1
|
|
|
""" |
2
|
|
|
The charging infrastructure allocation is based on [TracBEV[( |
3
|
|
|
https://github.com/rl-institut/tracbev). TracBEV is a tool for the regional allocation |
4
|
|
|
of charging infrastructure. In practice this allows users to use results generated via |
5
|
|
|
[SimBEV](https://github.com/rl-institut/simbev) and place the corresponding charging |
6
|
|
|
points on a map. These are split into the four use cases hpc, public, home and work. |
7
|
|
|
""" |
8
|
|
|
from __future__ import annotations |
9
|
|
|
|
10
|
|
|
from pathlib import Path |
11
|
|
|
|
12
|
|
|
import geopandas as gpd |
13
|
|
|
import numpy as np |
14
|
|
|
import pandas as pd |
15
|
|
|
|
16
|
|
|
from egon.data import config, db |
17
|
|
|
from egon.data.datasets.emobility.motorized_individual_travel_charging_infrastructure.use_cases import ( # noqa: E501 |
18
|
|
|
home, |
19
|
|
|
hpc, |
20
|
|
|
public, |
21
|
|
|
work, |
22
|
|
|
) |
23
|
|
|
|
24
|
|
|
WORKING_DIR = Path(".", "charging_infrastructure").resolve() |
25
|
|
|
DATASET_CFG = config.datasets()["charging_infrastructure"] |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
def write_to_db( |
29
|
|
|
gdf: gpd.GeoDataFrame, mv_grid_id: int | float, use_case: str |
30
|
|
|
) -> None: |
31
|
|
|
""" |
32
|
|
|
Write results to charging infrastructure DB table |
33
|
|
|
|
34
|
|
|
Parameters |
35
|
|
|
---------- |
36
|
|
|
gdf: geopandas.GeoDataFrame |
37
|
|
|
GeoDataFrame to save |
38
|
|
|
mv_grid_id: int or float |
39
|
|
|
MV grid ID corresponding to the data |
40
|
|
|
use_case: str |
41
|
|
|
Calculated use case |
42
|
|
|
|
43
|
|
|
""" |
44
|
|
|
if gdf.empty: |
45
|
|
|
return |
46
|
|
|
|
47
|
|
|
if "energy" in gdf.columns: |
48
|
|
|
gdf = gdf.assign(weight=gdf.energy.div(gdf.energy.sum())) |
49
|
|
|
else: |
50
|
|
|
rng = np.random.default_rng(DATASET_CFG["constants"]["random_seed"]) |
51
|
|
|
|
52
|
|
|
gdf = gdf.assign(weight=rng.integers(low=0, high=100, size=len(gdf))) |
53
|
|
|
|
54
|
|
|
gdf = gdf.assign(weight=gdf.weight.div(gdf.weight.sum())) |
55
|
|
|
|
56
|
|
|
max_id = db.select_dataframe( |
57
|
|
|
""" |
58
|
|
|
SELECT MAX(cp_id) FROM grid.egon_emob_charging_infrastructure |
59
|
|
|
""" |
60
|
|
|
)["max"][0] |
61
|
|
|
|
62
|
|
|
if max_id is None: |
63
|
|
|
max_id = 0 |
64
|
|
|
|
65
|
|
|
gdf = gdf.assign( |
66
|
|
|
cp_id=range(max_id, max_id + len(gdf)), |
67
|
|
|
mv_grid_id=mv_grid_id, |
68
|
|
|
use_case=use_case, |
69
|
|
|
) |
70
|
|
|
|
71
|
|
|
targets = DATASET_CFG["targets"] |
72
|
|
|
cols_to_export = targets["charging_infrastructure"]["cols_to_export"] |
73
|
|
|
|
74
|
|
|
gpd.GeoDataFrame(gdf[cols_to_export], crs=gdf.crs).to_postgis( |
75
|
|
|
targets["charging_infrastructure"]["table"], |
76
|
|
|
schema=targets["charging_infrastructure"]["schema"], |
77
|
|
|
con=db.engine(), |
78
|
|
|
if_exists="append", |
79
|
|
|
) |
80
|
|
|
|
81
|
|
|
|
82
|
|
|
def run_tracbev(): |
83
|
|
|
""" |
84
|
|
|
Wrapper function to run charging infrastructure allocation |
85
|
|
|
""" |
86
|
|
|
data_dict = get_data() |
87
|
|
|
|
88
|
|
|
run_tracbev_potential(data_dict) |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
def run_tracbev_potential(data_dict: dict) -> None: |
92
|
|
|
""" |
93
|
|
|
Main function to run TracBEV in potential (determination of all potential |
94
|
|
|
charging points). |
95
|
|
|
|
96
|
|
|
Parameters |
97
|
|
|
---------- |
98
|
|
|
data_dict: dict |
99
|
|
|
Data dict containing all TracBEV run information |
100
|
|
|
""" |
101
|
|
|
bounds = data_dict["boundaries"] |
102
|
|
|
|
103
|
|
|
for mv_grid_id in data_dict["regions"].mv_grid_id: |
104
|
|
|
region = bounds.loc[bounds.bus_id == mv_grid_id].geom |
105
|
|
|
|
106
|
|
|
data_dict.update({"region": region, "key": mv_grid_id}) |
107
|
|
|
# Start Use Cases |
108
|
|
|
run_use_cases(data_dict) |
109
|
|
|
|
110
|
|
|
|
111
|
|
|
def run_use_cases(data_dict: dict) -> None: |
112
|
|
|
""" |
113
|
|
|
Run all use cases |
114
|
|
|
|
115
|
|
|
Parameters |
116
|
|
|
---------- |
117
|
|
|
data_dict: dict |
118
|
|
|
Data dict containing all TracBEV run information |
119
|
|
|
""" |
120
|
|
|
write_to_db( |
121
|
|
|
hpc(data_dict["hpc_positions"], data_dict), |
122
|
|
|
data_dict["key"], |
123
|
|
|
use_case="hpc", |
124
|
|
|
) |
125
|
|
|
write_to_db( |
126
|
|
|
public( |
127
|
|
|
data_dict["public_positions"], data_dict["poi_cluster"], data_dict |
128
|
|
|
), |
129
|
|
|
data_dict["key"], |
130
|
|
|
use_case="public", |
131
|
|
|
) |
132
|
|
|
write_to_db( |
133
|
|
|
work(data_dict["landuse"], data_dict["work_dict"], data_dict), |
134
|
|
|
data_dict["key"], |
135
|
|
|
use_case="work", |
136
|
|
|
) |
137
|
|
|
write_to_db( |
138
|
|
|
home(data_dict["housing_data"], data_dict), |
139
|
|
|
data_dict["key"], |
140
|
|
|
use_case="home", |
141
|
|
|
) |
142
|
|
|
|
143
|
|
|
|
144
|
|
|
def get_data() -> dict[gpd.GeoDataFrame]: |
145
|
|
|
""" |
146
|
|
|
Load all data necessary for TracBEV. Data loaded: |
147
|
|
|
|
148
|
|
|
* 'hpc_positions' - Potential hpc positions |
149
|
|
|
* 'landuse' - Potential work related positions |
150
|
|
|
* 'poi_cluster' - Potential public related positions |
151
|
|
|
* 'public_positions' - Potential public related positions |
152
|
|
|
* 'housing_data' - Potential home related positions loaded from DB |
153
|
|
|
* 'boundaries' - MV grid boundaries |
154
|
|
|
* miscellaneous found in *datasets.yml* in section *charging_infrastructure* |
155
|
|
|
|
156
|
|
|
Returns |
157
|
|
|
------- |
158
|
|
|
|
159
|
|
|
""" |
160
|
|
|
tracbev_cfg = DATASET_CFG["original_data"]["sources"]["tracbev"] |
161
|
|
|
srid = tracbev_cfg["srid"] |
162
|
|
|
|
163
|
|
|
# TODO: get zensus housing data from DB instead of gpkg? |
164
|
|
|
files = tracbev_cfg["files_to_use"] |
165
|
|
|
|
166
|
|
|
data_dict = {} |
167
|
|
|
|
168
|
|
|
# get TracBEV files |
169
|
|
|
for f in files: |
170
|
|
|
file = WORKING_DIR / "data" / f |
171
|
|
|
name = f.split(".")[0] |
172
|
|
|
|
173
|
|
|
data_dict[name] = gpd.read_file(file) |
174
|
|
|
|
175
|
|
|
if "undefined" in data_dict[name].crs.name.lower(): |
176
|
|
|
data_dict[name] = data_dict[name].set_crs( |
177
|
|
|
epsg=srid, allow_override=True |
178
|
|
|
) |
179
|
|
|
else: |
180
|
|
|
data_dict[name] = data_dict[name].to_crs(epsg=srid) |
181
|
|
|
|
182
|
|
|
# get housing data from DB |
183
|
|
|
sql = """ |
184
|
|
|
SELECT building_id, cell_id |
185
|
|
|
FROM demand.egon_household_electricity_profile_of_buildings |
186
|
|
|
""" |
187
|
|
|
|
188
|
|
|
df = db.select_dataframe(sql) |
189
|
|
|
|
190
|
|
|
count_df = ( |
191
|
|
|
df.groupby(["building_id", "cell_id"]) |
192
|
|
|
.size() |
193
|
|
|
.reset_index() |
194
|
|
|
.rename(columns={0: "count"}) |
195
|
|
|
) |
196
|
|
|
|
197
|
|
|
mfh_df = ( |
198
|
|
|
count_df.loc[count_df["count"] > 1] |
199
|
|
|
.groupby(["cell_id"]) |
200
|
|
|
.size() |
201
|
|
|
.reset_index() |
202
|
|
|
.rename(columns={0: "num_mfh"}) |
203
|
|
|
) |
204
|
|
|
efh_df = ( |
205
|
|
|
count_df.loc[count_df["count"] <= 1] |
206
|
|
|
.groupby(["cell_id"]) |
207
|
|
|
.size() |
208
|
|
|
.reset_index() |
209
|
|
|
.rename(columns={0: "num"}) |
210
|
|
|
) |
211
|
|
|
|
212
|
|
|
comb_df = ( |
213
|
|
|
mfh_df.merge( |
214
|
|
|
right=efh_df, how="outer", left_on="cell_id", right_on="cell_id" |
215
|
|
|
) |
216
|
|
|
.fillna(0) |
217
|
|
|
.astype(int) |
218
|
|
|
) |
219
|
|
|
|
220
|
|
|
sql = """ |
221
|
|
|
SELECT zensus_population_id, geom as geometry |
222
|
|
|
FROM society.egon_destatis_zensus_apartment_building_population_per_ha |
223
|
|
|
""" |
224
|
|
|
|
225
|
|
|
gdf = db.select_geodataframe(sql, geom_col="geometry", epsg=srid) |
226
|
|
|
|
227
|
|
|
data_dict["housing_data"] = gpd.GeoDataFrame( |
228
|
|
|
gdf.merge( |
229
|
|
|
right=comb_df, left_on="zensus_population_id", right_on="cell_id" |
230
|
|
|
), |
231
|
|
|
crs=gdf.crs, |
232
|
|
|
).drop(columns=["cell_id"]) |
233
|
|
|
|
234
|
|
|
# get boundaries aka grid districts |
235
|
|
|
sql = """ |
236
|
|
|
SELECT bus_id, geom FROM grid.egon_mv_grid_district |
237
|
|
|
""" |
238
|
|
|
|
239
|
|
|
data_dict["boundaries"] = db.select_geodataframe( |
240
|
|
|
sql, geom_col="geom", epsg=srid |
241
|
|
|
) |
242
|
|
|
|
243
|
|
|
data_dict["regions"] = pd.DataFrame( |
244
|
|
|
columns=["mv_grid_id"], |
245
|
|
|
data=data_dict["boundaries"].bus_id.unique(), |
246
|
|
|
) |
247
|
|
|
|
248
|
|
|
data_dict["work_dict"] = { |
249
|
|
|
"retail": DATASET_CFG["constants"]["work_weight_retail"], |
250
|
|
|
"commercial": DATASET_CFG["constants"]["work_weight_commercial"], |
251
|
|
|
"industrial": DATASET_CFG["constants"]["work_weight_industrial"], |
252
|
|
|
} |
253
|
|
|
|
254
|
|
|
data_dict["sfh_available"] = DATASET_CFG["constants"][ |
255
|
|
|
"single_family_home_share" |
256
|
|
|
] |
257
|
|
|
data_dict["sfh_avg_spots"] = DATASET_CFG["constants"][ |
258
|
|
|
"single_family_home_spots" |
259
|
|
|
] |
260
|
|
|
data_dict["mfh_available"] = DATASET_CFG["constants"][ |
261
|
|
|
"multi_family_home_share" |
262
|
|
|
] |
263
|
|
|
data_dict["mfh_avg_spots"] = DATASET_CFG["constants"][ |
264
|
|
|
"multi_family_home_spots" |
265
|
|
|
] |
266
|
|
|
|
267
|
|
|
data_dict["random_seed"] = np.random.default_rng( |
268
|
|
|
DATASET_CFG["constants"]["random_seed"] |
269
|
|
|
) |
270
|
|
|
|
271
|
|
|
return data_dict |
272
|
|
|
|