Total Complexity | 52 |
Total Lines | 1237 |
Duplicated Lines | 5.25 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electricity_demand_timeseries.cts_buildings often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | import logging |
||
2 | |||
3 | from geoalchemy2 import Geometry |
||
4 | from geoalchemy2.shape import to_shape |
||
5 | from sqlalchemy import REAL, Column, Integer, String, func |
||
6 | from sqlalchemy.ext.declarative import declarative_base |
||
7 | import geopandas as gpd |
||
8 | import numpy as np |
||
9 | import pandas as pd |
||
10 | import saio |
||
11 | |||
12 | from egon.data import db |
||
13 | from egon.data.datasets import Dataset |
||
14 | from egon.data.datasets.electricity_demand import ( |
||
15 | EgonDemandRegioZensusElectricity, |
||
16 | ) |
||
17 | from egon.data.datasets.electricity_demand.temporal import ( |
||
18 | EgonEtragoElectricityCts, |
||
19 | calc_load_curves_cts, |
||
20 | ) |
||
21 | from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
||
22 | BuildingPeakLoads, |
||
23 | OsmBuildingsSynthetic, |
||
24 | ) |
||
25 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
26 | random_ints_until_sum, |
||
27 | random_point_in_square, |
||
28 | specific_int_until_sum, |
||
29 | write_table_to_postgis, |
||
30 | write_table_to_postgres, |
||
31 | ) |
||
32 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
33 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
34 | from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
||
35 | |||
36 | engine = db.engine() |
||
37 | Base = declarative_base() |
||
38 | |||
39 | # import db tables |
||
40 | saio.register_schema("openstreetmap", engine=engine) |
||
41 | saio.register_schema("boundaries", engine=engine) |
||
42 | |||
43 | |||
44 | class EgonCtsElectricityDemandBuildingShare(Base): |
||
45 | __tablename__ = "egon_cts_electricity_demand_building_share" |
||
46 | __table_args__ = {"schema": "demand"} |
||
47 | |||
48 | id = Column(Integer, primary_key=True) |
||
49 | scenario = Column(String, primary_key=True) |
||
50 | bus_id = Column(Integer, index=True) |
||
51 | profile_share = Column(REAL) |
||
52 | |||
53 | |||
54 | class EgonCtsHeatDemandBuildingShare(Base): |
||
55 | __tablename__ = "egon_cts_heat_demand_building_share" |
||
56 | __table_args__ = {"schema": "demand"} |
||
57 | |||
58 | id = Column(Integer, primary_key=True) |
||
59 | scenario = Column(String, primary_key=True) |
||
60 | bus_id = Column(Integer, index=True) |
||
61 | profile_share = Column(REAL) |
||
62 | |||
63 | |||
64 | class CtsBuildings(Base): |
||
65 | __tablename__ = "egon_cts_buildings" |
||
66 | __table_args__ = {"schema": "openstreetmap"} |
||
67 | |||
68 | serial = Column(Integer, primary_key=True) |
||
69 | id = Column(Integer, index=True) |
||
70 | zensus_population_id = Column(Integer, index=True) |
||
71 | geom_building = Column(Geometry("Polygon", 3035)) |
||
72 | n_amenities_inside = Column(Integer) |
||
73 | source = Column(String) |
||
74 | |||
75 | |||
76 | def start_logging(): |
||
77 | """Start logging into console""" |
||
78 | log = logging.getLogger() |
||
79 | log.setLevel(logging.INFO) |
||
80 | logformat = logging.Formatter( |
||
81 | "%(asctime)s %(message)s", "%m/%d/%Y %H:%M:%S" |
||
82 | ) |
||
83 | sh = logging.StreamHandler() |
||
84 | sh.setFormatter(logformat) |
||
85 | log.addHandler(sh) |
||
86 | return log |
||
87 | |||
88 | |||
89 | def amenities_without_buildings(): |
||
90 | """ |
||
91 | Amenities which have no buildings assigned and are in |
||
92 | a cell with cts demand are determined. |
||
93 | |||
94 | Returns |
||
95 | ------- |
||
96 | pd.DataFrame |
||
97 | Table of amenities without buildings |
||
98 | """ |
||
99 | from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
||
100 | |||
101 | with db.session_scope() as session: |
||
102 | cells_query = ( |
||
103 | session.query( |
||
104 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
105 | # TODO can be used for square around amenity |
||
106 | # (1 geom_amenity: 1 geom_building) |
||
107 | # not unique amenity_ids yet |
||
108 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
109 | osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
||
110 | # EgonDemandRegioZensusElectricity.demand, |
||
111 | # # TODO can be used to generate n random buildings |
||
112 | # # (n amenities : 1 randombuilding) |
||
113 | # func.count( |
||
114 | # osm_amenities_not_in_buildings_filtered.egon_amenity_id |
||
115 | # ).label("n_amenities_inside"), |
||
116 | # DestatisZensusPopulationPerHa.geom, |
||
117 | ) |
||
118 | .filter( |
||
119 | func.st_within( |
||
120 | osm_amenities_not_in_buildings_filtered.geom_amenity, |
||
121 | DestatisZensusPopulationPerHa.geom, |
||
122 | ) |
||
123 | ) |
||
124 | .filter( |
||
125 | DestatisZensusPopulationPerHa.id |
||
126 | == EgonDemandRegioZensusElectricity.zensus_population_id |
||
127 | ) |
||
128 | .filter( |
||
129 | EgonDemandRegioZensusElectricity.sector == "service", |
||
130 | EgonDemandRegioZensusElectricity.scenario == "eGon2035" |
||
131 | # ).group_by( |
||
132 | # EgonDemandRegioZensusElectricity.zensus_population_id, |
||
133 | # DestatisZensusPopulationPerHa.geom, |
||
134 | ) |
||
135 | ) |
||
136 | # # TODO can be used to generate n random buildings |
||
137 | # df_cells_with_amenities_not_in_buildings = gpd.read_postgis( |
||
138 | # cells_query.statement, cells_query.session.bind, geom_col="geom" |
||
139 | # ) |
||
140 | # |
||
141 | |||
142 | # # TODO can be used for square around amenity |
||
143 | df_amenities_without_buildings = gpd.read_postgis( |
||
144 | cells_query.statement, |
||
145 | cells_query.session.bind, |
||
146 | geom_col="geom_amenity", |
||
147 | ) |
||
148 | return df_amenities_without_buildings |
||
149 | |||
150 | |||
151 | def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
||
152 | """ |
||
153 | Building centroids are placed randomly within census cells. |
||
154 | The Number of buildings is derived from n_amenity_inside, the selected |
||
155 | method and number of amenities per building. |
||
156 | |||
157 | Returns |
||
158 | ------- |
||
159 | df: gpd.GeoDataFrame |
||
160 | Table of buildings centroids |
||
161 | """ |
||
162 | if isinstance(max_amenities, int): |
||
163 | # amount of amenities is randomly generated within bounds |
||
164 | # (max_amenities, amenities per cell) |
||
165 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
166 | random_ints_until_sum, args=[max_amenities] |
||
167 | ) |
||
168 | if isinstance(amenities, int): |
||
169 | # Specific amount of amenities per building |
||
170 | df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
||
171 | specific_int_until_sum, args=[amenities] |
||
172 | ) |
||
173 | |||
174 | # Unnest each building |
||
175 | df = df.explode(column="n_amenities_inside") |
||
176 | |||
177 | # building count per cell |
||
178 | df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
||
179 | |||
180 | # generate random synthetic buildings |
||
181 | edge_length = 5 |
||
182 | # create random points within census cells |
||
183 | points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
||
184 | |||
185 | df.reset_index(drop=True, inplace=True) |
||
186 | # Store center of polygon |
||
187 | df["geom_point"] = points |
||
188 | # Drop geometry of census cell |
||
189 | df = df.drop(columns=["geom"]) |
||
190 | |||
191 | return df |
||
192 | |||
193 | |||
194 | def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
||
195 | """ |
||
196 | Synthetic buildings are generated around points. |
||
197 | |||
198 | Parameters |
||
199 | ---------- |
||
200 | df: pd.DataFrame |
||
201 | Table of census cells |
||
202 | points: gpd.GeoSeries or str |
||
203 | List of points to place buildings around or column name of df |
||
204 | crs: str |
||
205 | CRS of result table |
||
206 | |||
207 | Returns |
||
208 | ------- |
||
209 | df: gpd.GeoDataFrame |
||
210 | Synthetic buildings |
||
211 | """ |
||
212 | |||
213 | if isinstance(points, str) and points in df.columns: |
||
214 | points = df[points] |
||
215 | elif isinstance(points, gpd.GeoSeries): |
||
216 | pass |
||
217 | else: |
||
218 | raise ValueError("Points are of the wrong type") |
||
219 | |||
220 | # Create building using a square around point |
||
221 | edge_length = 5 |
||
222 | df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
||
223 | |||
224 | if "geom_point" not in df.columns: |
||
225 | df["geom_point"] = df["geom_building"].centroid |
||
226 | |||
227 | # TODO Check CRS |
||
228 | df = gpd.GeoDataFrame( |
||
229 | df, |
||
230 | crs=crs, |
||
231 | geometry="geom_building", |
||
232 | ) |
||
233 | |||
234 | # TODO remove after implementation of egon_building_id |
||
235 | df.rename(columns={"id": "egon_building_id"}, inplace=True) |
||
236 | |||
237 | # get max number of building ids from synthetic residential table |
||
238 | with db.session_scope() as session: |
||
239 | max_synth_residential_id = session.execute( |
||
240 | func.max(OsmBuildingsSynthetic.id) |
||
241 | ).scalar() |
||
242 | max_synth_residential_id = int(max_synth_residential_id) |
||
243 | |||
244 | # create sequential ids |
||
245 | df["egon_building_id"] = range( |
||
246 | max_synth_residential_id + 1, |
||
247 | max_synth_residential_id + df.shape[0] + 1, |
||
248 | ) |
||
249 | |||
250 | df["area"] = df["geom_building"].area |
||
251 | # set building type of synthetic building |
||
252 | df["building"] = "cts" |
||
253 | # TODO remove in #772 |
||
254 | df = df.rename( |
||
255 | columns={ |
||
256 | # "zensus_population_id": "cell_id", |
||
257 | "egon_building_id": "id", |
||
258 | } |
||
259 | ) |
||
260 | return df |
||
261 | |||
262 | |||
263 | def buildings_with_amenities(): |
||
264 | """ |
||
265 | Amenities which are assigned to buildings are determined |
||
266 | and grouped per building and zensus cell. Buildings |
||
267 | covering multiple cells therefore exists multiple times |
||
268 | but in different zensus cells. This is necessary to cover |
||
269 | all cells with a cts demand. If buildings exist in multiple |
||
270 | substations, their amenities are summed and assigned and kept in |
||
271 | one substation only. If as a result, a census cell is uncovered, |
||
272 | a synthetic amenity is placed. The buildings are aggregated |
||
273 | afterwards during the calculation of the profile_share. |
||
274 | |||
275 | Returns |
||
276 | ------- |
||
277 | df_buildings_with_amenities: gpd.GeoDataFrame |
||
278 | Contains all buildings with amenities per zensus cell. |
||
279 | df_lost_cells: gpd.GeoDataFrame |
||
280 | Contains synthetic amenities in lost cells. Might be empty |
||
281 | """ |
||
282 | |||
283 | from saio.openstreetmap import osm_amenities_in_buildings_filtered |
||
284 | |||
285 | with db.session_scope() as session: |
||
286 | cells_query = ( |
||
287 | session.query( |
||
288 | osm_amenities_in_buildings_filtered, |
||
289 | MapZensusGridDistricts.bus_id, |
||
290 | ) |
||
291 | .filter( |
||
292 | MapZensusGridDistricts.zensus_population_id |
||
293 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
294 | ) |
||
295 | .filter( |
||
296 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
297 | == osm_amenities_in_buildings_filtered.zensus_population_id |
||
298 | ) |
||
299 | .filter( |
||
300 | EgonDemandRegioZensusElectricity.sector == "service", |
||
301 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
302 | ) |
||
303 | ) |
||
304 | df_amenities_in_buildings = pd.read_sql( |
||
305 | cells_query.statement, cells_query.session.bind, index_col=None |
||
306 | ) |
||
307 | |||
308 | df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
||
309 | "geom_building" |
||
310 | ].apply(to_shape) |
||
311 | df_amenities_in_buildings["geom_amenity"] = df_amenities_in_buildings[ |
||
312 | "geom_amenity" |
||
313 | ].apply(to_shape) |
||
314 | |||
315 | df_amenities_in_buildings["n_amenities_inside"] = 1 |
||
316 | |||
317 | # add identifier column for buildings in multiple substations |
||
318 | df_amenities_in_buildings[ |
||
319 | "duplicate_identifier" |
||
320 | ] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
||
321 | "n_amenities_inside" |
||
322 | ].transform( |
||
323 | "cumsum" |
||
324 | ) |
||
325 | df_amenities_in_buildings = df_amenities_in_buildings.sort_values( |
||
326 | ["id", "duplicate_identifier"] |
||
327 | ) |
||
328 | # sum amenities of buildings with multiple substations |
||
329 | df_amenities_in_buildings[ |
||
330 | "n_amenities_inside" |
||
331 | ] = df_amenities_in_buildings.groupby(["id", "duplicate_identifier"])[ |
||
332 | "n_amenities_inside" |
||
333 | ].transform( |
||
334 | "sum" |
||
335 | ) |
||
336 | |||
337 | # create column to always go for bus_id with max amenities |
||
338 | df_amenities_in_buildings[ |
||
339 | "max_amenities" |
||
340 | ] = df_amenities_in_buildings.groupby(["id", "bus_id"])[ |
||
341 | "n_amenities_inside" |
||
342 | ].transform( |
||
343 | "sum" |
||
344 | ) |
||
345 | # sort to go for |
||
346 | df_amenities_in_buildings.sort_values( |
||
347 | ["id", "max_amenities"], ascending=False, inplace=True |
||
348 | ) |
||
349 | |||
350 | # identify lost zensus cells |
||
351 | df_lost_cells = df_amenities_in_buildings.loc[ |
||
352 | df_amenities_in_buildings.duplicated( |
||
353 | subset=["id", "duplicate_identifier"], keep="first" |
||
354 | ) |
||
355 | ] |
||
356 | df_lost_cells.drop_duplicates( |
||
357 | subset=["zensus_population_id"], inplace=True |
||
358 | ) |
||
359 | |||
360 | # drop buildings with multiple substation and lower max amenity |
||
361 | df_amenities_in_buildings.drop_duplicates( |
||
362 | subset=["id", "duplicate_identifier"], keep="first", inplace=True |
||
363 | ) |
||
364 | |||
365 | # check if lost zensus cells are already covered |
||
366 | if not df_lost_cells.empty: |
||
367 | if not ( |
||
368 | df_amenities_in_buildings["zensus_population_id"] |
||
369 | .isin(df_lost_cells["zensus_population_id"]) |
||
370 | .empty |
||
371 | ): |
||
372 | # query geom data for cell if not |
||
373 | with db.session_scope() as session: |
||
374 | cells_query = session.query( |
||
375 | DestatisZensusPopulationPerHa.id, |
||
376 | DestatisZensusPopulationPerHa.geom, |
||
377 | ).filter( |
||
378 | DestatisZensusPopulationPerHa.id.in_( |
||
379 | df_lost_cells["zensus_population_id"] |
||
380 | ) |
||
381 | ) |
||
382 | |||
383 | df_lost_cells = gpd.read_postgis( |
||
384 | cells_query.statement, |
||
385 | cells_query.session.bind, |
||
386 | geom_col="geom", |
||
387 | ) |
||
388 | # TODO maybe adapt method |
||
389 | # place random amenity in cell |
||
390 | df_lost_cells["n_amenities_inside"] = 1 |
||
391 | df_lost_cells.rename( |
||
392 | columns={ |
||
393 | "id": "zensus_population_id", |
||
394 | }, |
||
395 | inplace=True, |
||
396 | ) |
||
397 | df_lost_cells = place_buildings_with_amenities( |
||
398 | df_lost_cells, amenities=1 |
||
399 | ) |
||
400 | df_lost_cells.rename( |
||
401 | columns={ |
||
402 | # "id": "zensus_population_id", |
||
403 | "geom_point": "geom_amenity", |
||
404 | }, |
||
405 | inplace=True, |
||
406 | ) |
||
407 | df_lost_cells.drop( |
||
408 | columns=["building_count", "n_amenities_inside"], inplace=True |
||
409 | ) |
||
410 | else: |
||
411 | df_lost_cells = None |
||
412 | else: |
||
413 | df_lost_cells = None |
||
414 | |||
415 | # drop helper columns |
||
416 | df_amenities_in_buildings.drop( |
||
417 | columns=["duplicate_identifier"], inplace=True |
||
418 | ) |
||
419 | |||
420 | # sum amenities per building and cell |
||
421 | df_amenities_in_buildings[ |
||
422 | "n_amenities_inside" |
||
423 | ] = df_amenities_in_buildings.groupby(["zensus_population_id", "id"])[ |
||
424 | "n_amenities_inside" |
||
425 | ].transform( |
||
426 | "sum" |
||
427 | ) |
||
428 | # drop duplicated buildings |
||
429 | df_buildings_with_amenities = df_amenities_in_buildings.drop_duplicates( |
||
430 | ["id", "zensus_population_id"] |
||
431 | ) |
||
432 | df_buildings_with_amenities.reset_index(inplace=True, drop=True) |
||
433 | |||
434 | df_buildings_with_amenities = df_buildings_with_amenities[ |
||
435 | ["id", "zensus_population_id", "geom_building", "n_amenities_inside"] |
||
436 | ] |
||
437 | df_buildings_with_amenities.rename( |
||
438 | columns={ |
||
439 | # "zensus_population_id": "cell_id", |
||
440 | "egon_building_id": "id" |
||
441 | }, |
||
442 | inplace=True, |
||
443 | ) |
||
444 | |||
445 | return df_buildings_with_amenities, df_lost_cells |
||
446 | |||
447 | |||
448 | def buildings_without_amenities(): |
||
449 | """ |
||
450 | Buildings (filtered and synthetic) in cells with |
||
451 | cts demand but no amenities are determined. |
||
452 | |||
453 | Returns |
||
454 | ------- |
||
455 | df_buildings_without_amenities: gpd.GeoDataFrame |
||
456 | Table of buildings without amenities in zensus cells |
||
457 | with cts demand. |
||
458 | """ |
||
459 | from saio.boundaries import egon_map_zensus_buildings_filtered_all |
||
460 | from saio.openstreetmap import ( |
||
461 | osm_amenities_shops_filtered, |
||
462 | osm_buildings_filtered, |
||
463 | osm_buildings_synthetic, |
||
464 | ) |
||
465 | |||
466 | # buildings_filtered in cts-demand-cells without amenities |
||
467 | with db.session_scope() as session: |
||
468 | |||
469 | # Synthetic Buildings |
||
470 | q_synth_buildings = session.query( |
||
471 | osm_buildings_synthetic.cell_id.cast(Integer).label( |
||
472 | "zensus_population_id" |
||
473 | ), |
||
474 | osm_buildings_synthetic.id.cast(Integer).label("id"), |
||
475 | osm_buildings_synthetic.area.label("area"), |
||
476 | osm_buildings_synthetic.geom_building.label("geom_building"), |
||
477 | osm_buildings_synthetic.geom_point.label("geom_point"), |
||
478 | ) |
||
479 | |||
480 | # Buildings filtered |
||
481 | q_buildings_filtered = session.query( |
||
482 | egon_map_zensus_buildings_filtered_all.zensus_population_id, |
||
483 | osm_buildings_filtered.id, |
||
484 | osm_buildings_filtered.area, |
||
485 | osm_buildings_filtered.geom_building, |
||
486 | osm_buildings_filtered.geom_point, |
||
487 | ).filter( |
||
488 | osm_buildings_filtered.id |
||
489 | == egon_map_zensus_buildings_filtered_all.id |
||
490 | ) |
||
491 | |||
492 | # Amenities + zensus_population_id |
||
493 | q_amenities = ( |
||
494 | session.query( |
||
495 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
496 | ) |
||
497 | .filter( |
||
498 | func.st_within( |
||
499 | osm_amenities_shops_filtered.geom_amenity, |
||
500 | DestatisZensusPopulationPerHa.geom, |
||
501 | ) |
||
502 | ) |
||
503 | .distinct(DestatisZensusPopulationPerHa.id) |
||
504 | ) |
||
505 | |||
506 | # Cells with CTS demand but without amenities |
||
507 | q_cts_without_amenities = ( |
||
508 | session.query( |
||
509 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
510 | ) |
||
511 | .filter( |
||
512 | EgonDemandRegioZensusElectricity.sector == "service", |
||
513 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
514 | ) |
||
515 | .filter( |
||
516 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
517 | q_amenities |
||
518 | ) |
||
519 | ) |
||
520 | .distinct() |
||
521 | ) |
||
522 | |||
523 | # Buildings filtered + synthetic buildings residential in |
||
524 | # cells with CTS demand but without amenities |
||
525 | cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
||
526 | egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
||
527 | q_cts_without_amenities |
||
528 | ) |
||
529 | ) |
||
530 | |||
531 | # df_buildings_without_amenities = pd.read_sql( |
||
532 | # cells_query.statement, cells_query.session.bind, index_col=None) |
||
533 | df_buildings_without_amenities = gpd.read_postgis( |
||
534 | cells_query.statement, |
||
535 | cells_query.session.bind, |
||
536 | geom_col="geom_building", |
||
537 | ) |
||
538 | |||
539 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
540 | columns={ |
||
541 | # "zensus_population_id": "cell_id", |
||
542 | "egon_building_id": "id", |
||
543 | } |
||
544 | ) |
||
545 | |||
546 | return df_buildings_without_amenities |
||
547 | |||
548 | |||
549 | def select_cts_buildings(df_buildings_wo_amenities, max_n): |
||
550 | """ |
||
551 | N Buildings (filtered and synthetic) in each cell with |
||
552 | cts demand are selected. Only the first n buildings |
||
553 | are taken for each cell. The buildings are sorted by surface |
||
554 | area. |
||
555 | |||
556 | Returns |
||
557 | ------- |
||
558 | df_buildings_with_cts_demand: gpd.GeoDataFrame |
||
559 | Table of buildings |
||
560 | """ |
||
561 | |||
562 | df_buildings_wo_amenities.sort_values( |
||
563 | "area", ascending=False, inplace=True |
||
564 | ) |
||
565 | # select first n ids each census cell if available |
||
566 | df_buildings_with_cts_demand = ( |
||
567 | df_buildings_wo_amenities.groupby("zensus_population_id") |
||
568 | .nth(list(range(max_n))) |
||
569 | .reset_index() |
||
570 | ) |
||
571 | df_buildings_with_cts_demand.reset_index(drop=True, inplace=True) |
||
572 | |||
573 | return df_buildings_with_cts_demand |
||
574 | |||
575 | |||
576 | def cells_with_cts_demand_only(df_buildings_without_amenities): |
||
577 | """ |
||
578 | Cells with cts demand but no amenities or buildilngs |
||
579 | are determined. |
||
580 | |||
581 | Returns |
||
582 | ------- |
||
583 | df_cells_only_cts_demand: gpd.GeoDataFrame |
||
584 | Table of cells with cts demand but no amenities or buildings |
||
585 | """ |
||
586 | from saio.openstreetmap import osm_amenities_shops_filtered |
||
587 | |||
588 | # cells mit amenities |
||
589 | with db.session_scope() as session: |
||
590 | sub_query = ( |
||
591 | session.query( |
||
592 | DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
||
593 | ) |
||
594 | .filter( |
||
595 | func.st_within( |
||
596 | osm_amenities_shops_filtered.geom_amenity, |
||
597 | DestatisZensusPopulationPerHa.geom, |
||
598 | ) |
||
599 | ) |
||
600 | .distinct(DestatisZensusPopulationPerHa.id) |
||
601 | ) |
||
602 | |||
603 | cells_query = ( |
||
604 | session.query( |
||
605 | EgonDemandRegioZensusElectricity.zensus_population_id, |
||
606 | EgonDemandRegioZensusElectricity.scenario, |
||
607 | EgonDemandRegioZensusElectricity.sector, |
||
608 | EgonDemandRegioZensusElectricity.demand, |
||
609 | DestatisZensusPopulationPerHa.geom, |
||
610 | ) |
||
611 | .filter( |
||
612 | EgonDemandRegioZensusElectricity.sector == "service", |
||
613 | EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
||
614 | ) |
||
615 | .filter( |
||
616 | EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
||
617 | sub_query |
||
618 | ) |
||
619 | ) |
||
620 | .filter( |
||
621 | EgonDemandRegioZensusElectricity.zensus_population_id |
||
622 | == DestatisZensusPopulationPerHa.id |
||
623 | ) |
||
624 | ) |
||
625 | |||
626 | df_cts_cell_without_amenities = gpd.read_postgis( |
||
627 | cells_query.statement, |
||
628 | cells_query.session.bind, |
||
629 | geom_col="geom", |
||
630 | index_col=None, |
||
631 | ) |
||
632 | |||
633 | # TODO maybe remove |
||
634 | df_buildings_without_amenities = df_buildings_without_amenities.rename( |
||
635 | columns={"cell_id": "zensus_population_id"} |
||
636 | ) |
||
637 | |||
638 | # Census cells with only cts demand |
||
639 | df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
||
640 | ~df_cts_cell_without_amenities["zensus_population_id"].isin( |
||
641 | df_buildings_without_amenities["zensus_population_id"].unique() |
||
642 | ) |
||
643 | ] |
||
644 | |||
645 | df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
||
646 | |||
647 | return df_cells_only_cts_demand |
||
648 | |||
649 | |||
650 | def calc_census_cell_share(scenario="eGon2035", sector="electricity"): |
||
651 | """ |
||
652 | The profile share for each census cell is calculated by it's |
||
653 | share of annual demand per substation bus. The annual demand |
||
654 | per cell is defined by DemandRegio/Peta5. The share is for both |
||
655 | scenarios identical as the annual demand is linearly scaled. |
||
656 | |||
657 | Parameters |
||
658 | ---------- |
||
659 | scenario: str |
||
660 | Scenario for which the share is calculated. |
||
661 | sector: str |
||
662 | Scenario for which the share is calculated. |
||
663 | |||
664 | Returns |
||
665 | ------- |
||
666 | df_census_share: pd.DataFrame |
||
667 | """ |
||
668 | if sector == "electricity": |
||
669 | demand_table = EgonDemandRegioZensusElectricity |
||
670 | elif sector == "heat": |
||
671 | demand_table = EgonPetaHeat |
||
672 | |||
673 | with db.session_scope() as session: |
||
674 | cells_query = ( |
||
675 | session.query(demand_table, MapZensusGridDistricts.bus_id) |
||
|
|||
676 | .filter(demand_table.sector == "service") |
||
677 | .filter(demand_table.scenario == scenario) |
||
678 | .filter( |
||
679 | demand_table.zensus_population_id |
||
680 | == MapZensusGridDistricts.zensus_population_id |
||
681 | ) |
||
682 | ) |
||
683 | |||
684 | df_demand = pd.read_sql( |
||
685 | cells_query.statement, |
||
686 | cells_query.session.bind, |
||
687 | index_col="zensus_population_id", |
||
688 | ) |
||
689 | |||
690 | # get demand share of cell per bus |
||
691 | df_census_share = df_demand["demand"] / df_demand.groupby("bus_id")[ |
||
692 | "demand" |
||
693 | ].transform("sum") |
||
694 | df_census_share = df_census_share.rename("cell_share") |
||
695 | |||
696 | df_census_share = pd.concat( |
||
697 | [ |
||
698 | df_census_share, |
||
699 | df_demand[["bus_id", "scenario"]], |
||
700 | ], |
||
701 | axis=1, |
||
702 | ) |
||
703 | |||
704 | df_census_share.reset_index(inplace=True) |
||
705 | return df_census_share |
||
706 | |||
707 | |||
708 | def calc_building_demand_profile_share( |
||
709 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
710 | ): |
||
711 | """ |
||
712 | Share of cts electricity demand profile per bus for every selected building |
||
713 | is calculated. Building-amenity share is multiplied with census cell share |
||
714 | to get the substation bus profile share for each building. The share is |
||
715 | grouped and aggregated per building as some cover multiple cells. |
||
716 | |||
717 | Parameters |
||
718 | ---------- |
||
719 | df_cts_buildings: gpd.GeoDataFrame |
||
720 | Table of all buildings with cts demand assigned |
||
721 | scenario: str |
||
722 | Scenario for which the share is calculated. |
||
723 | sector: str |
||
724 | Sector for which the share is calculated. |
||
725 | |||
726 | Returns |
||
727 | ------- |
||
728 | df_building_share: pd.DataFrame |
||
729 | Table of bus profile share per building |
||
730 | |||
731 | """ |
||
732 | |||
733 | def calc_building_amenity_share(df_cts_buildings): |
||
734 | """ |
||
735 | Calculate the building share by the number amenities per building |
||
736 | within a census cell. |
||
737 | """ |
||
738 | df_building_amenity_share = df_cts_buildings[ |
||
739 | "n_amenities_inside" |
||
740 | ] / df_cts_buildings.groupby("zensus_population_id")[ |
||
741 | "n_amenities_inside" |
||
742 | ].transform( |
||
743 | "sum" |
||
744 | ) |
||
745 | df_building_amenity_share = pd.concat( |
||
746 | [ |
||
747 | df_building_amenity_share.rename("building_amenity_share"), |
||
748 | df_cts_buildings[["zensus_population_id", "id"]], |
||
749 | ], |
||
750 | axis=1, |
||
751 | ) |
||
752 | return df_building_amenity_share |
||
753 | |||
754 | df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
||
755 | |||
756 | df_census_cell_share = calc_census_cell_share( |
||
757 | scenario=scenario, sector=sector |
||
758 | ) |
||
759 | |||
760 | df_demand_share = pd.merge( |
||
761 | left=df_building_amenity_share, |
||
762 | right=df_census_cell_share, |
||
763 | left_on="zensus_population_id", |
||
764 | right_on="zensus_population_id", |
||
765 | ) |
||
766 | df_demand_share["profile_share"] = df_demand_share[ |
||
767 | "building_amenity_share" |
||
768 | ].multiply(df_demand_share["cell_share"]) |
||
769 | |||
770 | df_demand_share = df_demand_share[ |
||
771 | ["id", "bus_id", "scenario", "profile_share"] |
||
772 | ] |
||
773 | # TODO adapt groupby? |
||
774 | # Group and aggregate per building for multi cell buildings |
||
775 | df_demand_share = ( |
||
776 | df_demand_share.groupby(["scenario", "id", "bus_id"]) |
||
777 | .sum() |
||
778 | .reset_index() |
||
779 | ) |
||
780 | if df_demand_share.duplicated("id", keep=False).any(): |
||
781 | print( |
||
782 | df_demand_share.loc[df_demand_share.duplicated("id", keep=False)] |
||
783 | ) |
||
784 | return df_demand_share |
||
785 | |||
786 | |||
787 | def calc_building_profiles( |
||
788 | egon_building_id=None, |
||
789 | bus_id=None, |
||
790 | scenario="eGon2035", |
||
791 | sector="electricity", |
||
792 | ): |
||
793 | """ |
||
794 | Calculate the demand profile for each building. The profile is |
||
795 | calculated by the demand share of the building per substation bus. |
||
796 | |||
797 | Parameters |
||
798 | ---------- |
||
799 | egon_building_id: int |
||
800 | Id of the building for which the profile is calculated. |
||
801 | If not given, the profiles are calculated for all buildings. |
||
802 | bus_id: int |
||
803 | Id of the substation for which the all profiles are calculated. |
||
804 | If not given, the profiles are calculated for all buildings. |
||
805 | scenario: str |
||
806 | Scenario for which the share is calculated. |
||
807 | sector: str |
||
808 | Sector for which the share is calculated. |
||
809 | |||
810 | Returns |
||
811 | ------- |
||
812 | df_building_profiles: pd.DataFrame |
||
813 | Table of demand profile per building |
||
814 | """ |
||
815 | if sector == "electricity": |
||
816 | with db.session_scope() as session: |
||
817 | cells_query = session.query( |
||
818 | EgonCtsElectricityDemandBuildingShare, |
||
819 | ).filter( |
||
820 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
821 | ) |
||
822 | |||
823 | df_demand_share = pd.read_sql( |
||
824 | cells_query.statement, cells_query.session.bind, index_col=None |
||
825 | ) |
||
826 | |||
827 | # TODO maybe use demand.egon_etrago_electricity_cts |
||
828 | # with db.session_scope() as session: |
||
829 | # cells_query = ( |
||
830 | # session.query( |
||
831 | # EgonEtragoElectricityCts |
||
832 | # ).filter( |
||
833 | # EgonEtragoElectricityCts.scn_name == scenario) |
||
834 | # ) |
||
835 | # |
||
836 | # df_cts_profiles = pd.read_sql( |
||
837 | # cells_query.statement, |
||
838 | # cells_query.session.bind, |
||
839 | # ) |
||
840 | # df_cts_profiles = pd.DataFrame.from_dict( |
||
841 | # df_cts_profiles.set_index('bus_id')['p_set'].to_dict(), |
||
842 | # orient="index") |
||
843 | df_cts_profiles = calc_load_curves_cts(scenario) |
||
844 | |||
845 | elif sector == "heat": |
||
846 | with db.session_scope() as session: |
||
847 | cells_query = session.query( |
||
848 | EgonCtsHeatDemandBuildingShare, |
||
849 | ).filter(EgonCtsHeatDemandBuildingShare.scenario == scenario) |
||
850 | |||
851 | df_demand_share = pd.read_sql( |
||
852 | cells_query.statement, cells_query.session.bind, index_col=None |
||
853 | ) |
||
854 | |||
855 | # TODO cts heat substation profiles missing |
||
856 | |||
857 | # get demand share of selected building id |
||
858 | if isinstance(egon_building_id, int): |
||
859 | if egon_building_id in df_demand_share["id"]: |
||
860 | df_demand_share = df_demand_share.loc[ |
||
861 | df_demand_share["id"] == egon_building_id |
||
862 | ] |
||
863 | else: |
||
864 | raise KeyError(f"Building with id {egon_building_id} not found") |
||
865 | # TODO maybe add list |
||
866 | # elif isinstance(egon_building_id, list): |
||
867 | |||
868 | # get demand share of all buildings for selected bus id |
||
869 | if isinstance(bus_id, int): |
||
870 | if bus_id in df_demand_share["bus_id"]: |
||
871 | df_demand_share = df_demand_share.loc[ |
||
872 | df_demand_share["bus_id"] == bus_id |
||
873 | ] |
||
874 | else: |
||
875 | raise KeyError(f"Bus with id {bus_id} not found") |
||
876 | |||
877 | # get demand profile for all buildings for selected demand share |
||
878 | # TODO takes a few seconds per iteration |
||
879 | df_building_profiles = pd.DataFrame() |
||
880 | for bus_id, df in df_demand_share.groupby("bus_id"): |
||
881 | shares = df.set_index("id", drop=True)["profile_share"] |
||
882 | profile = df_cts_profiles.loc[:, bus_id] |
||
883 | # building_profiles = profile.apply(lambda x: x * shares) |
||
884 | building_profiles = np.outer(profile, shares) |
||
885 | building_profiles = pd.DataFrame( |
||
886 | building_profiles, index=profile.index, columns=shares.index |
||
887 | ) |
||
888 | df_building_profiles = pd.concat( |
||
889 | [df_building_profiles, building_profiles], axis=1 |
||
890 | ) |
||
891 | |||
892 | return df_building_profiles |
||
893 | |||
894 | |||
895 | def delete_synthetic_cts_buildings(): |
||
896 | """ |
||
897 | All synthetic cts buildings are deleted from the DB. This is necessary if |
||
898 | the task is run multiple times as the existing synthetic buildings |
||
899 | influence the results. |
||
900 | """ |
||
901 | # import db tables |
||
902 | from saio.openstreetmap import osm_buildings_synthetic |
||
903 | |||
904 | # cells mit amenities |
||
905 | with db.session_scope() as session: |
||
906 | session.query(osm_buildings_synthetic).filter( |
||
907 | osm_buildings_synthetic.building == "cts" |
||
908 | ).delete() |
||
909 | |||
910 | |||
911 | def cts_buildings(): |
||
912 | """ |
||
913 | Assigns CTS demand to buildings and calculates the respective demand |
||
914 | profiles. The demand profile per substation are disaggregated per |
||
915 | annual demand share of each census cell and by the number of amenities |
||
916 | per building within the cell. If no building data is available, |
||
917 | synthetic buildings are generated around the amenities. If no amenities |
||
918 | but cts demand is available, buildings are randomly selected. If no |
||
919 | building nor amenity is available, random synthetic buildings are |
||
920 | generated. The demand share is stored in the database. |
||
921 | |||
922 | Note: |
||
923 | ----- |
||
924 | Cells with CTS demand, amenities and buildings do not change within |
||
925 | the scenarios, only the demand itself. Therefore scenario eGon2035 |
||
926 | can be used universally to determine the cts buildings but not for |
||
927 | he demand share. |
||
928 | """ |
||
929 | |||
930 | log = start_logging() |
||
931 | log.info("Start logging!") |
||
932 | # Buildings with amenities |
||
933 | df_buildings_with_amenities, df_lost_cells = buildings_with_amenities() |
||
934 | log.info("Buildings with amenities selected!") |
||
935 | |||
936 | # Median number of amenities per cell |
||
937 | median_n_amenities = int( |
||
938 | df_buildings_with_amenities.groupby("zensus_population_id")[ |
||
939 | "n_amenities_inside" |
||
940 | ] |
||
941 | .sum() |
||
942 | .median() |
||
943 | ) |
||
944 | # TODO remove |
||
945 | print(f"Median amenity value: {median_n_amenities}") |
||
946 | |||
947 | # Remove synthetic CTS buildings if existing |
||
948 | delete_synthetic_cts_buildings() |
||
949 | log.info("Old synthetic cts buildings deleted!") |
||
950 | |||
951 | # Amenities not assigned to buildings |
||
952 | df_amenities_without_buildings = amenities_without_buildings() |
||
953 | log.info("Amenities without buildlings selected!") |
||
954 | |||
955 | # Append lost cells due to duplicated ids, to cover all demand cells |
||
956 | if not df_lost_cells.empty: |
||
957 | |||
958 | df_lost_cells["amenities"] = median_n_amenities |
||
959 | # create row for every amenity |
||
960 | df_lost_cells["amenities"] = ( |
||
961 | df_lost_cells["amenities"].astype(int).apply(range) |
||
962 | ) |
||
963 | df_lost_cells = df_lost_cells.explode("amenities") |
||
964 | df_lost_cells.drop(columns="amenities", inplace=True) |
||
965 | df_amenities_without_buildings = df_amenities_without_buildings.append( |
||
966 | df_lost_cells, ignore_index=True |
||
967 | ) |
||
968 | log.info("Lost cells due to substation intersection appended!") |
||
969 | |||
970 | # One building per amenity |
||
971 | df_amenities_without_buildings["n_amenities_inside"] = 1 |
||
972 | # Create synthetic buildings for amenites without buildings |
||
973 | df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
||
974 | df_amenities_without_buildings, points="geom_amenity" |
||
975 | ) |
||
976 | log.info("Synthetic buildings created!") |
||
977 | |||
978 | # TODO write to DB and remove renaming |
||
979 | write_table_to_postgis( |
||
980 | df_synthetic_buildings_with_amenities.rename( |
||
981 | columns={ |
||
982 | "zensus_population_id": "cell_id", |
||
983 | "egon_building_id": "id", |
||
984 | } |
||
985 | ), |
||
986 | OsmBuildingsSynthetic, |
||
987 | drop=False, |
||
988 | ) |
||
989 | log.info("Synthetic buildings exported to DB!") |
||
990 | |||
991 | # Cells without amenities but CTS demand and buildings |
||
992 | df_buildings_without_amenities = buildings_without_amenities() |
||
993 | log.info("Buildings without amenities in demand cells identified!") |
||
994 | |||
995 | # TODO Fix Adhoc Bugfix duplicated buildings |
||
996 | # drop building ids which have already been used |
||
997 | mask = df_buildings_without_amenities.loc[ |
||
998 | df_buildings_without_amenities["id"].isin( |
||
999 | df_buildings_with_amenities["id"] |
||
1000 | ) |
||
1001 | ].index |
||
1002 | df_buildings_without_amenities = df_buildings_without_amenities.drop( |
||
1003 | index=mask |
||
1004 | ).reset_index(drop=True) |
||
1005 | log.info(f"{len(mask)} duplicated ids removed!") |
||
1006 | |||
1007 | # select median n buildings per cell |
||
1008 | df_buildings_without_amenities = select_cts_buildings( |
||
1009 | df_buildings_without_amenities, max_n=median_n_amenities |
||
1010 | ) |
||
1011 | df_buildings_without_amenities["n_amenities_inside"] = 1 |
||
1012 | log.info(f"{median_n_amenities} buildings per cell selected!") |
||
1013 | |||
1014 | # Create synthetic amenities and buildings in cells with only CTS demand |
||
1015 | df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
||
1016 | df_buildings_without_amenities |
||
1017 | ) |
||
1018 | log.info("Cells with only demand identified!") |
||
1019 | |||
1020 | # Median n Amenities per cell |
||
1021 | df_cells_with_cts_demand_only["amenities"] = median_n_amenities |
||
1022 | # create row for every amenity |
||
1023 | df_cells_with_cts_demand_only["amenities"] = ( |
||
1024 | df_cells_with_cts_demand_only["amenities"].astype(int).apply(range) |
||
1025 | ) |
||
1026 | df_cells_with_cts_demand_only = df_cells_with_cts_demand_only.explode( |
||
1027 | "amenities" |
||
1028 | ) |
||
1029 | df_cells_with_cts_demand_only.drop(columns="amenities", inplace=True) |
||
1030 | |||
1031 | # Only 1 Amenity per Building |
||
1032 | df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
||
1033 | df_cells_with_cts_demand_only = place_buildings_with_amenities( |
||
1034 | df_cells_with_cts_demand_only, amenities=1 |
||
1035 | ) |
||
1036 | df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
||
1037 | df_cells_with_cts_demand_only, points="geom_point" |
||
1038 | ) |
||
1039 | log.info(f"{median_n_amenities} synthetic buildings per cell created") |
||
1040 | |||
1041 | # TODO write to DB and remove (backup) renaming |
||
1042 | write_table_to_postgis( |
||
1043 | df_synthetic_buildings_without_amenities.rename( |
||
1044 | columns={ |
||
1045 | "zensus_population_id": "cell_id", |
||
1046 | "egon_building_id": "id", |
||
1047 | } |
||
1048 | ), |
||
1049 | OsmBuildingsSynthetic, |
||
1050 | drop=False, |
||
1051 | ) |
||
1052 | log.info("Synthetic buildings exported to DB") |
||
1053 | |||
1054 | # Concat all buildings |
||
1055 | columns = [ |
||
1056 | "zensus_population_id", |
||
1057 | "id", |
||
1058 | "geom_building", |
||
1059 | "n_amenities_inside", |
||
1060 | "source", |
||
1061 | ] |
||
1062 | |||
1063 | df_buildings_with_amenities["source"] = "bwa" |
||
1064 | df_synthetic_buildings_with_amenities["source"] = "sbwa" |
||
1065 | df_buildings_without_amenities["source"] = "bwoa" |
||
1066 | df_synthetic_buildings_without_amenities["source"] = "sbwoa" |
||
1067 | |||
1068 | df_cts_buildings = pd.concat( |
||
1069 | [ |
||
1070 | df_buildings_with_amenities[columns], |
||
1071 | df_synthetic_buildings_with_amenities[columns], |
||
1072 | df_buildings_without_amenities[columns], |
||
1073 | df_synthetic_buildings_without_amenities[columns], |
||
1074 | ], |
||
1075 | axis=0, |
||
1076 | ignore_index=True, |
||
1077 | ) |
||
1078 | # TODO maybe remove after #772 |
||
1079 | df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
||
1080 | |||
1081 | # Write table to db for debugging |
||
1082 | # TODO remove later |
||
1083 | df_cts_buildings = gpd.GeoDataFrame( |
||
1084 | df_cts_buildings, geometry="geom_building", crs=3035 |
||
1085 | ) |
||
1086 | df_cts_buildings = df_cts_buildings.reset_index().rename( |
||
1087 | columns={"index": "serial"} |
||
1088 | ) |
||
1089 | write_table_to_postgis( |
||
1090 | df_cts_buildings, |
||
1091 | CtsBuildings, |
||
1092 | drop=True, |
||
1093 | ) |
||
1094 | log.info("CTS buildings exported to DB!") |
||
1095 | |||
1096 | |||
1097 | View Code Duplication | def cts_electricity(): |
|
1098 | """ |
||
1099 | Calculate cts electricity demand share of hvmv substation profile |
||
1100 | for buildings. |
||
1101 | """ |
||
1102 | log = start_logging() |
||
1103 | log.info("Start logging!") |
||
1104 | with db.session_scope() as session: |
||
1105 | cells_query = session.query(CtsBuildings) |
||
1106 | |||
1107 | df_cts_buildings = pd.read_sql( |
||
1108 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1109 | ) |
||
1110 | log.info("CTS buildings from DB imported!") |
||
1111 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
1112 | df_cts_buildings, scenario="eGon2035", sector="electricity" |
||
1113 | ) |
||
1114 | log.info("Profile share for egon2035 calculated!") |
||
1115 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
1116 | df_cts_buildings, scenario="eGon100RE", sector="electricity" |
||
1117 | ) |
||
1118 | log.info("Profile share for egon100RE calculated!") |
||
1119 | df_demand_share = pd.concat( |
||
1120 | [df_demand_share_2035, df_demand_share_100RE], |
||
1121 | axis=0, |
||
1122 | ignore_index=True, |
||
1123 | ) |
||
1124 | |||
1125 | write_table_to_postgres( |
||
1126 | df_demand_share, EgonCtsElectricityDemandBuildingShare, drop=True |
||
1127 | ) |
||
1128 | log.info("Profile share exported to DB!") |
||
1129 | |||
1130 | |||
1131 | View Code Duplication | def cts_heat(): |
|
1132 | """ |
||
1133 | Calculate cts electricity demand share of hvmv substation profile |
||
1134 | for buildings. |
||
1135 | """ |
||
1136 | log = start_logging() |
||
1137 | log.info("Start logging!") |
||
1138 | with db.session_scope() as session: |
||
1139 | cells_query = session.query(CtsBuildings) |
||
1140 | |||
1141 | df_cts_buildings = pd.read_sql( |
||
1142 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1143 | ) |
||
1144 | log.info("CTS buildings from DB imported!") |
||
1145 | |||
1146 | df_demand_share_2035 = calc_building_demand_profile_share( |
||
1147 | df_cts_buildings, scenario="eGon2035", sector="heat" |
||
1148 | ) |
||
1149 | log.info("Profile share for egon2035 calculated!") |
||
1150 | df_demand_share_100RE = calc_building_demand_profile_share( |
||
1151 | df_cts_buildings, scenario="eGon100RE", sector="heat" |
||
1152 | ) |
||
1153 | log.info("Profile share for egon100RE calculated!") |
||
1154 | df_demand_share = pd.concat( |
||
1155 | [df_demand_share_2035, df_demand_share_100RE], |
||
1156 | axis=0, |
||
1157 | ignore_index=True, |
||
1158 | ) |
||
1159 | |||
1160 | write_table_to_postgres( |
||
1161 | df_demand_share, EgonCtsHeatDemandBuildingShare, drop=True |
||
1162 | ) |
||
1163 | log.info("Profile share exported to DB!") |
||
1164 | |||
1165 | |||
1166 | def get_cts_electricity_peak_load(): |
||
1167 | """ |
||
1168 | Get peak load of all CTS buildings for both scenarios and store in DB. |
||
1169 | """ |
||
1170 | log = start_logging() |
||
1171 | log.info("Start logging!") |
||
1172 | # Delete rows with cts demand |
||
1173 | with db.session_scope() as session: |
||
1174 | session.query(BuildingPeakLoads).filter( |
||
1175 | BuildingPeakLoads.sector == "cts" |
||
1176 | ).delete() |
||
1177 | log.info("CTS Peak load removed from DB!") |
||
1178 | |||
1179 | for scenario in ["eGon2035", "eGon100RE"]: |
||
1180 | |||
1181 | with db.session_scope() as session: |
||
1182 | cells_query = session.query( |
||
1183 | EgonCtsElectricityDemandBuildingShare |
||
1184 | ).filter( |
||
1185 | EgonCtsElectricityDemandBuildingShare.scenario == scenario |
||
1186 | ) |
||
1187 | |||
1188 | df_demand_share = pd.read_sql( |
||
1189 | cells_query.statement, cells_query.session.bind, index_col=None |
||
1190 | ) |
||
1191 | |||
1192 | df_cts_profiles = calc_load_curves_cts(scenario=scenario) |
||
1193 | |||
1194 | df_peak_load = pd.merge( |
||
1195 | left=df_cts_profiles.max(axis=0).rename("max"), |
||
1196 | right=df_demand_share, |
||
1197 | left_on="bus_id", |
||
1198 | right_on="bus_id", |
||
1199 | ) |
||
1200 | |||
1201 | # Convert unit from MWh to W |
||
1202 | df_peak_load["max"] = df_peak_load["max"] * 1e6 |
||
1203 | df_peak_load["peak_load_in_w"] = ( |
||
1204 | df_peak_load["max"] * df_peak_load["profile_share"] |
||
1205 | ) |
||
1206 | log.info(f"Peak load for {scenario} determined!") |
||
1207 | |||
1208 | df_peak_load.rename(columns={"id": "building_id"}, inplace=True) |
||
1209 | df_peak_load["sector"] = "cts" |
||
1210 | |||
1211 | df_peak_load = df_peak_load[ |
||
1212 | ["building_id", "sector", "scenario", "peak_load_in_w"] |
||
1213 | ] |
||
1214 | |||
1215 | # Convert unit to W |
||
1216 | df_peak_load["peak_load_in_w"] = df_peak_load["peak_load_in_w"] * 1e6 |
||
1217 | |||
1218 | # Write peak loads into db |
||
1219 | with db.session_scope() as session: |
||
1220 | session.bulk_insert_mappings( |
||
1221 | BuildingPeakLoads, |
||
1222 | df_peak_load.to_dict(orient="records"), |
||
1223 | ) |
||
1224 | log.info(f"Peak load for {scenario} exported to DB!") |
||
1225 | |||
1226 | |||
1227 | class CtsElectricityBuildings(Dataset): |
||
1228 | def __init__(self, dependencies): |
||
1229 | super().__init__( |
||
1230 | name="CtsElectricityBuildings", |
||
1231 | version="0.0.0", |
||
1232 | dependencies=dependencies, |
||
1233 | tasks=( |
||
1234 | cts_buildings, |
||
1235 | {cts_electricity, cts_heat}, |
||
1236 | get_cts_electricity_peak_load, |
||
1237 | ), |
||
1239 |