1
|
|
|
from geoalchemy2.shape import to_shape |
2
|
|
|
from sqlalchemy import REAL, Column, Float, Integer, String, func |
3
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
4
|
|
|
import geopandas as gpd |
5
|
|
|
import pandas as pd |
6
|
|
|
import saio |
7
|
|
|
|
8
|
|
|
from egon.data import db |
9
|
|
|
from egon.data.datasets import Dataset |
10
|
|
|
from egon.data.datasets.electricity_demand import ( |
11
|
|
|
EgonDemandRegioZensusElectricity, |
12
|
|
|
) |
13
|
|
|
from egon.data.datasets.electricity_demand.temporal import calc_load_curves_cts |
14
|
|
|
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
15
|
|
|
OsmBuildingsSynthetic, |
16
|
|
|
) |
17
|
|
|
from egon.data.datasets.electricity_demand_timeseries.tools import ( |
18
|
|
|
random_ints_until_sum, |
19
|
|
|
random_point_in_square, |
20
|
|
|
specific_int_until_sum, |
21
|
|
|
write_table_to_postgis, |
22
|
|
|
write_table_to_postgres, |
23
|
|
|
) |
24
|
|
|
from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
25
|
|
|
from egon.data.datasets.zensus_vg250 import DestatisZensusPopulationPerHa |
26
|
|
|
import egon.data.config |
27
|
|
|
|
28
|
|
|
engine = db.engine() |
29
|
|
|
Base = declarative_base() |
30
|
|
|
|
31
|
|
|
data_config = egon.data.config.datasets() |
32
|
|
|
RANDOM_SEED = egon.data.config.settings()["egon-data"]["--random-seed"] |
33
|
|
|
|
34
|
|
|
# import db tables |
35
|
|
|
saio.register_schema("openstreetmap", engine=engine) |
36
|
|
|
saio.register_schema("society", engine=engine) |
37
|
|
|
saio.register_schema("demand", engine=engine) |
38
|
|
|
saio.register_schema("boundaries", engine=engine) |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
class EgonCtsElectricityDemandBuildingShare(Base): |
42
|
|
|
__tablename__ = "egon_cts_electricity_demand_building_share" |
43
|
|
|
__table_args__ = {"schema": "demand"} |
44
|
|
|
|
45
|
|
|
id = Column(Integer, primary_key=True) |
46
|
|
|
scenario = Column(String, primary_key=True) |
47
|
|
|
bus_id = Column(Integer, index=True) |
48
|
|
|
profile_share = Column(Float) |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
class CtsPeakLoads(Base): |
52
|
|
|
__tablename__ = "egon_cts_peak_loads" |
53
|
|
|
__table_args__ = {"schema": "demand"} |
54
|
|
|
|
55
|
|
|
id = Column(String, primary_key=True) |
56
|
|
|
cts_peak_load_in_w_2035 = Column(REAL) |
57
|
|
|
cts_peak_load_in_w_100RE = Column(REAL) |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
def amenities_without_buildings(): |
61
|
|
|
""" |
62
|
|
|
|
63
|
|
|
Returns |
64
|
|
|
------- |
65
|
|
|
pd.DataFrame |
66
|
|
|
Table of amenities without buildings |
67
|
|
|
|
68
|
|
|
""" |
69
|
|
|
from saio.openstreetmap import osm_amenities_not_in_buildings_filtered |
70
|
|
|
|
71
|
|
|
with db.session_scope() as session: |
72
|
|
|
cells_query = ( |
73
|
|
|
session.query( |
74
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
75
|
|
|
# TODO can be used for square around amenity |
76
|
|
|
# (1 geom_amenity: 1 geom_building) |
77
|
|
|
# not unique amenity_ids yet |
78
|
|
|
osm_amenities_not_in_buildings_filtered.geom_amenity, |
79
|
|
|
osm_amenities_not_in_buildings_filtered.egon_amenity_id, |
80
|
|
|
# EgonDemandRegioZensusElectricity.demand, |
81
|
|
|
# # TODO can be used to generate n random buildings |
82
|
|
|
# # (n amenities : 1 randombuilding) |
83
|
|
|
# func.count( |
84
|
|
|
# osm_amenities_not_in_buildings_filtered.egon_amenity_id |
85
|
|
|
# ).label("n_amenities_inside"), |
86
|
|
|
# DestatisZensusPopulationPerHa.geom, |
87
|
|
|
) |
88
|
|
|
.filter( |
89
|
|
|
func.st_within( |
90
|
|
|
osm_amenities_not_in_buildings_filtered.geom_amenity, |
91
|
|
|
DestatisZensusPopulationPerHa.geom, |
92
|
|
|
) |
93
|
|
|
) |
94
|
|
|
.filter( |
95
|
|
|
DestatisZensusPopulationPerHa.id |
96
|
|
|
== EgonDemandRegioZensusElectricity.zensus_population_id |
97
|
|
|
) |
98
|
|
|
.filter( |
99
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
100
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035" |
101
|
|
|
# ).group_by( |
102
|
|
|
# EgonDemandRegioZensusElectricity.zensus_population_id, |
103
|
|
|
# DestatisZensusPopulationPerHa.geom, |
104
|
|
|
) |
105
|
|
|
) |
106
|
|
|
# # TODO can be used to generate n random buildings |
107
|
|
|
# df_cells_with_amenities_not_in_buildings = gpd.read_postgis( |
108
|
|
|
# cells_query.statement, cells_query.session.bind, geom_col="geom" |
109
|
|
|
# ) |
110
|
|
|
# |
111
|
|
|
|
112
|
|
|
# # TODO can be used for square around amenity |
113
|
|
|
df_synthetic_buildings_for_amenities = gpd.read_postgis( |
114
|
|
|
cells_query.statement, |
115
|
|
|
cells_query.session.bind, |
116
|
|
|
geom_col="geom_amenity", |
117
|
|
|
) |
118
|
|
|
return df_synthetic_buildings_for_amenities |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
def place_buildings_with_amenities(df, amenities=None, max_amenities=None): |
122
|
|
|
""" |
123
|
|
|
Building centers are placed randomly within census cells. |
124
|
|
|
The Number of buildings is derived from n_amenity_inside, the selected |
125
|
|
|
method and number of amenities per building. |
126
|
|
|
""" |
127
|
|
|
if isinstance(max_amenities, int): |
128
|
|
|
# amount of amenities is randomly generated within bounds |
129
|
|
|
# (max_amenities, amenities per cell) |
130
|
|
|
df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
131
|
|
|
random_ints_until_sum, args=[max_amenities] |
132
|
|
|
) |
133
|
|
|
if isinstance(amenities, int): |
134
|
|
|
# Specific amount of amenities per building |
135
|
|
|
df["n_amenities_inside"] = df["n_amenities_inside"].apply( |
136
|
|
|
specific_int_until_sum, args=[amenities] |
137
|
|
|
) |
138
|
|
|
|
139
|
|
|
# Unnest each building |
140
|
|
|
df = df.explode(column="n_amenities_inside") |
141
|
|
|
|
142
|
|
|
# building count per cell |
143
|
|
|
df["building_count"] = df.groupby(["zensus_population_id"]).cumcount() + 1 |
144
|
|
|
|
145
|
|
|
# generate random synthetic buildings |
146
|
|
|
edge_length = 5 |
147
|
|
|
# create random points within census cells |
148
|
|
|
points = random_point_in_square(geom=df["geom"], tol=edge_length / 2) |
149
|
|
|
|
150
|
|
|
df.reset_index(drop=True, inplace=True) |
151
|
|
|
# Store center of polygon |
152
|
|
|
df["geom_point"] = points |
153
|
|
|
# Drop geometry of census cell |
154
|
|
|
df = df.drop(columns=["geom"]) |
155
|
|
|
|
156
|
|
|
return df |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
def create_synthetic_buildings(df, points=None, crs="EPSG:3035"): |
160
|
|
|
""" |
161
|
|
|
Synthetic buildings are generated around points. |
162
|
|
|
""" |
163
|
|
|
|
164
|
|
|
if isinstance(points, str) and points in df.columns: |
165
|
|
|
points = df[points] |
166
|
|
|
elif isinstance(points, gpd.GeoSeries): |
167
|
|
|
pass |
168
|
|
|
else: |
169
|
|
|
raise ValueError("Points are of the wrong type") |
170
|
|
|
|
171
|
|
|
# Create building using a square around point |
172
|
|
|
edge_length = 5 |
173
|
|
|
df["geom_building"] = points.buffer(distance=edge_length / 2, cap_style=3) |
174
|
|
|
|
175
|
|
|
if "geom_point" not in df.columns: |
176
|
|
|
df["geom_point"] = df["geom_building"].centroid |
177
|
|
|
|
178
|
|
|
# TODO Check CRS |
179
|
|
|
df = gpd.GeoDataFrame( |
180
|
|
|
df, |
181
|
|
|
crs=crs, |
182
|
|
|
geometry="geom_building", |
183
|
|
|
) |
184
|
|
|
|
185
|
|
|
# TODO remove after implementation of egon_building_id |
186
|
|
|
df.rename(columns={"id": "egon_building_id"}, inplace=True) |
187
|
|
|
|
188
|
|
|
# get max number of building ids from synthetic residential table |
189
|
|
|
with db.session_scope() as session: |
190
|
|
|
max_synth_residential_id = session.execute( |
191
|
|
|
func.max(OsmBuildingsSynthetic.id) |
192
|
|
|
).scalar() |
193
|
|
|
max_synth_residential_id = int(max_synth_residential_id) |
194
|
|
|
|
195
|
|
|
# create sequential ids |
196
|
|
|
df["egon_building_id"] = range( |
197
|
|
|
max_synth_residential_id + 1, |
198
|
|
|
max_synth_residential_id + df.shape[0] + 1, |
199
|
|
|
) |
200
|
|
|
|
201
|
|
|
df["area"] = df["geom_building"].area |
202
|
|
|
# set building type of synthetic building |
203
|
|
|
df["building"] = "cts" |
204
|
|
|
# TODO remove in #772 |
205
|
|
|
df = df.rename( |
206
|
|
|
columns={ |
207
|
|
|
# "zensus_population_id": "cell_id", |
208
|
|
|
"egon_building_id": "id", |
209
|
|
|
} |
210
|
|
|
) |
211
|
|
|
return df |
212
|
|
|
|
213
|
|
|
|
214
|
|
|
def buildings_with_amenities(): |
215
|
|
|
"""""" |
216
|
|
|
|
217
|
|
|
from saio.boundaries import egon_map_zensus_buildings_filtered_all |
218
|
|
|
from saio.openstreetmap import osm_buildings_filtered_with_amenities |
219
|
|
|
|
220
|
|
|
with db.session_scope() as session: |
221
|
|
|
cells_query = ( |
222
|
|
|
session.query( |
223
|
|
|
osm_buildings_filtered_with_amenities.id.label( |
224
|
|
|
"egon_building_id" |
225
|
|
|
), |
226
|
|
|
osm_buildings_filtered_with_amenities.building, |
227
|
|
|
osm_buildings_filtered_with_amenities.n_amenities_inside, |
228
|
|
|
osm_buildings_filtered_with_amenities.area, |
229
|
|
|
osm_buildings_filtered_with_amenities.geom_building, |
230
|
|
|
osm_buildings_filtered_with_amenities.geom_point, |
231
|
|
|
egon_map_zensus_buildings_filtered_all.zensus_population_id, |
232
|
|
|
) |
233
|
|
|
.filter( |
234
|
|
|
osm_buildings_filtered_with_amenities.id |
235
|
|
|
== egon_map_zensus_buildings_filtered_all.id |
236
|
|
|
) |
237
|
|
|
.filter( |
238
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
239
|
|
|
== egon_map_zensus_buildings_filtered_all.zensus_population_id |
240
|
|
|
) |
241
|
|
|
.filter( |
242
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
243
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
244
|
|
|
) |
245
|
|
|
) |
246
|
|
|
df_amenities_in_buildings = pd.read_sql( |
247
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
248
|
|
|
) |
249
|
|
|
|
250
|
|
|
# TODO necessary? |
251
|
|
|
df_amenities_in_buildings["geom_building"] = df_amenities_in_buildings[ |
252
|
|
|
"geom_building" |
253
|
|
|
].apply(to_shape) |
254
|
|
|
df_amenities_in_buildings["geom_point"] = df_amenities_in_buildings[ |
255
|
|
|
"geom_point" |
256
|
|
|
].apply(to_shape) |
257
|
|
|
|
258
|
|
|
# # Count amenities per building |
259
|
|
|
# df_amenities_in_buildings["n_amenities_inside"] = 1 |
260
|
|
|
# df_amenities_in_buildings[ |
261
|
|
|
# "n_amenities_inside" |
262
|
|
|
# ] = df_amenities_in_buildings.groupby("egon_building_id")[ |
263
|
|
|
# "n_amenities_inside" |
264
|
|
|
# ].transform( |
265
|
|
|
# "sum" |
266
|
|
|
# ) |
267
|
|
|
|
268
|
|
|
# # Only keep one building for multiple amenities |
269
|
|
|
# df_amenities_in_buildings = df_amenities_in_buildings.drop_duplicates( |
270
|
|
|
# "egon_building_id" |
271
|
|
|
# ) |
272
|
|
|
# df_amenities_in_buildings["building"] = "cts" |
273
|
|
|
# TODO maybe remove later |
274
|
|
|
df_amenities_in_buildings.sort_values("egon_building_id").reset_index( |
275
|
|
|
drop=True, inplace=True |
276
|
|
|
) |
277
|
|
|
df_amenities_in_buildings.rename( |
278
|
|
|
columns={ |
279
|
|
|
# "zensus_population_id": "cell_id", |
280
|
|
|
"egon_building_id": "id" |
281
|
|
|
}, |
282
|
|
|
inplace=True, |
283
|
|
|
) |
284
|
|
|
|
285
|
|
|
return df_amenities_in_buildings |
286
|
|
|
|
287
|
|
|
|
288
|
|
|
# TODO maybe replace with tools.write_table_to_db |
289
|
|
|
def write_synthetic_buildings_to_db(df_synthetic_buildings): |
290
|
|
|
"""""" |
291
|
|
|
if "geom_point" not in df_synthetic_buildings.columns: |
292
|
|
|
df_synthetic_buildings["geom_point"] = df_synthetic_buildings[ |
293
|
|
|
"geom_building" |
294
|
|
|
].centroid |
295
|
|
|
|
296
|
|
|
df_synthetic_buildings = df_synthetic_buildings.rename( |
297
|
|
|
columns={ |
298
|
|
|
"zensus_population_id": "cell_id", |
299
|
|
|
"egon_building_id": "id", |
300
|
|
|
} |
301
|
|
|
) |
302
|
|
|
# Only take existing columns |
303
|
|
|
columns = [ |
304
|
|
|
column.key for column in OsmBuildingsSynthetic.__table__.columns |
305
|
|
|
] |
306
|
|
|
df_synthetic_buildings = df_synthetic_buildings.loc[:, columns] |
307
|
|
|
|
308
|
|
|
dtypes = { |
309
|
|
|
i: OsmBuildingsSynthetic.__table__.columns[i].type |
310
|
|
|
for i in OsmBuildingsSynthetic.__table__.columns.keys() |
311
|
|
|
} |
312
|
|
|
|
313
|
|
|
# Write new buildings incl coord into db |
314
|
|
|
df_synthetic_buildings.to_postgis( |
315
|
|
|
name=OsmBuildingsSynthetic.__tablename__, |
316
|
|
|
con=engine, |
317
|
|
|
if_exists="append", |
318
|
|
|
schema=OsmBuildingsSynthetic.__table_args__["schema"], |
319
|
|
|
dtype=dtypes, |
320
|
|
|
) |
321
|
|
|
|
322
|
|
|
|
323
|
|
|
def buildings_without_amenities(): |
324
|
|
|
""" """ |
325
|
|
|
from saio.boundaries import egon_map_zensus_buildings_filtered_all |
326
|
|
|
from saio.openstreetmap import ( |
327
|
|
|
osm_amenities_shops_filtered, |
328
|
|
|
osm_buildings_filtered, |
329
|
|
|
osm_buildings_synthetic, |
330
|
|
|
) |
331
|
|
|
|
332
|
|
|
# buildings_filtered in cts-demand-cells without amenities |
333
|
|
|
with db.session_scope() as session: |
334
|
|
|
|
335
|
|
|
# Synthetic Buildings |
336
|
|
|
q_synth_buildings = session.query( |
337
|
|
|
osm_buildings_synthetic.cell_id.cast(Integer).label( |
338
|
|
|
"zensus_population_id" |
339
|
|
|
), |
340
|
|
|
osm_buildings_synthetic.id.cast(Integer).label("id"), |
341
|
|
|
osm_buildings_synthetic.area.label("area"), |
342
|
|
|
osm_buildings_synthetic.geom_building.label("geom_building"), |
343
|
|
|
osm_buildings_synthetic.geom_point.label("geom_point"), |
344
|
|
|
) |
345
|
|
|
|
346
|
|
|
# Buildings filtered |
347
|
|
|
q_buildings_filtered = session.query( |
348
|
|
|
egon_map_zensus_buildings_filtered_all.zensus_population_id, |
349
|
|
|
osm_buildings_filtered.id, |
350
|
|
|
osm_buildings_filtered.area, |
351
|
|
|
osm_buildings_filtered.geom_building, |
352
|
|
|
osm_buildings_filtered.geom_point, |
353
|
|
|
).filter( |
354
|
|
|
osm_buildings_filtered.id |
355
|
|
|
== egon_map_zensus_buildings_filtered_all.id |
356
|
|
|
) |
357
|
|
|
|
358
|
|
|
# Amenities + zensus_population_id |
359
|
|
|
q_amenities = ( |
360
|
|
|
session.query( |
361
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
362
|
|
|
) |
363
|
|
|
.filter( |
364
|
|
|
func.st_within( |
365
|
|
|
osm_amenities_shops_filtered.geom_amenity, |
366
|
|
|
DestatisZensusPopulationPerHa.geom, |
367
|
|
|
) |
368
|
|
|
) |
369
|
|
|
.distinct(DestatisZensusPopulationPerHa.id) |
370
|
|
|
) |
371
|
|
|
|
372
|
|
|
# Cells with CTS demand but without amenities |
373
|
|
|
q_cts_without_amenities = ( |
374
|
|
|
session.query( |
375
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id, |
376
|
|
|
) |
377
|
|
|
.filter( |
378
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
379
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
380
|
|
|
) |
381
|
|
|
.filter( |
382
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
383
|
|
|
q_amenities |
384
|
|
|
) |
385
|
|
|
) |
386
|
|
|
.distinct() |
387
|
|
|
) |
388
|
|
|
|
389
|
|
|
# Buildings filtered + synthetic buildings residential in |
390
|
|
|
# cells with CTS demand but without amenities |
391
|
|
|
cells_query = q_synth_buildings.union(q_buildings_filtered).filter( |
392
|
|
|
egon_map_zensus_buildings_filtered_all.zensus_population_id.in_( |
393
|
|
|
q_cts_without_amenities |
394
|
|
|
) |
395
|
|
|
) |
396
|
|
|
|
397
|
|
|
# df_buildings_without_amenities = pd.read_sql( |
398
|
|
|
# cells_query.statement, cells_query.session.bind, index_col=None) |
399
|
|
|
df_buildings_without_amenities = gpd.read_postgis( |
400
|
|
|
cells_query.statement, |
401
|
|
|
cells_query.session.bind, |
402
|
|
|
geom_col="geom_building", |
403
|
|
|
) |
404
|
|
|
|
405
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.rename( |
406
|
|
|
columns={ |
407
|
|
|
# "zensus_population_id": "cell_id", |
408
|
|
|
"egon_building_id": "id", |
409
|
|
|
} |
410
|
|
|
) |
411
|
|
|
|
412
|
|
|
return df_buildings_without_amenities |
413
|
|
|
|
414
|
|
|
|
415
|
|
|
def select_cts_buildings(df_buildings_wo_amenities): |
416
|
|
|
""" """ |
417
|
|
|
# TODO Adapt method |
418
|
|
|
# Select one building each cell |
419
|
|
|
# take the first |
420
|
|
|
df_buildings_with_cts_demand = df_buildings_wo_amenities.drop_duplicates( |
421
|
|
|
# subset="cell_id", keep="first" |
422
|
|
|
subset="zensus_population_id", |
423
|
|
|
keep="first", |
424
|
|
|
).reset_index(drop=True) |
425
|
|
|
df_buildings_with_cts_demand["n_amenities_inside"] = 1 |
426
|
|
|
df_buildings_with_cts_demand["building"] = "cts" |
427
|
|
|
|
428
|
|
|
return df_buildings_with_cts_demand |
429
|
|
|
|
430
|
|
|
|
431
|
|
|
def cells_with_cts_demand_only(df_buildings_without_amenities): |
432
|
|
|
"""""" |
433
|
|
|
from saio.openstreetmap import osm_amenities_shops_filtered |
434
|
|
|
|
435
|
|
|
# cells mit amenities |
436
|
|
|
with db.session_scope() as session: |
437
|
|
|
sub_query = ( |
438
|
|
|
session.query( |
439
|
|
|
DestatisZensusPopulationPerHa.id.label("zensus_population_id"), |
440
|
|
|
) |
441
|
|
|
.filter( |
442
|
|
|
func.st_within( |
443
|
|
|
osm_amenities_shops_filtered.geom_amenity, |
444
|
|
|
DestatisZensusPopulationPerHa.geom, |
445
|
|
|
) |
446
|
|
|
) |
447
|
|
|
.distinct(DestatisZensusPopulationPerHa.id) |
448
|
|
|
) |
449
|
|
|
|
450
|
|
|
cells_query = ( |
451
|
|
|
session.query( |
452
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id, |
453
|
|
|
EgonDemandRegioZensusElectricity.scenario, |
454
|
|
|
EgonDemandRegioZensusElectricity.sector, |
455
|
|
|
EgonDemandRegioZensusElectricity.demand, |
456
|
|
|
DestatisZensusPopulationPerHa.geom, |
457
|
|
|
) |
458
|
|
|
.filter( |
459
|
|
|
EgonDemandRegioZensusElectricity.sector == "service", |
460
|
|
|
EgonDemandRegioZensusElectricity.scenario == "eGon2035", |
461
|
|
|
) |
462
|
|
|
.filter( |
463
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id.notin_( |
464
|
|
|
sub_query |
465
|
|
|
) |
466
|
|
|
) |
467
|
|
|
.filter( |
468
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
469
|
|
|
== DestatisZensusPopulationPerHa.id |
470
|
|
|
) |
471
|
|
|
) |
472
|
|
|
|
473
|
|
|
df_cts_cell_without_amenities = gpd.read_postgis( |
474
|
|
|
cells_query.statement, |
475
|
|
|
cells_query.session.bind, |
476
|
|
|
geom_col="geom", |
477
|
|
|
index_col=None, |
478
|
|
|
) |
479
|
|
|
|
480
|
|
|
# TODO maybe remove |
481
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.rename( |
482
|
|
|
columns={"cell_id": "zensus_population_id"} |
483
|
|
|
) |
484
|
|
|
|
485
|
|
|
# Census cells with only cts demand |
486
|
|
|
df_cells_only_cts_demand = df_cts_cell_without_amenities.loc[ |
487
|
|
|
~df_cts_cell_without_amenities["zensus_population_id"].isin( |
488
|
|
|
df_buildings_without_amenities["zensus_population_id"].unique() |
489
|
|
|
) |
490
|
|
|
] |
491
|
|
|
|
492
|
|
|
df_cells_only_cts_demand.reset_index(drop=True, inplace=True) |
493
|
|
|
|
494
|
|
|
return df_cells_only_cts_demand |
495
|
|
|
|
496
|
|
|
|
497
|
|
|
def calc_census_cell_share(scenario="eGon2035"): |
498
|
|
|
"""""" |
499
|
|
|
|
500
|
|
|
with db.session_scope() as session: |
501
|
|
|
cells_query = ( |
502
|
|
|
session.query( |
503
|
|
|
EgonDemandRegioZensusElectricity, MapZensusGridDistricts.bus_id |
504
|
|
|
) |
505
|
|
|
.filter(EgonDemandRegioZensusElectricity.sector == "service") |
506
|
|
|
.filter(EgonDemandRegioZensusElectricity.scenario == scenario) |
507
|
|
|
.filter( |
508
|
|
|
EgonDemandRegioZensusElectricity.zensus_population_id |
509
|
|
|
== MapZensusGridDistricts.zensus_population_id |
510
|
|
|
) |
511
|
|
|
) |
512
|
|
|
|
513
|
|
|
df_demand_regio_electricity_demand = pd.read_sql( |
514
|
|
|
cells_query.statement, |
515
|
|
|
cells_query.session.bind, |
516
|
|
|
index_col="zensus_population_id", |
517
|
|
|
) |
518
|
|
|
|
519
|
|
|
# get demand share of cell per bus |
520
|
|
|
# share ist für scenarios identisch |
521
|
|
|
df_census_share = df_demand_regio_electricity_demand[ |
522
|
|
|
"demand" |
523
|
|
|
] / df_demand_regio_electricity_demand.groupby("bus_id")[ |
524
|
|
|
"demand" |
525
|
|
|
].transform( |
526
|
|
|
"sum" |
527
|
|
|
) |
528
|
|
|
df_census_share = df_census_share.rename("cell_share") |
529
|
|
|
|
530
|
|
|
df_census_share = pd.concat( |
531
|
|
|
[ |
532
|
|
|
df_census_share, |
533
|
|
|
df_demand_regio_electricity_demand[["bus_id", "scenario"]], |
534
|
|
|
], |
535
|
|
|
axis=1, |
536
|
|
|
) |
537
|
|
|
|
538
|
|
|
df_census_share.reset_index(inplace=True) |
539
|
|
|
return df_census_share |
540
|
|
|
|
541
|
|
|
|
542
|
|
|
def calc_building_demand_profile_share(df_cts_buildings, scenario="eGon2035"): |
543
|
|
|
""" |
544
|
|
|
Share of cts electricity demand profile per bus for every selected building |
545
|
|
|
""" |
546
|
|
|
|
547
|
|
|
def calc_building_amenity_share(df_cts_buildings): |
548
|
|
|
"""""" |
549
|
|
|
df_building_amenity_share = 1 / df_cts_buildings.groupby( |
550
|
|
|
"zensus_population_id" |
551
|
|
|
)["n_amenities_inside"].transform("sum") |
552
|
|
|
df_building_amenity_share = pd.concat( |
553
|
|
|
[ |
554
|
|
|
df_building_amenity_share.rename("building_amenity_share"), |
555
|
|
|
df_cts_buildings[["zensus_population_id", "id"]], |
556
|
|
|
], |
557
|
|
|
axis=1, |
558
|
|
|
) |
559
|
|
|
return df_building_amenity_share |
560
|
|
|
|
561
|
|
|
df_building_amenity_share = calc_building_amenity_share(df_cts_buildings) |
562
|
|
|
|
563
|
|
|
df_census_cell_share = calc_census_cell_share(scenario) |
564
|
|
|
|
565
|
|
|
df_demand_share = pd.merge( |
566
|
|
|
left=df_building_amenity_share, |
567
|
|
|
right=df_census_cell_share, |
568
|
|
|
left_on="zensus_population_id", |
569
|
|
|
right_on="zensus_population_id", |
570
|
|
|
) |
571
|
|
|
df_demand_share["profile_share"] = df_demand_share[ |
572
|
|
|
"building_amenity_share" |
573
|
|
|
].multiply(df_demand_share["cell_share"]) |
574
|
|
|
|
575
|
|
|
return df_demand_share[["id", "bus_id", "scenario", "profile_share"]] |
576
|
|
|
|
577
|
|
|
|
578
|
|
|
def calc_building_profiles( |
579
|
|
|
df_demand_share=None, egon_building_id=None, scenario="eGon2035" |
580
|
|
|
): |
581
|
|
|
"""""" |
582
|
|
|
|
583
|
|
|
if not isinstance(df_demand_share, pd.DataFrame): |
584
|
|
|
with db.session_scope() as session: |
585
|
|
|
cells_query = session.query(EgonCtsElectricityDemandBuildingShare) |
586
|
|
|
|
587
|
|
|
df_demand_share = pd.read_sql( |
588
|
|
|
cells_query.statement, cells_query.session.bind, index_col=None |
589
|
|
|
) |
590
|
|
|
|
591
|
|
|
df_cts_profiles = calc_load_curves_cts(scenario) |
592
|
|
|
|
593
|
|
|
# Only calculate selected building profile if egon_building_id is given |
594
|
|
|
if ( |
595
|
|
|
isinstance(egon_building_id, int) |
596
|
|
|
and egon_building_id in df_demand_share["id"] |
597
|
|
|
): |
598
|
|
|
df_demand_share = df_demand_share.loc[ |
599
|
|
|
df_demand_share["id"] == egon_building_id |
600
|
|
|
] |
601
|
|
|
|
602
|
|
|
df_building_profiles = pd.DataFrame() |
603
|
|
|
for bus_id, df in df_demand_share.groupby("bus_id"): |
604
|
|
|
shares = df.set_index("id", drop=True)["profile_share"] |
605
|
|
|
profile = df_cts_profiles.loc[:, bus_id] |
606
|
|
|
building_profiles = profile.apply(lambda x: x * shares) |
|
|
|
|
607
|
|
|
df_building_profiles = pd.concat( |
608
|
|
|
[df_building_profiles, building_profiles], axis=1 |
609
|
|
|
) |
610
|
|
|
|
611
|
|
|
return df_building_profiles |
612
|
|
|
|
613
|
|
|
|
614
|
|
|
def cts_to_buildings(): |
615
|
|
|
"""""" |
616
|
|
|
# Buildings with amenities |
617
|
|
|
df_buildings_with_amenities = buildings_with_amenities() |
618
|
|
|
|
619
|
|
|
# Remove synthetic CTS buildings if existing |
620
|
|
|
delete_synthetic_cts_buildings() |
621
|
|
|
# Create synthetic buildings for amenites without buildings |
622
|
|
|
df_amenities_without_buildings = amenities_without_buildings() |
623
|
|
|
df_amenities_without_buildings["n_amenities_inside"] = 1 |
624
|
|
|
df_synthetic_buildings_with_amenities = create_synthetic_buildings( |
625
|
|
|
df_amenities_without_buildings, points="geom_amenity" |
626
|
|
|
) |
627
|
|
|
|
628
|
|
|
# TODO write to DB and remove renaming |
629
|
|
|
# write_synthetic_buildings_to_db(df_synthetic_buildings_with_amenities) |
630
|
|
|
write_table_to_postgis( |
631
|
|
|
df_synthetic_buildings_with_amenities.rename( |
632
|
|
|
columns={ |
633
|
|
|
"zensus_population_id": "cell_id", |
634
|
|
|
"egon_building_id": "id", |
635
|
|
|
} |
636
|
|
|
), |
637
|
|
|
OsmBuildingsSynthetic, |
638
|
|
|
drop=False, |
639
|
|
|
) |
640
|
|
|
|
641
|
|
|
# Cells without amenities but CTS demand and buildings |
642
|
|
|
df_buildings_without_amenities = buildings_without_amenities() |
643
|
|
|
|
644
|
|
|
# TODO Fix Adhoc Bugfix duplicated buildings |
645
|
|
|
mask = df_buildings_without_amenities.loc[ |
646
|
|
|
df_buildings_without_amenities["id"].isin( |
647
|
|
|
df_buildings_with_amenities["id"] |
648
|
|
|
) |
649
|
|
|
].index |
650
|
|
|
df_buildings_without_amenities = df_buildings_without_amenities.drop( |
651
|
|
|
index=mask |
652
|
|
|
).reset_index(drop=True) |
653
|
|
|
|
654
|
|
|
df_buildings_without_amenities = select_cts_buildings( |
655
|
|
|
df_buildings_without_amenities |
656
|
|
|
) |
657
|
|
|
df_buildings_without_amenities["n_amenities_inside"] = 1 |
658
|
|
|
|
659
|
|
|
# Create synthetic amenities and buildings in cells with only CTS demand |
660
|
|
|
df_cells_with_cts_demand_only = cells_with_cts_demand_only( |
661
|
|
|
df_buildings_without_amenities |
662
|
|
|
) |
663
|
|
|
# Only 1 Amenity per cell |
664
|
|
|
df_cells_with_cts_demand_only["n_amenities_inside"] = 1 |
665
|
|
|
# Only 1 Amenity per Building |
666
|
|
|
df_cells_with_cts_demand_only = place_buildings_with_amenities( |
667
|
|
|
df_cells_with_cts_demand_only, amenities=1 |
668
|
|
|
) |
669
|
|
|
# Leads to only 1 building per cell |
670
|
|
|
df_synthetic_buildings_without_amenities = create_synthetic_buildings( |
671
|
|
|
df_cells_with_cts_demand_only, points="geom_point" |
672
|
|
|
) |
673
|
|
|
|
674
|
|
|
# TODO write to DB and remove renaming |
675
|
|
|
# write_synthetic_buildings_to_db(df_synthetic_buildings_without_amenities) |
676
|
|
|
write_table_to_postgis( |
677
|
|
|
df_synthetic_buildings_without_amenities.rename( |
678
|
|
|
columns={ |
679
|
|
|
"zensus_population_id": "cell_id", |
680
|
|
|
"egon_building_id": "id", |
681
|
|
|
} |
682
|
|
|
), |
683
|
|
|
OsmBuildingsSynthetic, |
684
|
|
|
drop=False, |
685
|
|
|
) |
686
|
|
|
|
687
|
|
|
# Concat all buildings |
688
|
|
|
columns = [ |
689
|
|
|
"zensus_population_id", |
690
|
|
|
"id", |
691
|
|
|
"geom_building", |
692
|
|
|
"n_amenities_inside", |
693
|
|
|
] |
694
|
|
|
df_cts_buildings = pd.concat( |
695
|
|
|
[ |
696
|
|
|
df_buildings_with_amenities[columns], |
697
|
|
|
df_synthetic_buildings_with_amenities[columns], |
698
|
|
|
df_buildings_without_amenities[columns], |
699
|
|
|
df_synthetic_buildings_without_amenities[columns], |
700
|
|
|
], |
701
|
|
|
axis=0, |
702
|
|
|
ignore_index=True, |
703
|
|
|
) |
704
|
|
|
# TODO maybe remove after #772 |
705
|
|
|
df_cts_buildings["id"] = df_cts_buildings["id"].astype(int) |
706
|
|
|
|
707
|
|
|
df_demand_share_2035 = calc_building_demand_profile_share( |
708
|
|
|
df_cts_buildings, scenario="eGon2035" |
709
|
|
|
) |
710
|
|
|
df_demand_share_100RE = calc_building_demand_profile_share( |
711
|
|
|
df_cts_buildings, scenario="eGon100RE" |
712
|
|
|
) |
713
|
|
|
|
714
|
|
|
df_demand_share = pd.concat( |
715
|
|
|
[df_demand_share_2035, df_demand_share_100RE], |
716
|
|
|
axis=0, |
717
|
|
|
ignore_index=True, |
718
|
|
|
) |
719
|
|
|
|
720
|
|
|
# TODO Why are there nonunique ids? |
721
|
|
|
# needs to be removed as soon as 'id' is unique |
722
|
|
|
df_demand_share = df_demand_share.drop_duplicates(subset="id") |
723
|
|
|
|
724
|
|
|
write_table_to_postgres( |
725
|
|
|
df_demand_share, EgonCtsElectricityDemandBuildingShare, drop=True |
726
|
|
|
) |
727
|
|
|
|
728
|
|
|
return df_cts_buildings, df_demand_share |
729
|
|
|
|
730
|
|
|
|
731
|
|
|
def get_peak_load_cts_buildings(): |
732
|
|
|
|
733
|
|
|
# TODO Check units, maybe MwH? |
734
|
|
|
df_building_profiles = calc_building_profiles(scenario="eGon2035") |
735
|
|
|
df_peak_load_2035 = df_building_profiles.max(axis=0).rename( |
736
|
|
|
"cts_peak_load_in_w_2035" |
737
|
|
|
) |
738
|
|
|
df_building_profiles = calc_building_profiles(scenario="eGon2035") |
739
|
|
|
df_peak_load_100RE = df_building_profiles.max(axis=0).rename( |
740
|
|
|
"cts_peak_load_in_w_100RE" |
741
|
|
|
) |
742
|
|
|
df_peak_load = pd.concat( |
743
|
|
|
[df_peak_load_2035, df_peak_load_100RE], axis=1 |
744
|
|
|
).reset_index() |
745
|
|
|
|
746
|
|
|
CtsPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
747
|
|
|
CtsPeakLoads.__table__.create(bind=engine, checkfirst=True) |
748
|
|
|
|
749
|
|
|
# Write peak loads into db |
750
|
|
|
with db.session_scope() as session: |
751
|
|
|
session.bulk_insert_mappings( |
752
|
|
|
CtsPeakLoads, |
753
|
|
|
df_peak_load.to_dict(orient="records"), |
754
|
|
|
) |
755
|
|
|
|
756
|
|
|
|
757
|
|
|
def delete_synthetic_cts_buildings(): |
758
|
|
|
# import db tables |
759
|
|
|
from saio.openstreetmap import osm_buildings_synthetic |
760
|
|
|
|
761
|
|
|
# cells mit amenities |
762
|
|
|
with db.session_scope() as session: |
763
|
|
|
session.query(osm_buildings_synthetic).filter( |
764
|
|
|
osm_buildings_synthetic.building == "cts" |
765
|
|
|
).delete() |
766
|
|
|
|
767
|
|
|
|
768
|
|
|
class CtsElectricityBuildings(Dataset): |
769
|
|
|
def __init__(self, dependencies): |
770
|
|
|
super().__init__( |
771
|
|
|
name="CtsElectricityBuildings", |
772
|
|
|
version="0.0.0.", |
773
|
|
|
dependencies=dependencies, |
774
|
|
|
tasks=( |
775
|
|
|
cts_to_buildings, |
776
|
|
|
get_peak_load_cts_buildings, |
777
|
|
|
# get_all_cts_building_profiles, |
778
|
|
|
), |
779
|
|
|
) |
780
|
|
|
|