 | zensus_population_ids = ( |
||
798 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
799 | scenario, mv_grid_id |
||
800 | ) |
||
801 | ) |
||
802 | |||
803 | # get buildings with decentral heat demand |
||
804 | saio.register_schema("demand", engine) |
||
805 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
806 | |||
807 | with db.session_scope() as session: |
||
808 | query = session.query( |
||
809 | egon_heat_timeseries_selected_profiles.building_id, |
||
810 | ).filter( |
||
811 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
812 | zensus_population_ids |
||
813 | ) |
||
814 | ) |
||
815 | |||
816 | buildings_with_heat_demand = pd.read_sql( |
||
817 | query.statement, query.session.bind, index_col=None |
||
818 | ).building_id.values |
||
819 | |||
820 | return pd.Index(buildings_with_heat_demand) |
||
821 | |||
822 | |||
823 | def get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
824 | scenario, mv_grid_id |
||
825 | ): |
||
826 | """ |
||
827 | Returns building IDs of buildings with decentral CTS heat demand in |
||
828 | given MV grid. |
||
829 | |||
830 | As cells with district heating differ between scenarios, this is also |
||
831 | depending on the scenario. |
||
832 | |||
833 | Parameters |
||
834 | ----------- |
||
835 | scenario : str |
||
836 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
837 | mv_grid_id : int |
||
838 | ID of MV grid. |
||
839 | |||
840 | Returns |
||
841 | -------- |
||
842 | pd.Index(int) |
||
843 | Building IDs (as int) of buildings with decentral heating system in |
||
844 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
845 | used in a query. |
||
846 | |||
847 | """ |
||
848 | |||
849 | # get zensus cells with decentral heating |
||
850 | zensus_population_ids = ( |
||
851 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
852 | scenario, mv_grid_id |
||
853 | ) |
||
854 | ) |
||
855 | |||
856 | # get buildings with decentral heat demand |
||
857 | with db.session_scope() as session: |
||
858 | query = session.query(EgonMapZensusMvgdBuildings.building_id).filter( |
||
859 | EgonMapZensusMvgdBuildings.sector == "cts", |
||
860 | EgonMapZensusMvgdBuildings.zensus_population_id.in_( |
||
861 | zensus_population_ids |
||
862 | ), |
||
863 | ) |
||
864 | |||
865 | buildings_with_heat_demand = pd.read_sql( |
||
866 | query.statement, query.session.bind, index_col=None |
||
867 | ).building_id.values |
||
868 | |||
869 | return pd.Index(buildings_with_heat_demand) |
||
870 | |||
871 | |||
872 | def get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd, scenario): |
||
873 | """ |
||
874 | Returns building IDs of buildings with decentral heat demand in |
||
875 | given MV grid. |
||
876 | |||
877 | As cells with district heating differ between scenarios, this is also |
||
878 | depending on the scenario. CTS and residential have to be retrieved |
||
879 | seperatly as some residential buildings only have electricity but no |
||
880 | heat demand. This does not occure in CTS. |
||
881 | |||
882 | Parameters |
||
883 | ----------- |
||
884 | mvgd : int |
||
885 | ID of MV grid. |
||
886 | scenario : str |
||
887 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
888 | |||
889 | Returns |
||
890 | -------- |
||
891 | pd.Index(int) |
||
892 | Building IDs (as int) of buildings with decentral heating system in |
||
893 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
894 | used in a query. |
||
895 | |||
896 | """ |
||
897 | # get residential buildings with decentral heating systems |
||
898 | buildings_decentral_heating_res = ( |
||
899 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
900 | scenario, mvgd |
||
901 | ) |
||
902 | ) |
||
903 | |||
904 | # get CTS buildings with decentral heating systems |
||
905 | buildings_decentral_heating_cts = ( |
||
906 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mvgd) |
||
907 | ) |
||
908 | |||
909 | # merge residential and CTS buildings |
||
910 | buildings_decentral_heating = buildings_decentral_heating_res.append( |
||
911 | buildings_decentral_heating_cts |
||
912 | ).unique() |
||
913 | |||
914 | return buildings_decentral_heating |
||
915 | |||
916 | |||
917 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
918 | """ |
||
919 | Returns total heat pump capacity per grid that was previously defined |
||
920 | (by NEP or pypsa-eur-sec). |
||
921 | |||
922 | Parameters |
||
923 | ----------- |
||
924 | scenario : str |
||
925 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
926 | mv_grid_id : int |
||
927 | ID of MV grid. |
||
928 | |||
929 | Returns |
||
930 | -------- |
||
931 | float |
||
932 | Total heat pump capacity in MW in given MV grid. |
||
933 | |||
934 | """ |
||
935 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
936 | |||
937 | with db.session_scope() as session: |
||
938 | query = ( |
||
939 | session.query( |
||
940 | EgonIndividualHeatingSupply.mv_grid_id, |
||
941 | EgonIndividualHeatingSupply.capacity, |
||
942 | ) |
||
943 | .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
944 | .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
945 | .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
946 | ) |
||
947 | |||
948 | hp_cap_mv_grid = pd.read_sql( |
||
949 | query.statement, query.session.bind, index_col="mv_grid_id" |
||
950 | ) |
||
951 | if hp_cap_mv_grid.empty: |
||
952 | return 0.0 |
||
953 | else: |
||
954 | return hp_cap_mv_grid.capacity.values[0] |
||
955 | |||
956 | |||
957 | def get_heat_peak_demand_per_building(scenario, building_ids): |
||
958 | """""" |
||
959 | |||
960 | with db.session_scope() as session: |
||
961 | query = ( |
||
962 | session.query( |
||
963 | BuildingHeatPeakLoads.building_id, |
||
964 | BuildingHeatPeakLoads.peak_load_in_w, |
||
965 | ) |
||
966 | .filter(BuildingHeatPeakLoads.scenario == scenario) |
||
967 | .filter(BuildingHeatPeakLoads.building_id.in_(building_ids)) |
||
968 | ) |
||
969 | |||
970 | df_heat_peak_demand = pd.read_sql( |
||
971 | query.statement, query.session.bind, index_col=None |
||
972 | ) |
||
973 | |||
974 | # TODO remove check |
||
975 | if df_heat_peak_demand.duplicated("building_id").any(): |
||
976 | raise ValueError("Duplicate building_id") |
||
977 | |||
978 | # convert to series and from W to MW |
||
979 | df_heat_peak_demand = ( |
||
980 | df_heat_peak_demand.set_index("building_id").loc[:, "peak_load_in_w"] |
||
981 | * 1e6 |
||
982 | ) |
||
983 | return df_heat_peak_demand |
||
984 | |||
985 | |||
986 | def determine_minimum_hp_capacity_per_building( |
||
987 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
988 | ): |
||
989 | """ |
||
990 | Determines minimum required heat pump capacity. |
||
991 | |||
992 | Parameters |
||
993 | ---------- |
||
994 | peak_heat_demand : pd.Series |
||
995 | Series with peak heat demand per building in MW. Index contains the |
||
996 | building ID. |
||
997 | flexibility_factor : float |
||
998 | Factor to overdimension the heat pump to allow for some flexible |
||
999 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
1000 | is used, to take into account |
||
1001 | |||
1002 | Returns |
||
1003 | ------- |
||
1004 | pd.Series |
||
1005 | Pandas series with minimum required heat pump capacity per building in |
||
1006 | MW. |
||
1007 | |||
1008 | """ |
||
1009 | return peak_heat_demand * flexibility_factor / cop |
||
1010 | |||
1011 | |||
1012 | def determine_buildings_with_hp_in_mv_grid( |
||
1013 | hp_cap_mv_grid, min_hp_cap_per_building |
||
1014 | ): |
||
1015 | """ |
||
1016 | Distributes given total heat pump capacity to buildings based on their peak |
||
1017 | heat demand. |
||
1018 | |||
1019 | Parameters |
||
1020 | ----------- |
||
1021 | hp_cap_mv_grid : float |
||
1022 | Total heat pump capacity in MW in given MV grid. |
||
1023 | min_hp_cap_per_building : pd.Series |
||
1024 | Pandas series with minimum required heat pump capacity per building |
||
1025 | in MW. |
||
1026 | |||
1027 | Returns |
||
1028 | ------- |
||
1029 | pd.Index(int) |
||
1030 | Building IDs (as int) of buildings to get heat demand time series for. |
||
1031 | |||
1032 | """ |
||
1033 | building_ids = min_hp_cap_per_building.index |
||
1034 | |||
1035 | # get buildings with PV to give them a higher priority when selecting |
||
1036 | # buildings a heat pump will be allocated to |
||
1037 | saio.register_schema("supply", engine) |
||
1038 | from saio.supply import egon_power_plants_pv_roof_building |
||
1039 | |||
1040 | with db.session_scope() as session: |
||
1041 | query = session.query( |
||
1042 | egon_power_plants_pv_roof_building.building_id |
||
1043 | ).filter( |
||
1044 | egon_power_plants_pv_roof_building.building_id.in_(building_ids), |
||
1045 | egon_power_plants_pv_roof_building.scenario == "eGon2035", |
||
1046 | ) |
||
1047 | |||
1048 | buildings_with_pv = pd.read_sql( |
||
1049 | query.statement, query.session.bind, index_col=None |
||
1050 | ).building_id.values |
||
1051 | # set different weights for buildings with PV and without PV |
||
1052 | weight_with_pv = 1.5 |
||
1053 | weight_without_pv = 1.0 |
||
1054 | weights = pd.concat( |
||
1055 | [ |
||
1056 | pd.DataFrame( |
||
1057 | {"weight": weight_without_pv}, |
||
1058 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
1059 | ), |
||
1060 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
1061 | ] |
||
1062 | ) |
||
1063 | # normalise weights (probability needs to add up to 1) |
||
1064 | weights.weight = weights.weight / weights.weight.sum() |
||
1065 | |||
1066 | # get random order at which buildings are chosen |
||
1067 | np.random.seed(db.credentials()["--random-seed"]) |
||
1068 | buildings_with_hp_order = np.random.choice( |
||
1069 | weights.index, |
||
1070 | size=len(weights), |
||
1071 | replace=False, |
||
1072 | p=weights.weight.values, |
||
1073 | ) |
||
1074 | |||
1075 | # select buildings until HP capacity in MV grid is reached (some rest |
||
1076 | # capacity will remain) |
||
1077 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
1078 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
1079 | |||
1080 | # choose random heat pumps until remaining heat pumps are larger than |
||
1081 | # remaining heat pump capacity |
||
1082 | remaining_hp_cap = ( |
||
1083 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1084 | ) |
||
1085 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1086 | building_ids.drop(buildings_with_hp) |
||
1087 | ] |
||
1088 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1089 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1090 | ].index |
||
1091 | while len(possible_buildings) > 0: |
||
1092 | random.seed(db.credentials()["--random-seed"]) |
||
1093 | new_hp_building = random.choice(possible_buildings) |
||
1094 | # add new building to building with HP |
||
1095 | buildings_with_hp = buildings_with_hp.append( |
||
1096 | pd.Index([new_hp_building]) |
||
1097 | ) |
||
1098 | # determine if there are still possible buildings |
||
1099 | remaining_hp_cap = ( |
||
1100 | hp_cap_mv_grid |
||
1101 | - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1102 | ) |
||
1103 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1104 | building_ids.drop(buildings_with_hp) |
||
1105 | ] |
||
1106 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1107 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1108 | ].index |
||
1109 | |||
1110 | return buildings_with_hp |
||
1111 | |||
1112 | |||
1113 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
1114 | """ |
||
1115 | Desaggregates the required total heat pump capacity to buildings. |
||
1116 | |||
1117 | All buildings are previously assigned a minimum required heat pump |
||
1118 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
1119 | are assigned. |
||
1120 | |||
1121 | Parameters |
||
1122 | ------------ |
||
1123 | min_hp_cap_per_building : pd.Series |
||
1124 | Pandas series with minimum required heat pump capacity per building |
||
1125 | in MW. |
||
1126 | hp_cap_mv_grid : float |
||
1127 | Total heat pump capacity in MW in given MV grid. |
||
1128 | |||
1129 | Returns |
||
1130 | -------- |
||
1131 | pd.Series |
||
1132 | Pandas series with heat pump capacity per building in MW. |
||
1133 | |||
1134 | """ |
||
1135 | # distribute remaining capacity to all buildings with HP depending on |
||
1136 | # installed HP capacity |
||
1137 | |||
1138 | allocated_cap = min_hp_cap_per_building.sum() |
||
1139 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
1140 | |||
1141 | fac = remaining_cap / allocated_cap |
||
1142 | hp_cap_per_building = ( |
||
1143 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
1144 | ) |
||
1145 | hp_cap_per_building.index.name = "building_id" |
||
1146 | |||
1147 | return hp_cap_per_building |
||
1148 | |||
1149 | |||
1150 | def determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1151 | peak_heat_demand, building_ids |
||
1152 | ): |
||
1153 | """ |
||
1154 | Determines minimum required HP capacity in MV grid in MW as input for |
||
1155 | pypsa-eur-sec. |
||
1156 | |||
1157 | Parameters |
||
1158 | ---------- |
||
1159 | peak_heat_demand : pd.Series |
||
1160 | Series with peak heat demand per building in MW. Index contains the |
||
1161 | building ID. |
||
1162 | building_ids : pd.Index(int) |
||
1163 | Building IDs (as int) of buildings with decentral heating system in |
||
1164 | given MV grid. |
||
1165 | |||
1166 | Returns |
||
1167 | -------- |
||
1168 | float |
||
1169 | Minimum required HP capacity in MV grid in MW. |
||
1170 | |||
1171 | """ |
||
1172 | if len(building_ids) > 0: |
||
1173 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1174 | # determine minimum required heat pump capacity per building |
||
1175 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1176 | peak_heat_demand |
||
1177 | ) |
||
1178 | return min_hp_cap_buildings.sum() |
||
1179 | else: |
||
1180 | return 0.0 |
||
1181 | |||
1182 | |||
1183 | def determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1184 | mv_grid_id, peak_heat_demand, building_ids |
||
1185 | ): |
||
1186 | """ |
||
1187 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
1188 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well |
||
1189 | as their respective HP capacity in MW. |
||
1190 | |||
1191 | Parameters |
||
1192 | ----------- |
||
1193 | mv_grid_id : int |
||
1194 | ID of MV grid. |
||
1195 | peak_heat_demand : pd.Series |
||
1196 | Series with peak heat demand per building in MW. Index contains the |
||
1197 | building ID. |
||
1198 | building_ids : pd.Index(int) |
||
1199 | Building IDs (as int) of buildings with decentral heating system in |
||
1200 | given MV grid. |
||
1201 | |||
1202 | """ |
||
1203 | |||
1204 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1205 | "eGon2035", mv_grid_id |
||
1206 | ) |
||
1207 | |||
1208 | if len(building_ids) > 0 and hp_cap_grid > 0.0: |
||
1209 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1210 | |||
1211 | # determine minimum required heat pump capacity per building |
||
1212 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1213 | peak_heat_demand |
||
1214 | ) |
||
1215 | |||
1216 | # select buildings that will have a heat pump |
||
1217 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
1218 | hp_cap_grid, min_hp_cap_buildings |
||
1219 | ) |
||
1220 | |||
1221 | # distribute total heat pump capacity to all buildings with HP |
||
1222 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1223 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
1224 | ) |
||
1225 | |||
1226 | return hp_cap_per_building.rename("hp_capacity") |
||
1227 | |||
1228 | else: |
||
1229 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
1230 | |||
1231 | |||
1232 | def determine_hp_cap_buildings_eGon100RE_per_mvgd(mv_grid_id): |
||
1233 | """ |
||
1234 | Determines HP capacity per building in eGon100RE scenario. |
||
1235 | |||
1236 | In eGon100RE scenario all buildings without district heating get a heat |
||
1237 | pump. |
||
1238 | |||
1239 | Returns |
||
1240 | -------- |
||
1241 | pd.Series |
||
1242 | Pandas series with heat pump capacity per building in MW. |
||
1243 | |||
1244 | """ |
||
1245 | |||
1246 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1247 | "eGon100RE", mv_grid_id |
||
1248 | ) |
||
1249 | |||
1250 | if hp_cap_grid > 0.0: |
||
1251 | |||
1252 | # get buildings with decentral heating systems |
||
1253 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1254 | mv_grid_id, scenario="eGon100RE" |
||
1255 | ) |
||
1256 | |||
1257 | logger.info(f"MVGD={mv_grid_id} | Get peak loads from DB") |
||
1258 | df_peak_heat_demand = get_heat_peak_demand_per_building( |
||
1259 | "eGon100RE", building_ids |
||
1260 | ) |
||
1261 | |||
1262 | logger.info(f"MVGD={mv_grid_id} | Determine HP capacities.") |
||
1263 | # determine minimum required heat pump capacity per building |
||
1264 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1265 | df_peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
1266 | ) |
||
1267 | |||
1268 | logger.info(f"MVGD={mv_grid_id} | Desaggregate HP capacities.") |
||
1269 | # distribute total heat pump capacity to all buildings with HP |
||
1270 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1271 | min_hp_cap_buildings, hp_cap_grid |
||
1272 | ) |
||
1273 | |||
1274 | return hp_cap_per_building.rename("hp_capacity") |
||
1275 | else: |
||
1276 | return pd.Series(dtype="float64").rename("hp_capacity") |
||
1277 | |||
1278 | |||
1279 | def determine_hp_cap_buildings_eGon100RE(): |
||
1280 | """ |
||
1281 | Main function to determine HP capacity per building in eGon100RE scenario. |
||
1282 | |||
1283 | """ |
||
1284 | |||
1285 | # ========== Register np datatypes with SQLA ========== |
||
1286 | register_adapter(np.float64, adapt_numpy_float64) |
||
1287 | register_adapter(np.int64, adapt_numpy_int64) |
||
1288 | # ===================================================== |
||
1289 | |||
1290 | with db.session_scope() as session: |
||
1291 | query = ( |
||
1292 | session.query( |
||
1293 | MapZensusGridDistricts.bus_id, |
||
1294 | ) |
||
1295 | .filter( |
||
1296 | MapZensusGridDistricts.zensus_population_id |
||
1297 | == EgonPetaHeat.zensus_population_id |
||
1298 | ) |
||
1299 | .distinct(MapZensusGridDistricts.bus_id) |
||
1300 | ) |
||
1301 | mvgd_ids = pd.read_sql( |
||
1302 | query.statement, query.session.bind, index_col=None |
||
1303 | ) |
||
1304 | mvgd_ids = mvgd_ids.sort_values("bus_id") |
||
1305 | mvgd_ids = mvgd_ids["bus_id"].values |
||
1306 | |||
1307 | df_hp_cap_per_building_100RE_db = pd.DataFrame( |
||
1308 | columns=["building_id", "hp_capacity"] |
||
1309 | ) |
||
1310 | |||
1311 | for mvgd_id in mvgd_ids: |
||
1312 | |||
1313 | logger.info(f"MVGD={mvgd_id} | Start") |
||
1314 | |||
1315 | hp_cap_per_building_100RE = ( |
||
1316 | determine_hp_cap_buildings_eGon100RE_per_mvgd(mvgd_id) |
||
1317 | ) |
||
1318 | |||
1319 | if not hp_cap_per_building_100RE.empty: |
||
1320 | df_hp_cap_per_building_100RE_db = pd.concat( |
||
1321 | [ |
||
1322 | df_hp_cap_per_building_100RE_db, |
||
1323 | hp_cap_per_building_100RE.reset_index(), |
||
1324 | ], |
||
1325 | axis=0, |
||
1326 | ) |
||
1327 | |||
1328 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
1329 | df_hp_cap_per_building_100RE_db["scenario"] = "eGon100RE" |
||
1330 | |||
1331 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1332 | |||
1333 | write_table_to_postgres( |
||
1334 | df_hp_cap_per_building_100RE_db, |
||
1335 | EgonHpCapacityBuildings, |
||
1336 | drop=False, |
||
1337 | ) |
||
1338 | |||
1339 | |||
1340 | def aggregate_residential_and_cts_profiles(mvgd, scenario): |
||
1341 | """ |
||
1342 | Gets residential and CTS heat demand profiles per building and aggregates |
||
1343 | them. |
||
1344 | |||
1345 | Parameters |
||
1346 | ---------- |
||
1347 | mvgd : int |
||
1348 | MV grid ID. |
||
1349 | scenario : str |
||
1350 | Possible options are eGon2035 or eGon100RE. |
||
1351 | |||
1352 | Returns |
||
1353 | -------- |
||
1354 | pd.DataFrame |
||
1355 | Table of demand profile per building. Column names are building IDs and |
||
1356 | index is hour of the year as int (0-8759). |
||
1357 | |||
1358 | """ |
||
1359 | # ############### get residential heat demand profiles ############### |
||
1360 | df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
||
1361 | mvgd=mvgd, scenario=scenario |
||
1362 | ) |
||
1363 | |||
1364 | # pivot to allow aggregation with CTS profiles |
||
1365 | df_heat_ts = df_heat_ts.pivot( |
||
1366 | index=["day_of_year", "hour"], |
||
1367 | columns="building_id", |
||
1368 | values="demand_ts", |
||
1369 | ) |
||
1370 | df_heat_ts = df_heat_ts.sort_index().reset_index(drop=True) |
||
1371 | |||
1372 | # ############### get CTS heat demand profiles ############### |
||
1373 | heat_demand_cts_ts = calc_cts_building_profiles( |
||
1374 | bus_ids=[mvgd], |
||
1375 | scenario=scenario, |
||
1376 | sector="heat", |
||
1377 | ) |
||
1378 | |||
1379 | # ############# aggregate residential and CTS demand profiles ############# |
||
1380 | df_heat_ts = pd.concat([df_heat_ts, heat_demand_cts_ts], axis=1) |
||
1381 | |||
1382 | df_heat_ts = df_heat_ts.groupby(axis=1, level=0).sum() |
||
1383 | |||
1384 | return df_heat_ts |
||
1385 | |||
1386 | |||
1387 | def export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False): |
||
1388 | """ |
||
1389 | Function to export the collected results of all MVGDs per bulk to DB. |
||
1390 | |||
1391 | Parameters |
||
1392 | ---------- |
||
1393 | df_peak_loads_db : pd.DataFrame |
||
1394 | Table of building peak loads of all MVGDs per bulk |
||
1395 | df_heat_mvgd_ts_db : pd.DataFrame |
||
1396 | Table of all aggregated MVGD profiles per bulk |
||
1397 | drop : boolean |
||
1398 | Drop and recreate table if True |
||
1399 | |||
1400 | """ |
||
1401 | |||
1402 | df_peak_loads_db = df_peak_loads_db.melt( |
||
1403 | id_vars="building_id", |
||
1404 | var_name="scenario", |
||
1405 | value_name="peak_load_in_w", |
||
1406 | ) |
||
1407 | df_peak_loads_db["building_id"] = df_peak_loads_db["building_id"].astype( |
||
1408 | int |
||
1409 | ) |
||
1410 | df_peak_loads_db["sector"] = "residential+cts" |
||
1411 | # From MW to W |
||
1412 | df_peak_loads_db["peak_load_in_w"] = ( |
||
1413 | df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
1414 | ) |
||
1415 | write_table_to_postgres(df_peak_loads_db, BuildingHeatPeakLoads, drop=drop) |
||
1416 | |||
1417 | dtypes = { |
||
1418 | column.key: column.type |
||
1419 | for column in EgonEtragoTimeseriesIndividualHeating.__table__.columns |
||
1420 | } |
||
1421 | df_heat_mvgd_ts_db = df_heat_mvgd_ts_db.loc[:, dtypes.keys()] |
||
1422 | |||
1423 | if drop: |
||
1424 | logger.info( |
||
1425 | f"Drop and recreate table " |
||
1426 | f"{EgonEtragoTimeseriesIndividualHeating.__table__.name}." |
||
1427 | ) |
||
1428 | EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
||
1429 | bind=engine, checkfirst=True |
||
1430 | ) |
||
1431 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
1432 | bind=engine, checkfirst=True |
||
1433 | ) |
||
1434 | |||
1435 | with db.session_scope() as session: |
||
1436 | df_heat_mvgd_ts_db.to_sql( |
||
1437 | name=EgonEtragoTimeseriesIndividualHeating.__table__.name, |
||
1438 | schema=EgonEtragoTimeseriesIndividualHeating.__table__.schema, |
||
1439 | con=session.connection(), |
||
1440 | if_exists="append", |
||
1441 | method="multi", |
||
1442 | index=False, |
||
1443 | dtype=dtypes, |
||
1444 | ) |
||
1445 | |||
1446 | |||
1447 | def export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec): |
||
1448 | """Export minimum capacity of heat pumps for pypsa eur sec to csv""" |
||
1449 | |||
1450 | df_hp_min_cap_mv_grid_pypsa_eur_sec.index.name = "mvgd_id" |
||
1451 | df_hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1452 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_frame( |
||
1453 | name="min_hp_capacity" |
||
1454 | ).reset_index() |
||
1455 | ) |
||
1456 | |||
1457 | folder = Path(".") / "input-pypsa-eur-sec" |
||
1458 | file = folder / "minimum_hp_capacity_mv_grid_100RE.csv" |
||
1459 | # Create the folder, if it does not exist already |
||
1460 | if not os.path.exists(folder): |
||
1461 | os.mkdir(folder) |
||
1462 | if not file.is_file(): |
||
1463 | logger.info(f"Create {file}") |
||
1464 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
1465 | file, mode="w", header=False |
||
1466 | ) |
||
1467 | else: |
||
1468 | logger.info(f"Remove {file}") |
||
1469 | os.remove(file) |
||
1470 | logger.info(f"Create {file}") |
||
1471 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
1472 | file, mode="a", header=False |
||
1473 | ) |
||
1474 | |||
1475 | |||
1476 | def catch_missing_buidings(buildings_decentral_heating, peak_load): |
||
1477 | """ |
||
1478 | Check for missing buildings and reduce the list of buildings with |
||
1479 | decentral heating if no peak loads available. This should only happen |
||
1480 | in case of cutout SH |
||
1481 | |||
1482 | Parameters |
||
1483 | ----------- |
||
1484 | buildings_decentral_heating : list(int) |
||
1485 | Array or list of buildings with decentral heating |
||
1486 | |||
1487 | peak_load : pd.Series |
||
1488 | Peak loads of all building within the mvgd |
||
1489 | |||
1490 | """ |
||
1491 | # Catch missing buildings key error |
||
1492 | # should only happen within cutout SH |
||
1493 | if ( |
||
1494 | not all(buildings_decentral_heating.isin(peak_load.index)) |
||
1495 | and config.settings()["egon-data"]["--dataset-boundary"] |
||
1496 | == "Schleswig-Holstein" |
||
1497 | ): |
||
1498 | diff = buildings_decentral_heating.difference(peak_load.index) |
||
1499 | logger.warning( |
||
1500 | f"Dropped {len(diff)} building ids due to missing peak " |
||
1501 | f"loads. {len(buildings_decentral_heating)} left." |
||
1502 | ) |
||
1503 | logger.info(f"Dropped buildings: {diff.values}") |
||
1504 | buildings_decentral_heating = buildings_decentral_heating.drop(diff) |
||
1505 | |||
1506 | return buildings_decentral_heating |
||
1507 | |||
1508 | |||
1509 | def determine_hp_cap_peak_load_mvgd_ts_2035(mvgd_ids): |
||
1510 | """ |
||
1511 | Main function to determine HP capacity per building in eGon2035 scenario. |
||
1512 | Further, creates heat demand time series for all buildings with heat pumps |
||
1513 | in MV grid, as well as for all buildings with gas boilers, used in eTraGo. |
||
1514 | |||
1515 | Parameters |
||
1516 | ----------- |
||
1517 | mvgd_ids : list(int) |
||
1518 | List of MV grid IDs to determine data for. |
||
1519 | |||
1520 | """ |
||
1521 | |||
1522 | # ========== Register np datatypes with SQLA ========== |
||
1523 | register_adapter(np.float64, adapt_numpy_float64) |
||
1524 | register_adapter(np.int64, adapt_numpy_int64) |
||
1525 | # ===================================================== |
||
1526 | |||
1527 | df_peak_loads_db = pd.DataFrame() |
||
1528 | df_hp_cap_per_building_2035_db = pd.DataFrame() |
||
1529 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1530 | |||
1531 | for mvgd in mvgd_ids: |
||
1532 | |||
1533 | logger.info(f"MVGD={mvgd} | Start") |
||
1534 | |||
1535 | # ############# aggregate residential and CTS demand profiles ##### |
||
1536 | |||
1537 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1538 | mvgd, scenario="eGon2035" |
||
1539 | ) |
||
1540 | |||
1541 | # ##################### determine peak loads ################### |
||
1542 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
1543 | |||
1544 | peak_load_2035 = df_heat_ts.max().rename("eGon2035") |
||
1545 | |||
1546 | # ######## determine HP capacity per building ######### |
||
1547 | logger.info(f"MVGD={mvgd} | Determine HP capacities.") |
||
1548 | |||
1549 | buildings_decentral_heating = ( |
||
1550 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1551 | mvgd, scenario="eGon2035" |
||
1552 | ) |
||
1553 | ) |
||
1554 | |||
1555 | # Reduce list of decentral heating if no Peak load available |
||
1556 | # TODO maybe remove after succesfull DE run |
||
1557 | # Might be fixed in #990 |
||
1558 | buildings_decentral_heating = catch_missing_buidings( |
||
1559 | buildings_decentral_heating, peak_load_2035 |
||
1560 | ) |
||
1561 | |||
1562 | hp_cap_per_building_2035 = ( |
||
1563 | determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1564 | mvgd, |
||
1565 | peak_load_2035, |
||
1566 | buildings_decentral_heating, |
||
1567 | ) |
||
1568 | ) |
||
1569 | buildings_gas_2035 = pd.Index(buildings_decentral_heating).drop( |
||
1570 | hp_cap_per_building_2035.index |
||
1571 | ) |
||
1572 | |||
1573 | # ################ aggregated heat profiles ################### |
||
1574 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1575 | |||
1576 | df_mvgd_ts_2035_hp = df_heat_ts.loc[ |
||
1577 | :, |
||
1578 | hp_cap_per_building_2035.index, |
||
1579 | ].sum(axis=1) |
||
1580 | |||
1581 | # heat demand time series for buildings with gas boiler |
||
1582 | df_mvgd_ts_2035_gas = df_heat_ts.loc[:, buildings_gas_2035].sum(axis=1) |
||
1583 | |||
1584 | df_heat_mvgd_ts = pd.DataFrame( |
||
1585 | data={ |
||
1586 | "carrier": ["heat_pump", "CH4"], |
||
1587 | "bus_id": mvgd, |
||
1588 | "scenario": ["eGon2035", "eGon2035"], |
||
1589 | "dist_aggregated_mw": [ |
||
1590 | df_mvgd_ts_2035_hp.to_list(), |
||
1591 | df_mvgd_ts_2035_gas.to_list(), |
||
1592 | ], |
||
1593 | } |
||
1594 | ) |
||
1595 | |||
1596 | # ################ collect results ################## |
||
1597 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
1598 | |||
1599 | df_peak_loads_db = pd.concat( |
||
1600 | [df_peak_loads_db, peak_load_2035.reset_index()], |
||
1601 | axis=0, |
||
1602 | ignore_index=True, |
||
1603 | ) |
||
1604 | |||
1605 | df_heat_mvgd_ts_db = pd.concat( |
||
1606 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1607 | ) |
||
1608 | |||
1609 | df_hp_cap_per_building_2035_db = pd.concat( |
||
1610 | [ |
||
1611 | df_hp_cap_per_building_2035_db, |
||
1612 | hp_cap_per_building_2035.reset_index(), |
||
1613 | ], |
||
1614 | axis=0, |
||
1615 | ) |
||
1616 | |||
1617 | # ################ export to db ####################### |
||
1618 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
1619 | |||
1620 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=False) |
||
1621 | |||
1622 | df_hp_cap_per_building_2035_db["scenario"] = "eGon2035" |
||
1623 | |||
1624 | # TODO debug duplicated building_ids |
||
1625 | duplicates = df_hp_cap_per_building_2035_db.loc[ |
||
1626 | df_hp_cap_per_building_2035_db.duplicated("building_id", keep=False) |
||
1627 | ] |
||
1628 | |||
1629 | logger.info( |
||
1630 | f"Dropped duplicated buildings: " |
||
1631 | f"{duplicates.loc[:,['building_id', 'hp_capacity']]}" |
||
1632 | ) |
||
1633 | |||
1634 | df_hp_cap_per_building_2035_db.drop_duplicates("building_id", inplace=True) |
||
1635 | |||
1636 | write_table_to_postgres( |
||
1637 | df_hp_cap_per_building_2035_db, |
||
1638 | EgonHpCapacityBuildings, |
||
1639 | drop=False, |
||
1640 | ) |
||
1641 | |||
1642 | |||
1643 | def determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec(mvgd_ids): |
||
1644 | """ |
||
1645 | Main function to determine minimum required HP capacity in MV for |
||
1646 | pypsa-eur-sec. Further, creates heat demand time series for all buildings |
||
1647 | with heat pumps in MV grid in eGon100RE scenario, used in eTraGo. |
||
1648 | |||
1649 | Parameters |
||
1650 | ----------- |
||
1651 | mvgd_ids : list(int) |
||
1652 | List of MV grid IDs to determine data for. |
||
1653 | |||
1654 | """ |
||
1655 | |||
1656 | # ========== Register np datatypes with SQLA ========== |
||
1657 | register_adapter(np.float64, adapt_numpy_float64) |
||
1658 | register_adapter(np.int64, adapt_numpy_int64) |
||
1659 | # ===================================================== |
||
1660 | |||
1661 | df_peak_loads_db = pd.DataFrame() |
||
1662 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1663 | df_hp_min_cap_mv_grid_pypsa_eur_sec = pd.Series(dtype="float64") |
||
1664 | |||
1665 | for mvgd in mvgd_ids: |
||
1666 | |||
1667 | logger.info(f"MVGD={mvgd} | Start") |
||
1668 | |||
1669 | # ############# aggregate residential and CTS demand profiles ##### |
||
1670 | |||
1671 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1672 | mvgd, scenario="eGon100RE" |
||
1673 | ) |
||
1674 | |||
1675 | # ##################### determine peak loads ################### |
||
1676 | logger.info(f"MVGD={mvgd} | Determine peak loads.") |
||
1677 | |||
1678 | peak_load_100RE = df_heat_ts.max().rename("eGon100RE") |
||
1679 | |||
1680 | # ######## determine minimum HP capacity pypsa-eur-sec ########### |
||
1681 | logger.info(f"MVGD={mvgd} | Determine minimum HP capacity.") |
||
1682 | |||
1683 | buildings_decentral_heating = ( |
||
1684 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1685 | mvgd, scenario="eGon100RE" |
||
1686 | ) |
||
1687 | ) |
||
1688 | |||
1689 | # Reduce list of decentral heating if no Peak load available |
||
1690 | # TODO maybe remove after succesfull DE run |
||
1691 | buildings_decentral_heating = catch_missing_buidings( |
||
1692 | buildings_decentral_heating, peak_load_100RE |
||
1693 | ) |
||
1694 | |||
1695 | hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1696 | determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1697 | peak_load_100RE, |
||
1698 | buildings_decentral_heating, |
||
1699 | ) |
||
1700 | ) |
||
1701 | |||
1702 | # ################ aggregated heat profiles ################### |
||
1703 | logger.info(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1704 | |||
1705 | df_mvgd_ts_hp = df_heat_ts.loc[ |
||
1706 | :, |
||
1707 | buildings_decentral_heating, |
||
1708 | ].sum(axis=1) |
||
1709 | |||
1710 | df_heat_mvgd_ts = pd.DataFrame( |
||
1711 | data={ |
||
1712 | "carrier": "heat_pump", |
||
1713 | "bus_id": mvgd, |
||
1714 | "scenario": "eGon100RE", |
||
1715 | "dist_aggregated_mw": [df_mvgd_ts_hp.to_list()], |
||
1716 | } |
||
1717 | ) |
||
1718 | |||
1719 | # ################ collect results ################## |
||
1720 | logger.info(f"MVGD={mvgd} | Collect results.") |
||
1721 | |||
1722 | df_peak_loads_db = pd.concat( |
||
1723 | [df_peak_loads_db, peak_load_100RE.reset_index()], |
||
1724 | axis=0, |
||
1725 | ignore_index=True, |
||
1726 | ) |
||
1727 | |||
1728 | df_heat_mvgd_ts_db = pd.concat( |
||
1729 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1730 | ) |
||
1731 | |||
1732 | df_hp_min_cap_mv_grid_pypsa_eur_sec.loc[ |
||
1733 | mvgd |
||
1734 | ] = hp_min_cap_mv_grid_pypsa_eur_sec |
||
1735 | |||
1736 | # ################ export to db and csv ###################### |
||
1737 | logger.info(f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write data to db.") |
||
1738 | |||
1739 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db, drop=True) |
||
1740 | |||
1741 | logger.info( |
||
1742 | f"MVGD={min(mvgd_ids)} : {max(mvgd_ids)} | Write " |
||
1743 | f"pypsa-eur-sec min " |
||
1744 | f"HP capacities to csv." |
||
1745 | ) |
||
1746 | export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec) |
||
1747 | |||
1748 | |||
1749 | def split_mvgds_into_bulks(n, max_n, func): |
||
1750 | """ |
||
1751 | Generic function to split task into multiple parallel tasks, |
||
1752 | dividing the number of MVGDs into even bulks. |
||
1753 | |||
1754 | Parameters |
||
1755 | ----------- |
||
1756 | n : int |
||
1757 | Number of bulk |
||
1758 | max_n: int |
||
1759 | Maximum number of bulks |
||
1760 | func : function |
||
1761 | The funnction which is then called with the list of MVGD as |
||
1762 | parameter. |
||
1763 | """ |
||
1764 | |||
1765 | with db.session_scope() as session: |
||
1766 | query = ( |
||
1767 | session.query( |
||
1768 | MapZensusGridDistricts.bus_id, |
||
1769 | ) |
||
1770 | .filter( |
||
1771 | MapZensusGridDistricts.zensus_population_id |
||
1772 | == EgonPetaHeat.zensus_population_id |
||
1773 | ) |
||
1774 | .distinct(MapZensusGridDistricts.bus_id) |
||
1775 | ) |
||
1776 | mvgd_ids = pd.read_sql( |
||
1777 | query.statement, query.session.bind, index_col=None |
||
1778 | ) |
||
1779 | |||
1780 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
1781 | |||
1782 | mvgd_ids = np.array_split(mvgd_ids["bus_id"].values, max_n) |
||
1783 | # Only take split n |
||
1784 | mvgd_ids = mvgd_ids[n] |
||
1785 | |||
1786 | logger.info(f"Bulk takes care of MVGD: {min(mvgd_ids)} : {max(mvgd_ids)}") |
||
1787 | func(mvgd_ids) |
||
1788 | |||
1789 | |||
1790 | def delete_hp_capacity(scenario): |
||
1791 | """Remove all hp capacities for the selected scenario |
||
1792 | |||
1793 | Parameters |
||
1794 | ----------- |
||
1795 | scenario : string |
||
1796 | Either eGon2035 or eGon100RE |
||
1797 | |||
1798 | """ |
||
1799 | |||
1800 | with db.session_scope() as session: |
||
1801 | # Buses |
||
1802 | session.query(EgonHpCapacityBuildings).filter( |
||
1803 | EgonHpCapacityBuildings.scenario == scenario |
||
1804 | ).delete(synchronize_session=False) |
||
1805 | |||
1806 | |||
1807 | def delete_mvgd_ts(scenario): |
||
1808 | """Remove all hp capacities for the selected scenario |
||
1809 | |||
1810 | Parameters |
||
1811 | ----------- |
||
1812 | scenario : string |
||
1813 | Either eGon2035 or eGon100RE |
||
1814 | |||
1815 | """ |
||
1816 | |||
1817 | with db.session_scope() as session: |
||
1818 | # Buses |
||
1819 | session.query(EgonEtragoTimeseriesIndividualHeating).filter( |
||
1820 | EgonEtragoTimeseriesIndividualHeating.scenario == scenario |
||
1821 | ).delete(synchronize_session=False) |
||
1822 | |||
1823 | |||
1824 | def delete_hp_capacity_100RE(): |
||
1825 | """Remove all hp capacities for the selected eGon100RE""" |
||
1826 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1827 | delete_hp_capacity(scenario="eGon100RE") |
||
1828 | |||
1829 | |||
1830 | def delete_hp_capacity_2035(): |
||
1831 | """Remove all hp capacities for the selected eGon2035""" |
||
1832 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1833 | delete_hp_capacity(scenario="eGon2035") |
||
1834 | |||
1835 | |||
1836 | def delete_mvgd_ts_2035(): |
||
1837 | """Remove all mvgd ts for the selected eGon2035""" |
||
1838 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
1839 | bind=engine, checkfirst=True |
||
1840 | ) |
||
1841 | delete_mvgd_ts(scenario="eGon2035") |
||
1842 | |||
1843 | |||
1844 | def delete_heat_peak_loads_eGon2035(): |
||
1845 | """Remove all heat peak loads for eGon2035. |
||
1846 | |||
1847 | This is not necessary for eGon100RE as these peak loads are calculated in |
||
1848 | HeatPumpsPypsaEurSec and tables are recreated during this dataset.""" |
||
1849 | with db.session_scope() as session: |
||
1850 | # Buses |
||
1851 | session.query(BuildingHeatPeakLoads).filter( |
||
1852 | BuildingHeatPeakLoads.scenario == "eGon2035" |
||
1853 | ).delete(synchronize_session=False) |
||
1854 |