|
1
|
|
|
""" |
|
2
|
|
|
Distribute MaStR PV rooftop capacities to OSM and synthetic buildings. Generate |
|
3
|
|
|
new PV rooftop generators for scenarios eGon2035 and eGon100RE. |
|
4
|
|
|
|
|
5
|
|
|
See documentation section :ref:`pv-rooftop-ref` for more information. |
|
6
|
|
|
|
|
7
|
|
|
""" |
|
8
|
|
|
from __future__ import annotations |
|
9
|
|
|
|
|
10
|
|
|
from collections import Counter |
|
11
|
|
|
from functools import wraps |
|
12
|
|
|
from time import perf_counter |
|
13
|
|
|
import datetime |
|
14
|
|
|
import json |
|
15
|
|
|
|
|
16
|
|
|
from geoalchemy2 import Geometry |
|
17
|
|
|
from loguru import logger |
|
18
|
|
|
from numpy.random import RandomState, default_rng |
|
19
|
|
|
from omi.dialects import get_dialect |
|
20
|
|
|
from pyproj.crs.crs import CRS |
|
21
|
|
|
from sqlalchemy import BigInteger, Column, Float, Integer, String |
|
22
|
|
|
from sqlalchemy.dialects.postgresql import HSTORE |
|
23
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
|
24
|
|
|
import geopandas as gpd |
|
25
|
|
|
import numpy as np |
|
26
|
|
|
import pandas as pd |
|
27
|
|
|
|
|
28
|
|
|
from egon.data import config, db |
|
29
|
|
|
from egon.data.datasets.electricity_demand_timeseries.hh_buildings import ( |
|
30
|
|
|
OsmBuildingsSynthetic, |
|
31
|
|
|
) |
|
32
|
|
|
from egon.data.datasets.power_plants.mastr_db_classes import EgonPowerPlantsPv |
|
33
|
|
|
from egon.data.datasets.scenario_capacities import EgonScenarioCapacities |
|
34
|
|
|
from egon.data.datasets.zensus_vg250 import Vg250Gem |
|
35
|
|
|
from egon.data.metadata import ( |
|
36
|
|
|
context, |
|
37
|
|
|
contributors, |
|
38
|
|
|
generate_resource_fields_from_db_table, |
|
39
|
|
|
license_dedl, |
|
40
|
|
|
license_odbl, |
|
41
|
|
|
meta_metadata, |
|
42
|
|
|
meta_metadata, |
|
43
|
|
|
sources, |
|
44
|
|
|
) |
|
45
|
|
|
|
|
46
|
|
|
engine = db.engine() |
|
47
|
|
|
Base = declarative_base() |
|
48
|
|
|
SEED = int(config.settings()["egon-data"]["--random-seed"]) |
|
49
|
|
|
|
|
50
|
|
|
# TODO: move to yml |
|
51
|
|
|
MASTR_INDEX_COL = "gens_id" |
|
52
|
|
|
|
|
53
|
|
|
EPSG = 4326 |
|
54
|
|
|
SRID = 3035 |
|
55
|
|
|
|
|
56
|
|
|
# data cleaning |
|
57
|
|
|
MAX_REALISTIC_PV_CAP = 23500 / 10**3 |
|
58
|
|
|
MIN_REALISTIC_PV_CAP = 0.1 / 10**3 |
|
59
|
|
|
|
|
60
|
|
|
# show additional logging information |
|
61
|
|
|
VERBOSE = False |
|
62
|
|
|
|
|
63
|
|
|
# Number of quantiles |
|
64
|
|
|
Q = 5 |
|
65
|
|
|
|
|
66
|
|
|
# Scenario Data |
|
67
|
|
|
SCENARIOS = ["eGon2035", "eGon100RE"] |
|
68
|
|
|
SCENARIO_TIMESTAMP = { |
|
69
|
|
|
"eGon2035": pd.Timestamp("2035-01-01", tz="UTC"), |
|
70
|
|
|
"eGon100RE": pd.Timestamp("2050-01-01", tz="UTC"), |
|
71
|
|
|
} |
|
72
|
|
|
PV_ROOFTOP_LIFETIME = pd.Timedelta(20 * 365, unit="D") |
|
73
|
|
|
|
|
74
|
|
|
# Example Modul Trina Vertex S TSM-400DE09M.08 400 Wp |
|
75
|
|
|
# https://www.photovoltaik4all.de/media/pdf/92/64/68/Trina_Datasheet_VertexS_DE09-08_2021_A.pdf |
|
76
|
|
|
MODUL_CAP = 0.4 / 10**3 # MWp |
|
77
|
|
|
MODUL_SIZE = 1.096 * 1.754 # m² |
|
78
|
|
|
PV_CAP_PER_SQ_M = MODUL_CAP / MODUL_SIZE |
|
79
|
|
|
|
|
80
|
|
|
# Estimation of usable roof area |
|
81
|
|
|
# Factor for the conversion of building area to roof area |
|
82
|
|
|
# estimation mean roof pitch: 35° |
|
83
|
|
|
# estimation usable roof share: 80% |
|
84
|
|
|
# estimation that only the south side of the building is used for pv |
|
85
|
|
|
# see https://mediatum.ub.tum.de/doc/%20969497/969497.pdf |
|
86
|
|
|
# AREA_FACTOR = 1.221 |
|
87
|
|
|
# USABLE_ROOF_SHARE = 0.8 |
|
88
|
|
|
# SOUTH_SHARE = 0.5 |
|
89
|
|
|
# ROOF_FACTOR = AREA_FACTOR * USABLE_ROOF_SHARE * SOUTH_SHARE |
|
90
|
|
|
ROOF_FACTOR = 0.5 |
|
91
|
|
|
|
|
92
|
|
|
CAP_RANGES = [ |
|
93
|
|
|
(0, 30 / 10**3), |
|
94
|
|
|
(30 / 10**3, 100 / 10**3), |
|
95
|
|
|
(100 / 10**3, float("inf")), |
|
96
|
|
|
] |
|
97
|
|
|
|
|
98
|
|
|
MIN_BUILDING_SIZE = 10.0 |
|
99
|
|
|
UPPER_QUANTILE = 0.95 |
|
100
|
|
|
LOWER_QUANTILE = 0.05 |
|
101
|
|
|
|
|
102
|
|
|
COLS_TO_EXPORT = [ |
|
103
|
|
|
"scenario", |
|
104
|
|
|
"bus_id", |
|
105
|
|
|
"building_id", |
|
106
|
|
|
"gens_id", |
|
107
|
|
|
"capacity", |
|
108
|
|
|
"orientation_uniform", |
|
109
|
|
|
"orientation_primary", |
|
110
|
|
|
"orientation_primary_angle", |
|
111
|
|
|
"voltage_level", |
|
112
|
|
|
"weather_cell_id", |
|
113
|
|
|
] |
|
114
|
|
|
|
|
115
|
|
|
# TODO |
|
116
|
|
|
INCLUDE_SYNTHETIC_BUILDINGS = True |
|
117
|
|
|
ONLY_BUILDINGS_WITH_DEMAND = True |
|
118
|
|
|
TEST_RUN = False |
|
119
|
|
|
|
|
120
|
|
|
|
|
121
|
|
|
def timer_func(func): |
|
122
|
|
|
@wraps(func) |
|
123
|
|
|
def timeit_wrapper(*args, **kwargs): |
|
124
|
|
|
start_time = perf_counter() |
|
125
|
|
|
result = func(*args, **kwargs) |
|
126
|
|
|
end_time = perf_counter() |
|
127
|
|
|
total_time = end_time - start_time |
|
128
|
|
|
logger.debug( |
|
129
|
|
|
f"Function {func.__name__} took {total_time:.4f} seconds." |
|
130
|
|
|
) |
|
131
|
|
|
return result |
|
132
|
|
|
|
|
133
|
|
|
return timeit_wrapper |
|
134
|
|
|
|
|
135
|
|
|
|
|
136
|
|
|
@timer_func |
|
137
|
|
|
def mastr_data( |
|
138
|
|
|
index_col: str | int | list[str] | list[int], |
|
139
|
|
|
) -> gpd.GeoDataFrame: |
|
140
|
|
|
""" |
|
141
|
|
|
Read MaStR data from database. |
|
142
|
|
|
|
|
143
|
|
|
Parameters |
|
144
|
|
|
----------- |
|
145
|
|
|
index_col : str, int or list of str or int |
|
146
|
|
|
Column(s) to use as the row labels of the DataFrame. |
|
147
|
|
|
Returns |
|
148
|
|
|
------- |
|
149
|
|
|
pandas.DataFrame |
|
150
|
|
|
DataFrame containing MaStR data. |
|
151
|
|
|
""" |
|
152
|
|
|
with db.session_scope() as session: |
|
153
|
|
|
query = session.query(EgonPowerPlantsPv).filter( |
|
154
|
|
|
EgonPowerPlantsPv.status == "InBetrieb", |
|
155
|
|
|
EgonPowerPlantsPv.site_type |
|
156
|
|
|
== ("Bauliche Anlagen (Hausdach, Gebäude und Fassade)"), |
|
157
|
|
|
) |
|
158
|
|
|
|
|
159
|
|
|
gdf = gpd.read_postgis( |
|
160
|
|
|
query.statement, query.session.bind, index_col=index_col |
|
161
|
|
|
).drop(columns="id") |
|
162
|
|
|
|
|
163
|
|
|
logger.debug("MaStR data loaded.") |
|
164
|
|
|
|
|
165
|
|
|
return gdf |
|
166
|
|
|
|
|
167
|
|
|
|
|
168
|
|
|
@timer_func |
|
169
|
|
|
def clean_mastr_data( |
|
170
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
171
|
|
|
max_realistic_pv_cap: int | float, |
|
172
|
|
|
min_realistic_pv_cap: int | float, |
|
173
|
|
|
seed: int, |
|
174
|
|
|
) -> gpd.GeoDataFrame: |
|
175
|
|
|
""" |
|
176
|
|
|
Clean the MaStR data from implausible data. |
|
177
|
|
|
|
|
178
|
|
|
* Drop MaStR ID duplicates. |
|
179
|
|
|
* Drop generators with implausible capacities. |
|
180
|
|
|
|
|
181
|
|
|
Parameters |
|
182
|
|
|
----------- |
|
183
|
|
|
mastr_gdf : pandas.DataFrame |
|
184
|
|
|
DataFrame containing MaStR data. |
|
185
|
|
|
max_realistic_pv_cap : int or float |
|
186
|
|
|
Maximum capacity, which is considered to be realistic. |
|
187
|
|
|
min_realistic_pv_cap : int or float |
|
188
|
|
|
Minimum capacity, which is considered to be realistic. |
|
189
|
|
|
seed : int |
|
190
|
|
|
Seed to use for random operations with NumPy and pandas. |
|
191
|
|
|
Returns |
|
192
|
|
|
------- |
|
193
|
|
|
pandas.DataFrame |
|
194
|
|
|
DataFrame containing cleaned MaStR data. |
|
195
|
|
|
""" |
|
196
|
|
|
init_len = len(mastr_gdf) |
|
197
|
|
|
|
|
198
|
|
|
# drop duplicates |
|
199
|
|
|
mastr_gdf = mastr_gdf.loc[~mastr_gdf.index.duplicated()] |
|
200
|
|
|
|
|
201
|
|
|
# drop generators without any capacity info |
|
202
|
|
|
# and capacity of zero |
|
203
|
|
|
# and if the capacity is > 23.5 MW, because |
|
204
|
|
|
# Germanies largest rooftop PV is 23 MW |
|
205
|
|
|
# https://www.iwr.de/news/groesste-pv-dachanlage-europas-wird-in-sachsen-anhalt-gebaut-news37379 |
|
206
|
|
|
mastr_gdf = mastr_gdf.loc[ |
|
207
|
|
|
~mastr_gdf.capacity.isna() |
|
208
|
|
|
& (mastr_gdf.capacity <= max_realistic_pv_cap) |
|
209
|
|
|
& (mastr_gdf.capacity > min_realistic_pv_cap) |
|
210
|
|
|
] |
|
211
|
|
|
|
|
212
|
|
|
# get consistent start-up date |
|
213
|
|
|
# randomly and weighted fill missing start-up dates |
|
214
|
|
|
pool = mastr_gdf.loc[ |
|
215
|
|
|
~mastr_gdf.commissioning_date.isna() |
|
216
|
|
|
].commissioning_date.to_numpy() |
|
217
|
|
|
|
|
218
|
|
|
size = len(mastr_gdf) - len(pool) |
|
219
|
|
|
|
|
220
|
|
|
if size > 0: |
|
221
|
|
|
rng = default_rng(seed=seed) |
|
222
|
|
|
|
|
223
|
|
|
choice = rng.choice( |
|
224
|
|
|
pool, |
|
225
|
|
|
size=size, |
|
226
|
|
|
replace=False, |
|
227
|
|
|
) |
|
228
|
|
|
|
|
229
|
|
|
mastr_gdf.loc[mastr_gdf.commissioning_date.isna()] = mastr_gdf.loc[ |
|
230
|
|
|
mastr_gdf.commissioning_date.isna() |
|
231
|
|
|
].assign(commissioning_date=choice) |
|
232
|
|
|
|
|
233
|
|
|
logger.info( |
|
234
|
|
|
f"Randomly and weigthed added start-up date to {size} generators." |
|
235
|
|
|
) |
|
236
|
|
|
|
|
237
|
|
|
mastr_gdf = mastr_gdf.assign( |
|
238
|
|
|
commissioning_date=pd.to_datetime( |
|
239
|
|
|
mastr_gdf.commissioning_date, utc=True |
|
240
|
|
|
) |
|
241
|
|
|
) |
|
242
|
|
|
|
|
243
|
|
|
end_len = len(mastr_gdf) |
|
244
|
|
|
logger.debug( |
|
245
|
|
|
f"Dropped {init_len - end_len} " |
|
246
|
|
|
f"({((init_len - end_len) / init_len) * 100:g}%)" |
|
247
|
|
|
f" of {init_len} rows from MaStR DataFrame." |
|
248
|
|
|
) |
|
249
|
|
|
|
|
250
|
|
|
return mastr_gdf |
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
@timer_func |
|
254
|
|
|
def municipality_data() -> gpd.GeoDataFrame: |
|
255
|
|
|
""" |
|
256
|
|
|
Get municipality data from eGo^n Database. |
|
257
|
|
|
Returns |
|
258
|
|
|
------- |
|
259
|
|
|
gepandas.GeoDataFrame |
|
260
|
|
|
GeoDataFrame with municipality data. |
|
261
|
|
|
""" |
|
262
|
|
|
with db.session_scope() as session: |
|
263
|
|
|
query = session.query(Vg250Gem.ags, Vg250Gem.geometry.label("geom")) |
|
264
|
|
|
|
|
265
|
|
|
return gpd.read_postgis( |
|
266
|
|
|
query.statement, query.session.bind, index_col="ags" |
|
267
|
|
|
) |
|
268
|
|
|
|
|
269
|
|
|
|
|
270
|
|
|
@timer_func |
|
271
|
|
|
def add_ags_to_gens( |
|
272
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
273
|
|
|
municipalities_gdf: gpd.GeoDataFrame, |
|
274
|
|
|
) -> gpd.GeoDataFrame: |
|
275
|
|
|
""" |
|
276
|
|
|
Add information about AGS ID to generators. |
|
277
|
|
|
Parameters |
|
278
|
|
|
----------- |
|
279
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
280
|
|
|
GeoDataFrame with valid and cleaned MaStR data. |
|
281
|
|
|
municipalities_gdf : geopandas.GeoDataFrame |
|
282
|
|
|
GeoDataFrame with municipality data. |
|
283
|
|
|
Returns |
|
284
|
|
|
------- |
|
285
|
|
|
gepandas.GeoDataFrame |
|
286
|
|
|
GeoDataFrame with valid and cleaned MaStR data |
|
287
|
|
|
with AGS ID added. |
|
288
|
|
|
""" |
|
289
|
|
|
return mastr_gdf.sjoin( |
|
290
|
|
|
municipalities_gdf, |
|
291
|
|
|
how="left", |
|
292
|
|
|
predicate="intersects", |
|
293
|
|
|
).rename(columns={"index_right": "ags"}) |
|
294
|
|
|
|
|
295
|
|
|
|
|
296
|
|
|
def drop_gens_outside_muns( |
|
297
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
298
|
|
|
) -> gpd.GeoDataFrame: |
|
299
|
|
|
""" |
|
300
|
|
|
Drop all generators outside of municipalities. |
|
301
|
|
|
Parameters |
|
302
|
|
|
----------- |
|
303
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
304
|
|
|
GeoDataFrame with valid and cleaned MaStR data. |
|
305
|
|
|
Returns |
|
306
|
|
|
------- |
|
307
|
|
|
gepandas.GeoDataFrame |
|
308
|
|
|
GeoDataFrame with valid and cleaned MaStR data |
|
309
|
|
|
with generatos without an AGS ID dropped. |
|
310
|
|
|
""" |
|
311
|
|
|
gdf = mastr_gdf.loc[~mastr_gdf.ags.isna()] |
|
312
|
|
|
|
|
313
|
|
|
logger.debug( |
|
314
|
|
|
f"{len(mastr_gdf) - len(gdf)} (" |
|
315
|
|
|
f"{(len(mastr_gdf) - len(gdf)) / len(mastr_gdf) * 100:g}%)" |
|
316
|
|
|
f" of {len(mastr_gdf)} values are outside of the municipalities" |
|
317
|
|
|
" and are therefore dropped." |
|
318
|
|
|
) |
|
319
|
|
|
|
|
320
|
|
|
return gdf |
|
321
|
|
|
|
|
322
|
|
|
|
|
323
|
|
|
def load_mastr_data(): |
|
324
|
|
|
"""Read PV rooftop data from MaStR CSV |
|
325
|
|
|
Note: the source will be replaced as soon as the MaStR data is available |
|
326
|
|
|
in DB. |
|
327
|
|
|
Returns |
|
328
|
|
|
------- |
|
329
|
|
|
geopandas.GeoDataFrame |
|
330
|
|
|
GeoDataFrame containing MaStR data with geocoded locations. |
|
331
|
|
|
""" |
|
332
|
|
|
mastr_gdf = mastr_data( |
|
333
|
|
|
MASTR_INDEX_COL, |
|
334
|
|
|
) |
|
335
|
|
|
|
|
336
|
|
|
clean_mastr_gdf = clean_mastr_data( |
|
337
|
|
|
mastr_gdf, |
|
338
|
|
|
max_realistic_pv_cap=MAX_REALISTIC_PV_CAP, |
|
339
|
|
|
min_realistic_pv_cap=MIN_REALISTIC_PV_CAP, |
|
340
|
|
|
seed=SEED, |
|
341
|
|
|
) |
|
342
|
|
|
|
|
343
|
|
|
municipalities_gdf = municipality_data() |
|
344
|
|
|
|
|
345
|
|
|
clean_mastr_gdf = add_ags_to_gens(clean_mastr_gdf, municipalities_gdf) |
|
346
|
|
|
|
|
347
|
|
|
return drop_gens_outside_muns(clean_mastr_gdf) |
|
348
|
|
|
|
|
349
|
|
|
|
|
350
|
|
|
class OsmBuildingsFiltered(Base): |
|
351
|
|
|
""" |
|
352
|
|
|
Class definition of table openstreetmap.osm_buildings_filtered. |
|
353
|
|
|
|
|
354
|
|
|
""" |
|
355
|
|
|
__tablename__ = "osm_buildings_filtered" |
|
356
|
|
|
__table_args__ = {"schema": "openstreetmap"} |
|
357
|
|
|
|
|
358
|
|
|
osm_id = Column(BigInteger) |
|
359
|
|
|
amenity = Column(String) |
|
360
|
|
|
building = Column(String) |
|
361
|
|
|
name = Column(String) |
|
362
|
|
|
geom = Column(Geometry(srid=SRID), index=True) |
|
363
|
|
|
area = Column(Float) |
|
364
|
|
|
geom_point = Column(Geometry(srid=SRID), index=True) |
|
365
|
|
|
tags = Column(HSTORE) |
|
366
|
|
|
id = Column(BigInteger, primary_key=True, index=True) |
|
367
|
|
|
|
|
368
|
|
|
|
|
369
|
|
|
@timer_func |
|
370
|
|
|
def osm_buildings( |
|
371
|
|
|
to_crs: CRS, |
|
372
|
|
|
) -> gpd.GeoDataFrame: |
|
373
|
|
|
""" |
|
374
|
|
|
Read OSM buildings data from eGo^n Database. |
|
375
|
|
|
Parameters |
|
376
|
|
|
----------- |
|
377
|
|
|
to_crs : pyproj.crs.crs.CRS |
|
378
|
|
|
CRS to transform geometries to. |
|
379
|
|
|
Returns |
|
380
|
|
|
------- |
|
381
|
|
|
geopandas.GeoDataFrame |
|
382
|
|
|
GeoDataFrame containing OSM buildings data. |
|
383
|
|
|
""" |
|
384
|
|
|
with db.session_scope() as session: |
|
385
|
|
|
query = session.query( |
|
386
|
|
|
OsmBuildingsFiltered.id, |
|
387
|
|
|
OsmBuildingsFiltered.area, |
|
388
|
|
|
OsmBuildingsFiltered.geom_point.label("geom"), |
|
389
|
|
|
) |
|
390
|
|
|
|
|
391
|
|
|
return gpd.read_postgis( |
|
392
|
|
|
query.statement, query.session.bind, index_col="id" |
|
393
|
|
|
).to_crs(to_crs) |
|
394
|
|
|
|
|
395
|
|
|
|
|
396
|
|
|
@timer_func |
|
397
|
|
|
def synthetic_buildings( |
|
398
|
|
|
to_crs: CRS, |
|
399
|
|
|
) -> gpd.GeoDataFrame: |
|
400
|
|
|
""" |
|
401
|
|
|
Read synthetic buildings data from eGo^n Database. |
|
402
|
|
|
Parameters |
|
403
|
|
|
----------- |
|
404
|
|
|
to_crs : pyproj.crs.crs.CRS |
|
405
|
|
|
CRS to transform geometries to. |
|
406
|
|
|
Returns |
|
407
|
|
|
------- |
|
408
|
|
|
geopandas.GeoDataFrame |
|
409
|
|
|
GeoDataFrame containing OSM buildings data. |
|
410
|
|
|
""" |
|
411
|
|
|
with db.session_scope() as session: |
|
412
|
|
|
query = session.query( |
|
413
|
|
|
OsmBuildingsSynthetic.id, |
|
414
|
|
|
OsmBuildingsSynthetic.area, |
|
415
|
|
|
OsmBuildingsSynthetic.geom_point.label("geom"), |
|
416
|
|
|
) |
|
417
|
|
|
|
|
418
|
|
|
return gpd.read_postgis( |
|
419
|
|
|
query.statement, query.session.bind, index_col="id" |
|
420
|
|
|
).to_crs(to_crs) |
|
421
|
|
|
|
|
422
|
|
|
|
|
423
|
|
|
@timer_func |
|
424
|
|
|
def add_ags_to_buildings( |
|
425
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
426
|
|
|
municipalities_gdf: gpd.GeoDataFrame, |
|
427
|
|
|
) -> gpd.GeoDataFrame: |
|
428
|
|
|
""" |
|
429
|
|
|
Add information about AGS ID to buildings. |
|
430
|
|
|
Parameters |
|
431
|
|
|
----------- |
|
432
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
433
|
|
|
GeoDataFrame containing OSM buildings data. |
|
434
|
|
|
municipalities_gdf : geopandas.GeoDataFrame |
|
435
|
|
|
GeoDataFrame with municipality data. |
|
436
|
|
|
Returns |
|
437
|
|
|
------- |
|
438
|
|
|
gepandas.GeoDataFrame |
|
439
|
|
|
GeoDataFrame containing OSM buildings data |
|
440
|
|
|
with AGS ID added. |
|
441
|
|
|
""" |
|
442
|
|
|
return buildings_gdf.sjoin( |
|
443
|
|
|
municipalities_gdf, |
|
444
|
|
|
how="left", |
|
445
|
|
|
predicate="intersects", |
|
446
|
|
|
).rename(columns={"index_right": "ags"}) |
|
447
|
|
|
|
|
448
|
|
|
|
|
449
|
|
|
def drop_buildings_outside_muns( |
|
450
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
451
|
|
|
) -> gpd.GeoDataFrame: |
|
452
|
|
|
""" |
|
453
|
|
|
Drop all buildings outside of municipalities. |
|
454
|
|
|
Parameters |
|
455
|
|
|
----------- |
|
456
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
457
|
|
|
GeoDataFrame containing OSM buildings data. |
|
458
|
|
|
Returns |
|
459
|
|
|
------- |
|
460
|
|
|
gepandas.GeoDataFrame |
|
461
|
|
|
GeoDataFrame containing OSM buildings data |
|
462
|
|
|
with buildings without an AGS ID dropped. |
|
463
|
|
|
""" |
|
464
|
|
|
gdf = buildings_gdf.loc[~buildings_gdf.ags.isna()] |
|
465
|
|
|
|
|
466
|
|
|
logger.debug( |
|
467
|
|
|
f"{len(buildings_gdf) - len(gdf)} " |
|
468
|
|
|
f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
|
469
|
|
|
f"of {len(buildings_gdf)} values are outside of the municipalities " |
|
470
|
|
|
"and are therefore dropped." |
|
471
|
|
|
) |
|
472
|
|
|
|
|
473
|
|
|
return gdf |
|
474
|
|
|
|
|
475
|
|
|
|
|
476
|
|
|
def egon_building_peak_loads(): |
|
477
|
|
|
sql = """ |
|
478
|
|
|
SELECT building_id |
|
479
|
|
|
FROM demand.egon_building_electricity_peak_loads |
|
480
|
|
|
WHERE scenario = 'eGon2035' |
|
481
|
|
|
""" |
|
482
|
|
|
|
|
483
|
|
|
return ( |
|
484
|
|
|
db.select_dataframe(sql).building_id.astype(int).sort_values().unique() |
|
485
|
|
|
) |
|
486
|
|
|
|
|
487
|
|
|
|
|
488
|
|
|
@timer_func |
|
489
|
|
|
def load_building_data(): |
|
490
|
|
|
""" |
|
491
|
|
|
Read buildings from DB |
|
492
|
|
|
Tables: |
|
493
|
|
|
|
|
494
|
|
|
* `openstreetmap.osm_buildings_filtered` (from OSM) |
|
495
|
|
|
* `openstreetmap.osm_buildings_synthetic` (synthetic, created by us) |
|
496
|
|
|
|
|
497
|
|
|
Use column `id` for both as it is unique hence you concat both datasets. |
|
498
|
|
|
If INCLUDE_SYNTHETIC_BUILDINGS is False synthetic buildings will not be |
|
499
|
|
|
loaded. |
|
500
|
|
|
|
|
501
|
|
|
Returns |
|
502
|
|
|
------- |
|
503
|
|
|
gepandas.GeoDataFrame |
|
504
|
|
|
GeoDataFrame containing OSM buildings data with buildings without an |
|
505
|
|
|
AGS ID dropped. |
|
506
|
|
|
""" |
|
507
|
|
|
|
|
508
|
|
|
municipalities_gdf = municipality_data() |
|
509
|
|
|
|
|
510
|
|
|
osm_buildings_gdf = osm_buildings(municipalities_gdf.crs) |
|
511
|
|
|
|
|
512
|
|
|
if INCLUDE_SYNTHETIC_BUILDINGS: |
|
513
|
|
|
synthetic_buildings_gdf = synthetic_buildings(municipalities_gdf.crs) |
|
514
|
|
|
|
|
515
|
|
|
buildings_gdf = gpd.GeoDataFrame( |
|
516
|
|
|
pd.concat( |
|
517
|
|
|
[ |
|
518
|
|
|
osm_buildings_gdf, |
|
519
|
|
|
synthetic_buildings_gdf, |
|
520
|
|
|
] |
|
521
|
|
|
), |
|
522
|
|
|
geometry="geom", |
|
523
|
|
|
crs=osm_buildings_gdf.crs, |
|
524
|
|
|
).rename(columns={"area": "building_area"}) |
|
525
|
|
|
|
|
526
|
|
|
buildings_gdf.index = buildings_gdf.index.astype(int) |
|
527
|
|
|
|
|
528
|
|
|
else: |
|
529
|
|
|
buildings_gdf = osm_buildings_gdf.rename( |
|
530
|
|
|
columns={"area": "building_area"} |
|
531
|
|
|
) |
|
532
|
|
|
|
|
533
|
|
|
if ONLY_BUILDINGS_WITH_DEMAND: |
|
534
|
|
|
building_ids = egon_building_peak_loads() |
|
535
|
|
|
|
|
536
|
|
|
init_len = len(building_ids) |
|
537
|
|
|
|
|
538
|
|
|
building_ids = np.intersect1d( |
|
539
|
|
|
list(map(int, building_ids)), |
|
540
|
|
|
list(map(int, buildings_gdf.index.to_numpy())), |
|
541
|
|
|
) |
|
542
|
|
|
|
|
543
|
|
|
end_len = len(building_ids) |
|
544
|
|
|
|
|
545
|
|
|
logger.debug( |
|
546
|
|
|
f"{end_len/init_len * 100: g} % ({end_len} / {init_len}) " |
|
547
|
|
|
f"of buildings have peak load." |
|
548
|
|
|
) |
|
549
|
|
|
|
|
550
|
|
|
buildings_gdf = buildings_gdf.loc[building_ids] |
|
551
|
|
|
|
|
552
|
|
|
buildings_ags_gdf = add_ags_to_buildings(buildings_gdf, municipalities_gdf) |
|
553
|
|
|
|
|
554
|
|
|
buildings_ags_gdf = drop_buildings_outside_muns(buildings_ags_gdf) |
|
555
|
|
|
|
|
556
|
|
|
grid_districts_gdf = grid_districts(EPSG) |
|
557
|
|
|
|
|
558
|
|
|
federal_state_gdf = federal_state_data(grid_districts_gdf.crs) |
|
559
|
|
|
|
|
560
|
|
|
grid_federal_state_gdf = overlay_grid_districts_with_counties( |
|
561
|
|
|
grid_districts_gdf, |
|
562
|
|
|
federal_state_gdf, |
|
563
|
|
|
) |
|
564
|
|
|
|
|
565
|
|
|
buildings_overlay_gdf = add_overlay_id_to_buildings( |
|
566
|
|
|
buildings_ags_gdf, |
|
567
|
|
|
grid_federal_state_gdf, |
|
568
|
|
|
) |
|
569
|
|
|
|
|
570
|
|
|
logger.debug("Loaded buildings.") |
|
571
|
|
|
|
|
572
|
|
|
buildings_overlay_gdf = drop_buildings_outside_grids(buildings_overlay_gdf) |
|
573
|
|
|
|
|
574
|
|
|
# overwrite bus_id with data from new table |
|
575
|
|
|
sql = ( |
|
576
|
|
|
"SELECT building_id, bus_id FROM " |
|
577
|
|
|
"boundaries.egon_map_zensus_mvgd_buildings" |
|
578
|
|
|
) |
|
579
|
|
|
map_building_bus_df = db.select_dataframe(sql) |
|
580
|
|
|
|
|
581
|
|
|
building_ids = np.intersect1d( |
|
582
|
|
|
list(map(int, map_building_bus_df.building_id.unique())), |
|
583
|
|
|
list(map(int, buildings_overlay_gdf.index.to_numpy())), |
|
584
|
|
|
) |
|
585
|
|
|
|
|
586
|
|
|
buildings_within_gdf = buildings_overlay_gdf.loc[building_ids] |
|
587
|
|
|
|
|
588
|
|
|
gdf = ( |
|
589
|
|
|
buildings_within_gdf.reset_index() |
|
590
|
|
|
.drop(columns=["bus_id"]) |
|
591
|
|
|
.merge( |
|
592
|
|
|
how="left", |
|
593
|
|
|
right=map_building_bus_df, |
|
594
|
|
|
left_on="id", |
|
595
|
|
|
right_on="building_id", |
|
596
|
|
|
) |
|
597
|
|
|
.drop(columns=["building_id"]) |
|
598
|
|
|
.set_index("id") |
|
599
|
|
|
.sort_index() |
|
600
|
|
|
) |
|
601
|
|
|
|
|
602
|
|
|
return gdf[~gdf.index.duplicated(keep="first")] |
|
603
|
|
|
|
|
604
|
|
|
|
|
605
|
|
|
@timer_func |
|
606
|
|
|
def sort_and_qcut_df( |
|
607
|
|
|
df: pd.DataFrame | gpd.GeoDataFrame, |
|
608
|
|
|
col: str, |
|
609
|
|
|
q: int, |
|
610
|
|
|
) -> pd.DataFrame | gpd.GeoDataFrame: |
|
611
|
|
|
""" |
|
612
|
|
|
Determine the quantile of a given attribute in a (Geo)DataFrame. |
|
613
|
|
|
Sort the (Geo)DataFrame in ascending order for the given attribute. |
|
614
|
|
|
Parameters |
|
615
|
|
|
----------- |
|
616
|
|
|
df : pandas.DataFrame or geopandas.GeoDataFrame |
|
617
|
|
|
(Geo)DataFrame to sort and qcut. |
|
618
|
|
|
col : str |
|
619
|
|
|
Name of the attribute to sort and qcut the (Geo)DataFrame on. |
|
620
|
|
|
q : int |
|
621
|
|
|
Number of quantiles. |
|
622
|
|
|
Returns |
|
623
|
|
|
------- |
|
624
|
|
|
pandas.DataFrame or gepandas.GeoDataFrame |
|
625
|
|
|
Sorted and qcut (Geo)DataFrame. |
|
626
|
|
|
""" |
|
627
|
|
|
df = df.sort_values(col, ascending=True) |
|
628
|
|
|
|
|
629
|
|
|
return df.assign( |
|
630
|
|
|
quant=pd.qcut( |
|
631
|
|
|
df[col], |
|
632
|
|
|
q=q, |
|
633
|
|
|
labels=range(q), |
|
634
|
|
|
) |
|
635
|
|
|
) |
|
636
|
|
|
|
|
637
|
|
|
|
|
638
|
|
|
@timer_func |
|
639
|
|
|
def allocate_pv( |
|
640
|
|
|
q_mastr_gdf: gpd.GeoDataFrame, |
|
641
|
|
|
q_buildings_gdf: gpd.GeoDataFrame, |
|
642
|
|
|
seed: int, |
|
643
|
|
|
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
|
644
|
|
|
""" |
|
645
|
|
|
Allocate the MaStR pv generators to the OSM buildings. |
|
646
|
|
|
This will determine a building for each pv generator if there are more |
|
647
|
|
|
buildings than generators within a given AGS. Primarily generators are |
|
648
|
|
|
distributed with the same qunatile as the buildings. Multiple assignment |
|
649
|
|
|
is excluded. |
|
650
|
|
|
Parameters |
|
651
|
|
|
----------- |
|
652
|
|
|
q_mastr_gdf : geopandas.GeoDataFrame |
|
653
|
|
|
GeoDataFrame containing geocoded and qcut MaStR data. |
|
654
|
|
|
q_buildings_gdf : geopandas.GeoDataFrame |
|
655
|
|
|
GeoDataFrame containing qcut OSM buildings data. |
|
656
|
|
|
seed : int |
|
657
|
|
|
Seed to use for random operations with NumPy and pandas. |
|
658
|
|
|
Returns |
|
659
|
|
|
------- |
|
660
|
|
|
tuple with two geopandas.GeoDataFrame s |
|
661
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
|
662
|
|
|
GeoDataFrame containing building data allocated to MaStR IDs. |
|
663
|
|
|
""" |
|
664
|
|
|
rng = default_rng(seed=seed) |
|
665
|
|
|
|
|
666
|
|
|
q_buildings_gdf = q_buildings_gdf.assign(gens_id=np.nan).sort_values( |
|
667
|
|
|
by=["ags", "quant"] |
|
668
|
|
|
) |
|
669
|
|
|
q_mastr_gdf = q_mastr_gdf.assign(building_id=np.nan).sort_values( |
|
670
|
|
|
by=["ags", "quant"] |
|
671
|
|
|
) |
|
672
|
|
|
|
|
673
|
|
|
ags_list = q_buildings_gdf.ags.unique() |
|
674
|
|
|
|
|
675
|
|
|
if TEST_RUN: |
|
676
|
|
|
ags_list = ags_list[:250] |
|
677
|
|
|
|
|
678
|
|
|
num_ags = len(ags_list) |
|
679
|
|
|
|
|
680
|
|
|
t0 = perf_counter() |
|
681
|
|
|
|
|
682
|
|
|
for count, ags in enumerate(ags_list): |
|
683
|
|
|
|
|
684
|
|
|
buildings = q_buildings_gdf.loc[q_buildings_gdf.ags == ags] |
|
685
|
|
|
gens = q_mastr_gdf.loc[q_mastr_gdf.ags == ags] |
|
686
|
|
|
|
|
687
|
|
|
len_build = len(buildings) |
|
688
|
|
|
len_gens = len(gens) |
|
689
|
|
|
|
|
690
|
|
|
if len_build < len_gens: |
|
691
|
|
|
gens = gens.sample(len_build, random_state=RandomState(seed=seed)) |
|
692
|
|
|
logger.error( |
|
693
|
|
|
f"There are {len_gens} generators and only {len_build}" |
|
694
|
|
|
f" buildings in AGS {ags}. {len_gens - len(gens)} " |
|
695
|
|
|
"generators were truncated to match the amount of buildings." |
|
696
|
|
|
) |
|
697
|
|
|
|
|
698
|
|
|
assert len_build == len(gens) |
|
699
|
|
|
|
|
700
|
|
|
for quant in gens.quant.unique(): |
|
701
|
|
|
q_buildings = buildings.loc[buildings.quant == quant] |
|
702
|
|
|
q_gens = gens.loc[gens.quant == quant] |
|
703
|
|
|
|
|
704
|
|
|
len_build = len(q_buildings) |
|
705
|
|
|
len_gens = len(q_gens) |
|
706
|
|
|
|
|
707
|
|
|
if len_build < len_gens: |
|
708
|
|
|
delta = len_gens - len_build |
|
709
|
|
|
|
|
710
|
|
|
logger.warning( |
|
711
|
|
|
f"There are {len_gens} generators and only {len_build} " |
|
712
|
|
|
f"buildings in AGS {ags} and quantile {quant}. {delta} " |
|
713
|
|
|
f"buildings from AGS {ags} will be added randomly." |
|
714
|
|
|
) |
|
715
|
|
|
|
|
716
|
|
|
add_buildings = pd.Index( |
|
717
|
|
|
rng.choice( |
|
718
|
|
|
list(set(buildings.index) - set(q_buildings.index)), |
|
719
|
|
|
size=delta, |
|
720
|
|
|
replace=False, |
|
721
|
|
|
) |
|
722
|
|
|
) |
|
723
|
|
|
|
|
724
|
|
|
chosen_buildings = q_buildings.index.append(add_buildings) |
|
725
|
|
|
|
|
726
|
|
|
else: |
|
727
|
|
|
chosen_buildings = rng.choice( |
|
728
|
|
|
q_buildings.index, |
|
729
|
|
|
size=len_gens, |
|
730
|
|
|
replace=False, |
|
731
|
|
|
) |
|
732
|
|
|
|
|
733
|
|
|
q_buildings_gdf.loc[chosen_buildings, "gens_id"] = q_gens.index |
|
734
|
|
|
buildings = buildings.drop(chosen_buildings) |
|
735
|
|
|
|
|
736
|
|
|
if count % 500 == 0: |
|
737
|
|
|
logger.debug( |
|
738
|
|
|
f"Allocation of {count / num_ags * 100:g} % of AGS done. " |
|
739
|
|
|
f"It took {perf_counter() - t0:g} seconds." |
|
740
|
|
|
) |
|
741
|
|
|
|
|
742
|
|
|
t0 = perf_counter() |
|
743
|
|
|
|
|
744
|
|
|
assigned_buildings = q_buildings_gdf.loc[~q_buildings_gdf.gens_id.isna()] |
|
745
|
|
|
|
|
746
|
|
|
assert len(assigned_buildings) == len(assigned_buildings.gens_id.unique()) |
|
747
|
|
|
|
|
748
|
|
|
q_mastr_gdf.loc[ |
|
749
|
|
|
assigned_buildings.gens_id, "building_id" |
|
750
|
|
|
] = assigned_buildings.index |
|
751
|
|
|
|
|
752
|
|
|
assigned_gens = q_mastr_gdf.loc[~q_mastr_gdf.building_id.isna()] |
|
753
|
|
|
|
|
754
|
|
|
assert len(assigned_buildings) == len(assigned_gens) |
|
755
|
|
|
|
|
756
|
|
|
logger.debug("Allocated status quo generators to buildings.") |
|
757
|
|
|
|
|
758
|
|
|
return frame_to_numeric(q_mastr_gdf), frame_to_numeric(q_buildings_gdf) |
|
759
|
|
|
|
|
760
|
|
|
|
|
761
|
|
|
def frame_to_numeric( |
|
762
|
|
|
df: pd.DataFrame | gpd.GeoDataFrame, |
|
763
|
|
|
) -> pd.DataFrame | gpd.GeoDataFrame: |
|
764
|
|
|
""" |
|
765
|
|
|
Try to convert all columns of a DataFrame to numeric ignoring errors. |
|
766
|
|
|
Parameters |
|
767
|
|
|
---------- |
|
768
|
|
|
df : pandas.DataFrame or geopandas.GeoDataFrame |
|
769
|
|
|
Returns |
|
770
|
|
|
------- |
|
771
|
|
|
pandas.DataFrame or geopandas.GeoDataFrame |
|
772
|
|
|
""" |
|
773
|
|
|
if str(df.index.dtype) == "object": |
|
774
|
|
|
df.index = pd.to_numeric(df.index, errors="ignore") |
|
775
|
|
|
|
|
776
|
|
|
for col in df.columns: |
|
777
|
|
|
if str(df[col].dtype) == "object": |
|
778
|
|
|
df[col] = pd.to_numeric(df[col], errors="ignore") |
|
779
|
|
|
|
|
780
|
|
|
return df |
|
781
|
|
|
|
|
782
|
|
|
|
|
783
|
|
|
def validate_output( |
|
784
|
|
|
desagg_mastr_gdf: pd.DataFrame | gpd.GeoDataFrame, |
|
785
|
|
|
desagg_buildings_gdf: pd.DataFrame | gpd.GeoDataFrame, |
|
786
|
|
|
) -> None: |
|
787
|
|
|
""" |
|
788
|
|
|
Validate output. |
|
789
|
|
|
|
|
790
|
|
|
* Validate that there are exactly as many buildings with a pv system as |
|
791
|
|
|
there are pv systems with a building |
|
792
|
|
|
* Validate that the building IDs with a pv system are the same building |
|
793
|
|
|
IDs as assigned to the pv systems |
|
794
|
|
|
* Validate that the pv system IDs with a building are the same pv system |
|
795
|
|
|
IDs as assigned to the buildings |
|
796
|
|
|
|
|
797
|
|
|
Parameters |
|
798
|
|
|
----------- |
|
799
|
|
|
desagg_mastr_gdf : geopandas.GeoDataFrame |
|
800
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
|
801
|
|
|
desagg_buildings_gdf : geopandas.GeoDataFrame |
|
802
|
|
|
GeoDataFrame containing building data allocated to MaStR IDs. |
|
803
|
|
|
""" |
|
804
|
|
|
assert len( |
|
805
|
|
|
desagg_mastr_gdf.loc[~desagg_mastr_gdf.building_id.isna()] |
|
806
|
|
|
) == len(desagg_buildings_gdf.loc[~desagg_buildings_gdf.gens_id.isna()]) |
|
807
|
|
|
assert ( |
|
808
|
|
|
np.sort( |
|
809
|
|
|
desagg_mastr_gdf.loc[ |
|
810
|
|
|
~desagg_mastr_gdf.building_id.isna() |
|
811
|
|
|
].building_id.unique() |
|
812
|
|
|
) |
|
813
|
|
|
== np.sort( |
|
814
|
|
|
desagg_buildings_gdf.loc[ |
|
815
|
|
|
~desagg_buildings_gdf.gens_id.isna() |
|
816
|
|
|
].index.unique() |
|
817
|
|
|
) |
|
818
|
|
|
).all() |
|
819
|
|
|
assert ( |
|
820
|
|
|
np.sort( |
|
821
|
|
|
desagg_mastr_gdf.loc[ |
|
822
|
|
|
~desagg_mastr_gdf.building_id.isna() |
|
823
|
|
|
].index.unique() |
|
824
|
|
|
) |
|
825
|
|
|
== np.sort( |
|
826
|
|
|
desagg_buildings_gdf.loc[ |
|
827
|
|
|
~desagg_buildings_gdf.gens_id.isna() |
|
828
|
|
|
].gens_id.unique() |
|
829
|
|
|
) |
|
830
|
|
|
).all() |
|
831
|
|
|
|
|
832
|
|
|
logger.debug("Validated output.") |
|
833
|
|
|
|
|
834
|
|
|
|
|
835
|
|
|
def drop_unallocated_gens( |
|
836
|
|
|
gdf: gpd.GeoDataFrame, |
|
837
|
|
|
) -> gpd.GeoDataFrame: |
|
838
|
|
|
""" |
|
839
|
|
|
Drop generators which did not get allocated. |
|
840
|
|
|
|
|
841
|
|
|
Parameters |
|
842
|
|
|
----------- |
|
843
|
|
|
gdf : geopandas.GeoDataFrame |
|
844
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
|
845
|
|
|
Returns |
|
846
|
|
|
------- |
|
847
|
|
|
geopandas.GeoDataFrame |
|
848
|
|
|
GeoDataFrame containing MaStR data with generators dropped which did |
|
849
|
|
|
not get allocated. |
|
850
|
|
|
""" |
|
851
|
|
|
init_len = len(gdf) |
|
852
|
|
|
gdf = gdf.loc[~gdf.building_id.isna()] |
|
853
|
|
|
end_len = len(gdf) |
|
854
|
|
|
|
|
855
|
|
|
logger.debug( |
|
856
|
|
|
f"Dropped {init_len - end_len} " |
|
857
|
|
|
f"({((init_len - end_len) / init_len) * 100:g}%)" |
|
858
|
|
|
f" of {init_len} unallocated rows from MaStR DataFrame." |
|
859
|
|
|
) |
|
860
|
|
|
|
|
861
|
|
|
return gdf |
|
862
|
|
|
|
|
863
|
|
|
|
|
864
|
|
|
@timer_func |
|
865
|
|
|
def allocate_to_buildings( |
|
866
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
867
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
868
|
|
|
) -> tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]: |
|
869
|
|
|
""" |
|
870
|
|
|
Allocate status quo pv rooftop generators to buildings. |
|
871
|
|
|
Parameters |
|
872
|
|
|
----------- |
|
873
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
874
|
|
|
GeoDataFrame containing MaStR data with geocoded locations. |
|
875
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
876
|
|
|
GeoDataFrame containing OSM buildings data with buildings without an |
|
877
|
|
|
AGS ID dropped. |
|
878
|
|
|
Returns |
|
879
|
|
|
------- |
|
880
|
|
|
tuple with two geopandas.GeoDataFrame s |
|
881
|
|
|
GeoDataFrame containing MaStR data allocated to building IDs. |
|
882
|
|
|
GeoDataFrame containing building data allocated to MaStR IDs. |
|
883
|
|
|
""" |
|
884
|
|
|
logger.debug("Starting allocation of status quo.") |
|
885
|
|
|
|
|
886
|
|
|
q_mastr_gdf = sort_and_qcut_df(mastr_gdf, col="capacity", q=Q) |
|
887
|
|
|
q_buildings_gdf = sort_and_qcut_df(buildings_gdf, col="building_area", q=Q) |
|
888
|
|
|
|
|
889
|
|
|
desagg_mastr_gdf, desagg_buildings_gdf = allocate_pv( |
|
890
|
|
|
q_mastr_gdf, q_buildings_gdf, SEED |
|
891
|
|
|
) |
|
892
|
|
|
|
|
893
|
|
|
validate_output(desagg_mastr_gdf, desagg_buildings_gdf) |
|
894
|
|
|
|
|
895
|
|
|
return drop_unallocated_gens(desagg_mastr_gdf), desagg_buildings_gdf |
|
896
|
|
|
|
|
897
|
|
|
|
|
898
|
|
|
@timer_func |
|
899
|
|
|
def grid_districts( |
|
900
|
|
|
epsg: int, |
|
901
|
|
|
) -> gpd.GeoDataFrame: |
|
902
|
|
|
""" |
|
903
|
|
|
Load mv grid district geo data from eGo^n Database as |
|
904
|
|
|
geopandas.GeoDataFrame. |
|
905
|
|
|
Parameters |
|
906
|
|
|
----------- |
|
907
|
|
|
epsg : int |
|
908
|
|
|
EPSG ID to use as CRS. |
|
909
|
|
|
Returns |
|
910
|
|
|
------- |
|
911
|
|
|
geopandas.GeoDataFrame |
|
912
|
|
|
GeoDataFrame containing mv grid district ID and geo shapes data. |
|
913
|
|
|
""" |
|
914
|
|
|
gdf = db.select_geodataframe( |
|
915
|
|
|
""" |
|
916
|
|
|
SELECT bus_id, geom |
|
917
|
|
|
FROM grid.egon_mv_grid_district |
|
918
|
|
|
ORDER BY bus_id |
|
919
|
|
|
""", |
|
920
|
|
|
index_col="bus_id", |
|
921
|
|
|
geom_col="geom", |
|
922
|
|
|
epsg=epsg, |
|
923
|
|
|
) |
|
924
|
|
|
|
|
925
|
|
|
gdf.index = gdf.index.astype(int) |
|
926
|
|
|
|
|
927
|
|
|
logger.debug("Grid districts loaded.") |
|
928
|
|
|
|
|
929
|
|
|
return gdf |
|
930
|
|
|
|
|
931
|
|
|
|
|
932
|
|
|
def scenario_data( |
|
933
|
|
|
carrier: str = "solar_rooftop", |
|
934
|
|
|
scenario: str = "eGon2035", |
|
935
|
|
|
) -> pd.DataFrame: |
|
936
|
|
|
""" |
|
937
|
|
|
Get scenario capacity data from eGo^n Database. |
|
938
|
|
|
Parameters |
|
939
|
|
|
----------- |
|
940
|
|
|
carrier : str |
|
941
|
|
|
Carrier type to filter table by. |
|
942
|
|
|
scenario : str |
|
943
|
|
|
Scenario to filter table by. |
|
944
|
|
|
Returns |
|
945
|
|
|
------- |
|
946
|
|
|
geopandas.GeoDataFrame |
|
947
|
|
|
GeoDataFrame with scenario capacity data in GW. |
|
948
|
|
|
""" |
|
949
|
|
|
with db.session_scope() as session: |
|
950
|
|
|
query = session.query(EgonScenarioCapacities).filter( |
|
951
|
|
|
EgonScenarioCapacities.carrier == carrier, |
|
952
|
|
|
EgonScenarioCapacities.scenario_name == scenario, |
|
953
|
|
|
) |
|
954
|
|
|
|
|
955
|
|
|
df = pd.read_sql( |
|
956
|
|
|
query.statement, query.session.bind, index_col="index" |
|
957
|
|
|
).sort_index() |
|
958
|
|
|
|
|
959
|
|
|
logger.debug("Scenario capacity data loaded.") |
|
960
|
|
|
|
|
961
|
|
|
return df |
|
962
|
|
|
|
|
963
|
|
|
|
|
964
|
|
View Code Duplication |
class Vg250Lan(Base): |
|
|
|
|
|
|
965
|
|
|
""" |
|
966
|
|
|
Class definition of table boundaries.vg250_lan. |
|
967
|
|
|
|
|
968
|
|
|
""" |
|
969
|
|
|
__tablename__ = "vg250_lan" |
|
970
|
|
|
__table_args__ = {"schema": "boundaries"} |
|
971
|
|
|
|
|
972
|
|
|
id = Column(BigInteger, primary_key=True, index=True) |
|
973
|
|
|
ade = Column(BigInteger) |
|
974
|
|
|
gf = Column(BigInteger) |
|
975
|
|
|
bsg = Column(BigInteger) |
|
976
|
|
|
ars = Column(String) |
|
977
|
|
|
ags = Column(String) |
|
978
|
|
|
sdv_ars = Column(String) |
|
979
|
|
|
gen = Column(String) |
|
980
|
|
|
bez = Column(String) |
|
981
|
|
|
ibz = Column(BigInteger) |
|
982
|
|
|
bem = Column(String) |
|
983
|
|
|
nbd = Column(String) |
|
984
|
|
|
sn_l = Column(String) |
|
985
|
|
|
sn_r = Column(String) |
|
986
|
|
|
sn_k = Column(String) |
|
987
|
|
|
sn_v1 = Column(String) |
|
988
|
|
|
sn_v2 = Column(String) |
|
989
|
|
|
sn_g = Column(String) |
|
990
|
|
|
fk_s3 = Column(String) |
|
991
|
|
|
nuts = Column(String) |
|
992
|
|
|
ars_0 = Column(String) |
|
993
|
|
|
ags_0 = Column(String) |
|
994
|
|
|
wsk = Column(String) |
|
995
|
|
|
debkg_id = Column(String) |
|
996
|
|
|
rs = Column(String) |
|
997
|
|
|
sdv_rs = Column(String) |
|
998
|
|
|
rs_0 = Column(String) |
|
999
|
|
|
geometry = Column(Geometry(srid=EPSG), index=True) |
|
1000
|
|
|
|
|
1001
|
|
|
|
|
1002
|
|
|
def federal_state_data(to_crs: CRS) -> gpd.GeoDataFrame: |
|
1003
|
|
|
""" |
|
1004
|
|
|
Get feder state data from eGo^n Database. |
|
1005
|
|
|
Parameters |
|
1006
|
|
|
----------- |
|
1007
|
|
|
to_crs : pyproj.crs.crs.CRS |
|
1008
|
|
|
CRS to transform geometries to. |
|
1009
|
|
|
Returns |
|
1010
|
|
|
------- |
|
1011
|
|
|
geopandas.GeoDataFrame |
|
1012
|
|
|
GeoDataFrame with federal state data. |
|
1013
|
|
|
""" |
|
1014
|
|
|
with db.session_scope() as session: |
|
1015
|
|
|
query = session.query( |
|
1016
|
|
|
Vg250Lan.id, Vg250Lan.nuts, Vg250Lan.geometry.label("geom") |
|
1017
|
|
|
) |
|
1018
|
|
|
|
|
1019
|
|
|
gdf = gpd.read_postgis( |
|
1020
|
|
|
query.statement, session.connection(), index_col="id" |
|
1021
|
|
|
).to_crs(to_crs) |
|
1022
|
|
|
|
|
1023
|
|
|
logger.debug("Federal State data loaded.") |
|
1024
|
|
|
|
|
1025
|
|
|
return gdf |
|
1026
|
|
|
|
|
1027
|
|
|
|
|
1028
|
|
|
@timer_func |
|
1029
|
|
|
def overlay_grid_districts_with_counties( |
|
1030
|
|
|
mv_grid_district_gdf: gpd.GeoDataFrame, |
|
1031
|
|
|
federal_state_gdf: gpd.GeoDataFrame, |
|
1032
|
|
|
) -> gpd.GeoDataFrame: |
|
1033
|
|
|
""" |
|
1034
|
|
|
Calculate the intersections of mv grid districts and counties. |
|
1035
|
|
|
Parameters |
|
1036
|
|
|
----------- |
|
1037
|
|
|
mv_grid_district_gdf : gpd.GeoDataFrame |
|
1038
|
|
|
GeoDataFrame containing mv grid district ID and geo shapes data. |
|
1039
|
|
|
federal_state_gdf : gpd.GeoDataFrame |
|
1040
|
|
|
GeoDataFrame with federal state data. |
|
1041
|
|
|
Returns |
|
1042
|
|
|
------- |
|
1043
|
|
|
geopandas.GeoDataFrame |
|
1044
|
|
|
GeoDataFrame containing OSM buildings data. |
|
1045
|
|
|
""" |
|
1046
|
|
|
logger.debug( |
|
1047
|
|
|
"Calculating intersection overlay between mv grid districts and " |
|
1048
|
|
|
"counties. This may take a while..." |
|
1049
|
|
|
) |
|
1050
|
|
|
|
|
1051
|
|
|
gdf = gpd.overlay( |
|
1052
|
|
|
federal_state_gdf.to_crs(mv_grid_district_gdf.crs), |
|
1053
|
|
|
mv_grid_district_gdf.reset_index(), |
|
1054
|
|
|
how="intersection", |
|
1055
|
|
|
keep_geom_type=True, |
|
1056
|
|
|
) |
|
1057
|
|
|
|
|
1058
|
|
|
logger.debug("Done!") |
|
1059
|
|
|
|
|
1060
|
|
|
return gdf |
|
1061
|
|
|
|
|
1062
|
|
|
|
|
1063
|
|
|
@timer_func |
|
1064
|
|
|
def add_overlay_id_to_buildings( |
|
1065
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1066
|
|
|
grid_federal_state_gdf: gpd.GeoDataFrame, |
|
1067
|
|
|
) -> gpd.GeoDataFrame: |
|
1068
|
|
|
""" |
|
1069
|
|
|
Add information about overlay ID to buildings. |
|
1070
|
|
|
Parameters |
|
1071
|
|
|
----------- |
|
1072
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1073
|
|
|
GeoDataFrame containing OSM buildings data. |
|
1074
|
|
|
grid_federal_state_gdf : geopandas.GeoDataFrame |
|
1075
|
|
|
GeoDataFrame with intersection shapes between counties and grid |
|
1076
|
|
|
districts. |
|
1077
|
|
|
Returns |
|
1078
|
|
|
------- |
|
1079
|
|
|
geopandas.GeoDataFrame |
|
1080
|
|
|
GeoDataFrame containing OSM buildings data with overlay ID added. |
|
1081
|
|
|
""" |
|
1082
|
|
|
gdf = ( |
|
1083
|
|
|
buildings_gdf.to_crs(grid_federal_state_gdf.crs) |
|
1084
|
|
|
.sjoin( |
|
1085
|
|
|
grid_federal_state_gdf, |
|
1086
|
|
|
how="left", |
|
1087
|
|
|
predicate="intersects", |
|
1088
|
|
|
) |
|
1089
|
|
|
.rename(columns={"index_right": "overlay_id"}) |
|
1090
|
|
|
) |
|
1091
|
|
|
|
|
1092
|
|
|
logger.debug("Added overlay ID to OSM buildings.") |
|
1093
|
|
|
|
|
1094
|
|
|
return gdf |
|
1095
|
|
|
|
|
1096
|
|
|
|
|
1097
|
|
|
def drop_buildings_outside_grids( |
|
1098
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1099
|
|
|
) -> gpd.GeoDataFrame: |
|
1100
|
|
|
""" |
|
1101
|
|
|
Drop all buildings outside of grid areas. |
|
1102
|
|
|
Parameters |
|
1103
|
|
|
----------- |
|
1104
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1105
|
|
|
GeoDataFrame containing OSM buildings data. |
|
1106
|
|
|
Returns |
|
1107
|
|
|
------- |
|
1108
|
|
|
gepandas.GeoDataFrame |
|
1109
|
|
|
GeoDataFrame containing OSM buildings data |
|
1110
|
|
|
with buildings without an bus ID dropped. |
|
1111
|
|
|
""" |
|
1112
|
|
|
gdf = buildings_gdf.loc[~buildings_gdf.bus_id.isna()] |
|
1113
|
|
|
|
|
1114
|
|
|
logger.debug( |
|
1115
|
|
|
f"{len(buildings_gdf) - len(gdf)} " |
|
1116
|
|
|
f"({(len(buildings_gdf) - len(gdf)) / len(buildings_gdf) * 100:g}%) " |
|
1117
|
|
|
f"of {len(buildings_gdf)} values are outside of the grid areas " |
|
1118
|
|
|
"and are therefore dropped." |
|
1119
|
|
|
) |
|
1120
|
|
|
|
|
1121
|
|
|
return gdf |
|
1122
|
|
|
|
|
1123
|
|
|
|
|
1124
|
|
|
def cap_per_bus_id( |
|
1125
|
|
|
scenario: str, |
|
1126
|
|
|
) -> pd.DataFrame: |
|
1127
|
|
|
""" |
|
1128
|
|
|
Get table with total pv rooftop capacity per grid district. |
|
1129
|
|
|
|
|
1130
|
|
|
Parameters |
|
1131
|
|
|
----------- |
|
1132
|
|
|
scenario : str |
|
1133
|
|
|
Scenario name. |
|
1134
|
|
|
Returns |
|
1135
|
|
|
------- |
|
1136
|
|
|
pandas.DataFrame |
|
1137
|
|
|
DataFrame with total rooftop capacity per mv grid. |
|
1138
|
|
|
""" |
|
1139
|
|
|
targets = config.datasets()["solar_rooftop"]["targets"] |
|
1140
|
|
|
|
|
1141
|
|
|
sql = f""" |
|
1142
|
|
|
SELECT bus as bus_id, control, p_nom as capacity |
|
1143
|
|
|
FROM {targets['generators']['schema']}.{targets['generators']['table']} |
|
1144
|
|
|
WHERE carrier = 'solar_rooftop' |
|
1145
|
|
|
AND scn_name = '{scenario}' |
|
1146
|
|
|
""" |
|
1147
|
|
|
|
|
1148
|
|
|
df = db.select_dataframe(sql, index_col="bus_id") |
|
1149
|
|
|
|
|
1150
|
|
|
return df.loc[df.control != "Slack"] |
|
1151
|
|
|
|
|
1152
|
|
|
|
|
1153
|
|
|
def determine_end_of_life_gens( |
|
1154
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1155
|
|
|
scenario_timestamp: pd.Timestamp, |
|
1156
|
|
|
pv_rooftop_lifetime: pd.Timedelta, |
|
1157
|
|
|
) -> gpd.GeoDataFrame: |
|
1158
|
|
|
""" |
|
1159
|
|
|
Determine if an old PV system has reached its end of life. |
|
1160
|
|
|
Parameters |
|
1161
|
|
|
----------- |
|
1162
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1163
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1164
|
|
|
scenario_timestamp : pandas.Timestamp |
|
1165
|
|
|
Timestamp at which the scenario takes place. |
|
1166
|
|
|
pv_rooftop_lifetime : pandas.Timedelta |
|
1167
|
|
|
Average expected lifetime of PV rooftop systems. |
|
1168
|
|
|
Returns |
|
1169
|
|
|
------- |
|
1170
|
|
|
geopandas.GeoDataFrame |
|
1171
|
|
|
GeoDataFrame containing geocoded MaStR data and info if the system |
|
1172
|
|
|
has reached its end of life. |
|
1173
|
|
|
""" |
|
1174
|
|
|
before = mastr_gdf.capacity.sum() |
|
1175
|
|
|
|
|
1176
|
|
|
mastr_gdf = mastr_gdf.assign( |
|
1177
|
|
|
age=scenario_timestamp - mastr_gdf.commissioning_date |
|
1178
|
|
|
) |
|
1179
|
|
|
|
|
1180
|
|
|
mastr_gdf = mastr_gdf.assign( |
|
1181
|
|
|
end_of_life=pv_rooftop_lifetime < mastr_gdf.age |
|
1182
|
|
|
) |
|
1183
|
|
|
|
|
1184
|
|
|
after = mastr_gdf.loc[~mastr_gdf.end_of_life].capacity.sum() |
|
1185
|
|
|
|
|
1186
|
|
|
logger.debug( |
|
1187
|
|
|
f"Determined if pv rooftop systems reached their end of life.\nTotal " |
|
1188
|
|
|
f"capacity: {before}\nActive capacity: {after}" |
|
1189
|
|
|
) |
|
1190
|
|
|
|
|
1191
|
|
|
return mastr_gdf |
|
1192
|
|
|
|
|
1193
|
|
|
|
|
1194
|
|
|
def calculate_max_pv_cap_per_building( |
|
1195
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1196
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1197
|
|
|
pv_cap_per_sq_m: float | int, |
|
1198
|
|
|
roof_factor: float | int, |
|
1199
|
|
|
) -> gpd.GeoDataFrame: |
|
1200
|
|
|
""" |
|
1201
|
|
|
Calculate the estimated maximum possible PV capacity per building. |
|
1202
|
|
|
|
|
1203
|
|
|
Parameters |
|
1204
|
|
|
----------- |
|
1205
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1206
|
|
|
GeoDataFrame containing OSM buildings data. |
|
1207
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1208
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1209
|
|
|
pv_cap_per_sq_m : float, int |
|
1210
|
|
|
Average expected, installable PV capacity per square meter. |
|
1211
|
|
|
roof_factor : float, int |
|
1212
|
|
|
Average for PV usable roof area share. |
|
1213
|
|
|
Returns |
|
1214
|
|
|
------- |
|
1215
|
|
|
geopandas.GeoDataFrame |
|
1216
|
|
|
GeoDataFrame containing OSM buildings data with estimated maximum PV |
|
1217
|
|
|
capacity. |
|
1218
|
|
|
""" |
|
1219
|
|
|
gdf = ( |
|
1220
|
|
|
buildings_gdf.reset_index() |
|
1221
|
|
|
.rename(columns={"index": "id"}) |
|
1222
|
|
|
.merge( |
|
1223
|
|
|
mastr_gdf[ |
|
1224
|
|
|
[ |
|
1225
|
|
|
"capacity", |
|
1226
|
|
|
"end_of_life", |
|
1227
|
|
|
"building_id", |
|
1228
|
|
|
"orientation_uniform", |
|
1229
|
|
|
"orientation_primary", |
|
1230
|
|
|
"orientation_primary_angle", |
|
1231
|
|
|
] |
|
1232
|
|
|
], |
|
1233
|
|
|
how="left", |
|
1234
|
|
|
left_on="id", |
|
1235
|
|
|
right_on="building_id", |
|
1236
|
|
|
) |
|
1237
|
|
|
.set_index("id") |
|
1238
|
|
|
.drop(columns="building_id") |
|
1239
|
|
|
) |
|
1240
|
|
|
|
|
1241
|
|
|
return gdf.assign( |
|
1242
|
|
|
max_cap=gdf.building_area.multiply(roof_factor * pv_cap_per_sq_m), |
|
1243
|
|
|
end_of_life=gdf.end_of_life.fillna(True).astype(bool), |
|
1244
|
|
|
bus_id=gdf.bus_id.astype(int), |
|
1245
|
|
|
) |
|
1246
|
|
|
|
|
1247
|
|
|
|
|
1248
|
|
|
def calculate_building_load_factor( |
|
1249
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1250
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1251
|
|
|
rounding: int = 4, |
|
1252
|
|
|
) -> gpd.GeoDataFrame: |
|
1253
|
|
|
""" |
|
1254
|
|
|
Calculate the roof load factor from existing PV systems. |
|
1255
|
|
|
Parameters |
|
1256
|
|
|
----------- |
|
1257
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1258
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1259
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1260
|
|
|
GeoDataFrame containing OSM buildings data. |
|
1261
|
|
|
rounding : int |
|
1262
|
|
|
Rounding to use for load factor. |
|
1263
|
|
|
Returns |
|
1264
|
|
|
------- |
|
1265
|
|
|
geopandas.GeoDataFrame |
|
1266
|
|
|
GeoDataFrame containing geocoded MaStR data with calculated load |
|
1267
|
|
|
factor. |
|
1268
|
|
|
""" |
|
1269
|
|
|
gdf = mastr_gdf.merge( |
|
1270
|
|
|
buildings_gdf[["max_cap", "building_area"]] |
|
1271
|
|
|
.loc[~buildings_gdf["max_cap"].isna()] |
|
1272
|
|
|
.reset_index(), |
|
1273
|
|
|
how="left", |
|
1274
|
|
|
left_on="building_id", |
|
1275
|
|
|
right_on="id", |
|
1276
|
|
|
).set_index("id") |
|
1277
|
|
|
|
|
1278
|
|
|
return gdf.assign(load_factor=(gdf.capacity / gdf.max_cap).round(rounding)) |
|
1279
|
|
|
|
|
1280
|
|
|
|
|
1281
|
|
|
def get_probability_for_property( |
|
1282
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1283
|
|
|
cap_range: tuple[int | float, int | float], |
|
1284
|
|
|
prop: str, |
|
1285
|
|
|
) -> tuple[np.array, np.array]: |
|
1286
|
|
|
""" |
|
1287
|
|
|
Calculate the probability of the different options of a property of the |
|
1288
|
|
|
existing PV plants. |
|
1289
|
|
|
Parameters |
|
1290
|
|
|
----------- |
|
1291
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1292
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1293
|
|
|
cap_range : tuple(int, int) |
|
1294
|
|
|
Capacity range of PV plants to look at. |
|
1295
|
|
|
prop : str |
|
1296
|
|
|
Property to calculate probabilities for. String needs to be in columns |
|
1297
|
|
|
of mastr_gdf. |
|
1298
|
|
|
Returns |
|
1299
|
|
|
------- |
|
1300
|
|
|
tuple |
|
1301
|
|
|
numpy.array |
|
1302
|
|
|
Unique values of property. |
|
1303
|
|
|
numpy.array |
|
1304
|
|
|
Probabilties per unique value. |
|
1305
|
|
|
""" |
|
1306
|
|
|
cap_range_gdf = mastr_gdf.loc[ |
|
1307
|
|
|
(mastr_gdf.capacity > cap_range[0]) |
|
1308
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
|
1309
|
|
|
] |
|
1310
|
|
|
|
|
1311
|
|
|
if prop == "load_factor": |
|
1312
|
|
|
cap_range_gdf = cap_range_gdf.loc[cap_range_gdf[prop] <= 1] |
|
1313
|
|
|
|
|
1314
|
|
|
count = Counter( |
|
1315
|
|
|
cap_range_gdf[prop].loc[ |
|
1316
|
|
|
~cap_range_gdf[prop].isna() |
|
1317
|
|
|
& ~cap_range_gdf[prop].isnull() |
|
1318
|
|
|
& ~(cap_range_gdf[prop] == "None") |
|
1319
|
|
|
] |
|
1320
|
|
|
) |
|
1321
|
|
|
|
|
1322
|
|
|
values = np.array(list(count.keys())) |
|
1323
|
|
|
probabilities = np.fromiter(count.values(), dtype=float) |
|
1324
|
|
|
probabilities = probabilities / np.sum(probabilities) |
|
1325
|
|
|
|
|
1326
|
|
|
return values, probabilities |
|
1327
|
|
|
|
|
1328
|
|
|
|
|
1329
|
|
|
@timer_func |
|
1330
|
|
|
def probabilities( |
|
1331
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1332
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
|
1333
|
|
|
properties: list[str] | None = None, |
|
1334
|
|
|
) -> dict: |
|
1335
|
|
|
""" |
|
1336
|
|
|
Calculate the probability of the different options of properties of the |
|
1337
|
|
|
existing PV plants. |
|
1338
|
|
|
Parameters |
|
1339
|
|
|
----------- |
|
1340
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1341
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1342
|
|
|
cap_ranges : list(tuple(int, int)) |
|
1343
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
|
1344
|
|
|
start with a zero and the last one should end with infinite. |
|
1345
|
|
|
properties : list(str) |
|
1346
|
|
|
List of properties to calculate probabilities for. Strings need to be |
|
1347
|
|
|
in columns of mastr_gdf. |
|
1348
|
|
|
Returns |
|
1349
|
|
|
------- |
|
1350
|
|
|
dict |
|
1351
|
|
|
Dictionary with values and probabilities per capacity range. |
|
1352
|
|
|
""" |
|
1353
|
|
|
if cap_ranges is None: |
|
1354
|
|
|
cap_ranges = [ |
|
1355
|
|
|
(0, 30 / 10**3), |
|
1356
|
|
|
(30 / 10**3, 100 / 10**3), |
|
1357
|
|
|
(100 / 10**3, float("inf")), |
|
1358
|
|
|
] |
|
1359
|
|
|
if properties is None: |
|
1360
|
|
|
properties = [ |
|
1361
|
|
|
"orientation_uniform", |
|
1362
|
|
|
"orientation_primary", |
|
1363
|
|
|
"orientation_primary_angle", |
|
1364
|
|
|
"load_factor", |
|
1365
|
|
|
] |
|
1366
|
|
|
|
|
1367
|
|
|
prob_dict = {} |
|
1368
|
|
|
|
|
1369
|
|
|
for cap_range in cap_ranges: |
|
1370
|
|
|
prob_dict[cap_range] = { |
|
1371
|
|
|
"values": {}, |
|
1372
|
|
|
"probabilities": {}, |
|
1373
|
|
|
} |
|
1374
|
|
|
|
|
1375
|
|
|
for prop in properties: |
|
1376
|
|
|
v, p = get_probability_for_property( |
|
1377
|
|
|
mastr_gdf, |
|
1378
|
|
|
cap_range, |
|
1379
|
|
|
prop, |
|
1380
|
|
|
) |
|
1381
|
|
|
|
|
1382
|
|
|
prob_dict[cap_range]["values"][prop] = v |
|
1383
|
|
|
prob_dict[cap_range]["probabilities"][prop] = p |
|
1384
|
|
|
|
|
1385
|
|
|
return prob_dict |
|
1386
|
|
|
|
|
1387
|
|
|
|
|
1388
|
|
|
def cap_share_per_cap_range( |
|
1389
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1390
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
|
1391
|
|
|
) -> dict[tuple[int | float, int | float], float]: |
|
1392
|
|
|
""" |
|
1393
|
|
|
Calculate the share of PV capacity from the total PV capacity within |
|
1394
|
|
|
capacity ranges. |
|
1395
|
|
|
|
|
1396
|
|
|
Parameters |
|
1397
|
|
|
----------- |
|
1398
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1399
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1400
|
|
|
cap_ranges : list(tuple(int, int)) |
|
1401
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
|
1402
|
|
|
start with a zero and the last one should end with infinite. |
|
1403
|
|
|
Returns |
|
1404
|
|
|
------- |
|
1405
|
|
|
dict |
|
1406
|
|
|
Dictionary with share of PV capacity from the total PV capacity within |
|
1407
|
|
|
capacity ranges. |
|
1408
|
|
|
""" |
|
1409
|
|
|
if cap_ranges is None: |
|
1410
|
|
|
cap_ranges = [ |
|
1411
|
|
|
(0, 30 / 10**3), |
|
1412
|
|
|
(30 / 10**3, 100 / 10**3), |
|
1413
|
|
|
(100 / 10**3, float("inf")), |
|
1414
|
|
|
] |
|
1415
|
|
|
|
|
1416
|
|
|
cap_share_dict = {} |
|
1417
|
|
|
|
|
1418
|
|
|
total_cap = mastr_gdf.capacity.sum() |
|
1419
|
|
|
|
|
1420
|
|
|
for cap_range in cap_ranges: |
|
1421
|
|
|
cap_share = ( |
|
1422
|
|
|
mastr_gdf.loc[ |
|
1423
|
|
|
(mastr_gdf.capacity > cap_range[0]) |
|
1424
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
|
1425
|
|
|
].capacity.sum() |
|
1426
|
|
|
/ total_cap |
|
1427
|
|
|
) |
|
1428
|
|
|
|
|
1429
|
|
|
cap_share_dict[cap_range] = cap_share |
|
1430
|
|
|
|
|
1431
|
|
|
return cap_share_dict |
|
1432
|
|
|
|
|
1433
|
|
|
|
|
1434
|
|
|
def mean_load_factor_per_cap_range( |
|
1435
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1436
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
|
1437
|
|
|
) -> dict[tuple[int | float, int | float], float]: |
|
1438
|
|
|
""" |
|
1439
|
|
|
Calculate the mean roof load factor per capacity range from existing PV |
|
1440
|
|
|
plants. |
|
1441
|
|
|
Parameters |
|
1442
|
|
|
----------- |
|
1443
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1444
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1445
|
|
|
cap_ranges : list(tuple(int, int)) |
|
1446
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
|
1447
|
|
|
start with a zero and the last one should end with infinite. |
|
1448
|
|
|
Returns |
|
1449
|
|
|
------- |
|
1450
|
|
|
dict |
|
1451
|
|
|
Dictionary with mean roof load factor per capacity range. |
|
1452
|
|
|
""" |
|
1453
|
|
|
if cap_ranges is None: |
|
1454
|
|
|
cap_ranges = [ |
|
1455
|
|
|
(0, 30 / 10**3), |
|
1456
|
|
|
(30 / 10**3, 100 / 10**3), |
|
1457
|
|
|
(100 / 10**3, float("inf")), |
|
1458
|
|
|
] |
|
1459
|
|
|
|
|
1460
|
|
|
load_factor_dict = {} |
|
1461
|
|
|
|
|
1462
|
|
|
for cap_range in cap_ranges: |
|
1463
|
|
|
load_factor = mastr_gdf.loc[ |
|
1464
|
|
|
(mastr_gdf.load_factor <= 1) |
|
1465
|
|
|
& (mastr_gdf.capacity > cap_range[0]) |
|
1466
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
|
1467
|
|
|
].load_factor.mean() |
|
1468
|
|
|
|
|
1469
|
|
|
load_factor_dict[cap_range] = load_factor |
|
1470
|
|
|
|
|
1471
|
|
|
return load_factor_dict |
|
1472
|
|
|
|
|
1473
|
|
|
|
|
1474
|
|
|
def building_area_range_per_cap_range( |
|
1475
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1476
|
|
|
cap_ranges: list[tuple[int | float, int | float]] | None = None, |
|
1477
|
|
|
min_building_size: int | float = 10.0, |
|
1478
|
|
|
upper_quantile: float = 0.95, |
|
1479
|
|
|
lower_quantile: float = 0.05, |
|
1480
|
|
|
) -> dict[tuple[int | float, int | float], tuple[int | float, int | float]]: |
|
1481
|
|
|
""" |
|
1482
|
|
|
Estimate normal building area range per capacity range. |
|
1483
|
|
|
Calculate the mean roof load factor per capacity range from existing PV |
|
1484
|
|
|
plants. |
|
1485
|
|
|
Parameters |
|
1486
|
|
|
----------- |
|
1487
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1488
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1489
|
|
|
cap_ranges : list(tuple(int, int)) |
|
1490
|
|
|
List of capacity ranges to distinguish between. The first tuple should |
|
1491
|
|
|
start with a zero and the last one should end with infinite. |
|
1492
|
|
|
min_building_size : int, float |
|
1493
|
|
|
Minimal building size to consider for PV plants. |
|
1494
|
|
|
upper_quantile : float |
|
1495
|
|
|
Upper quantile to estimate maximum building size per capacity range. |
|
1496
|
|
|
lower_quantile : float |
|
1497
|
|
|
Lower quantile to estimate minimum building size per capacity range. |
|
1498
|
|
|
Returns |
|
1499
|
|
|
------- |
|
1500
|
|
|
dict |
|
1501
|
|
|
Dictionary with estimated normal building area range per capacity |
|
1502
|
|
|
range. |
|
1503
|
|
|
""" |
|
1504
|
|
|
if cap_ranges is None: |
|
1505
|
|
|
cap_ranges = [ |
|
1506
|
|
|
(0, 30 / 10**3), |
|
1507
|
|
|
(30 / 10**3, 100 / 10**3), |
|
1508
|
|
|
(100 / 10**3, float("inf")), |
|
1509
|
|
|
] |
|
1510
|
|
|
|
|
1511
|
|
|
building_area_range_dict = {} |
|
1512
|
|
|
|
|
1513
|
|
|
n_ranges = len(cap_ranges) |
|
1514
|
|
|
|
|
1515
|
|
|
for count, cap_range in enumerate(cap_ranges): |
|
1516
|
|
|
cap_range_gdf = mastr_gdf.loc[ |
|
1517
|
|
|
(mastr_gdf.capacity > cap_range[0]) |
|
1518
|
|
|
& (mastr_gdf.capacity <= cap_range[1]) |
|
1519
|
|
|
] |
|
1520
|
|
|
|
|
1521
|
|
|
if count == 0: |
|
1522
|
|
|
building_area_range_dict[cap_range] = ( |
|
1523
|
|
|
min_building_size, |
|
1524
|
|
|
cap_range_gdf.building_area.quantile(upper_quantile), |
|
1525
|
|
|
) |
|
1526
|
|
|
elif count == n_ranges - 1: |
|
1527
|
|
|
building_area_range_dict[cap_range] = ( |
|
1528
|
|
|
cap_range_gdf.building_area.quantile(lower_quantile), |
|
1529
|
|
|
float("inf"), |
|
1530
|
|
|
) |
|
1531
|
|
|
else: |
|
1532
|
|
|
building_area_range_dict[cap_range] = ( |
|
1533
|
|
|
cap_range_gdf.building_area.quantile(lower_quantile), |
|
1534
|
|
|
cap_range_gdf.building_area.quantile(upper_quantile), |
|
1535
|
|
|
) |
|
1536
|
|
|
|
|
1537
|
|
|
values = list(building_area_range_dict.values()) |
|
1538
|
|
|
|
|
1539
|
|
|
building_area_range_normed_dict = {} |
|
1540
|
|
|
|
|
1541
|
|
|
for count, (cap_range, (min_area, max_area)) in enumerate( |
|
1542
|
|
|
building_area_range_dict.items() |
|
1543
|
|
|
): |
|
1544
|
|
|
if count == 0: |
|
1545
|
|
|
building_area_range_normed_dict[cap_range] = ( |
|
1546
|
|
|
min_area, |
|
1547
|
|
|
np.mean((values[count + 1][0], max_area)), |
|
1548
|
|
|
) |
|
1549
|
|
|
elif count == n_ranges - 1: |
|
1550
|
|
|
building_area_range_normed_dict[cap_range] = ( |
|
1551
|
|
|
np.mean((values[count - 1][1], min_area)), |
|
1552
|
|
|
max_area, |
|
1553
|
|
|
) |
|
1554
|
|
|
else: |
|
1555
|
|
|
building_area_range_normed_dict[cap_range] = ( |
|
1556
|
|
|
np.mean((values[count - 1][1], min_area)), |
|
1557
|
|
|
np.mean((values[count + 1][0], max_area)), |
|
1558
|
|
|
) |
|
1559
|
|
|
|
|
1560
|
|
|
return building_area_range_normed_dict |
|
1561
|
|
|
|
|
1562
|
|
|
|
|
1563
|
|
|
@timer_func |
|
1564
|
|
|
def desaggregate_pv_in_mv_grid( |
|
1565
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1566
|
|
|
pv_cap: float | int, |
|
1567
|
|
|
**kwargs, |
|
1568
|
|
|
) -> gpd.GeoDataFrame: |
|
1569
|
|
|
""" |
|
1570
|
|
|
Desaggregate PV capacity on buildings within a given grid district. |
|
1571
|
|
|
Parameters |
|
1572
|
|
|
----------- |
|
1573
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1574
|
|
|
GeoDataFrame containing buildings within the grid district. |
|
1575
|
|
|
pv_cap : float, int |
|
1576
|
|
|
PV capacity to desaggregate. |
|
1577
|
|
|
Other Parameters |
|
1578
|
|
|
----------- |
|
1579
|
|
|
prob_dict : dict |
|
1580
|
|
|
Dictionary with values and probabilities per capacity range. |
|
1581
|
|
|
cap_share_dict : dict |
|
1582
|
|
|
Dictionary with share of PV capacity from the total PV capacity within |
|
1583
|
|
|
capacity ranges. |
|
1584
|
|
|
building_area_range_dict : dict |
|
1585
|
|
|
Dictionary with estimated normal building area range per capacity |
|
1586
|
|
|
range. |
|
1587
|
|
|
load_factor_dict : dict |
|
1588
|
|
|
Dictionary with mean roof load factor per capacity range. |
|
1589
|
|
|
seed : int |
|
1590
|
|
|
Seed to use for random operations with NumPy and pandas. |
|
1591
|
|
|
pv_cap_per_sq_m : float, int |
|
1592
|
|
|
Average expected, installable PV capacity per square meter. |
|
1593
|
|
|
Returns |
|
1594
|
|
|
------- |
|
1595
|
|
|
geopandas.GeoDataFrame |
|
1596
|
|
|
GeoDataFrame containing OSM building data with desaggregated PV |
|
1597
|
|
|
plants. |
|
1598
|
|
|
""" |
|
1599
|
|
|
bus_id = int(buildings_gdf.bus_id.iat[0]) |
|
1600
|
|
|
|
|
1601
|
|
|
rng = default_rng(seed=kwargs["seed"]) |
|
1602
|
|
|
random_state = RandomState(seed=kwargs["seed"]) |
|
1603
|
|
|
|
|
1604
|
|
|
results_df = pd.DataFrame(columns=buildings_gdf.columns) |
|
1605
|
|
|
|
|
1606
|
|
|
for cap_range, share in kwargs["cap_share_dict"].items(): |
|
1607
|
|
|
pv_cap_range = pv_cap * share |
|
1608
|
|
|
|
|
1609
|
|
|
b_area_min, b_area_max = kwargs["building_area_range_dict"][cap_range] |
|
1610
|
|
|
|
|
1611
|
|
|
cap_range_buildings_gdf = buildings_gdf.loc[ |
|
1612
|
|
|
~buildings_gdf.index.isin(results_df.index) |
|
1613
|
|
|
& (buildings_gdf.building_area > b_area_min) |
|
1614
|
|
|
& (buildings_gdf.building_area <= b_area_max) |
|
1615
|
|
|
] |
|
1616
|
|
|
|
|
1617
|
|
|
mean_load_factor = kwargs["load_factor_dict"][cap_range] |
|
1618
|
|
|
cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
|
1619
|
|
|
mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
|
1620
|
|
|
load_factor=np.nan, |
|
1621
|
|
|
capacity=np.nan, |
|
1622
|
|
|
) |
|
1623
|
|
|
|
|
1624
|
|
|
total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
|
1625
|
|
|
|
|
1626
|
|
|
if total_mean_cap == 0: |
|
1627
|
|
|
logger.warning( |
|
1628
|
|
|
f"There are no matching roof for capacity range {cap_range} " |
|
1629
|
|
|
f"kW in grid {bus_id}. Using all buildings as fallback." |
|
1630
|
|
|
) |
|
1631
|
|
|
|
|
1632
|
|
|
cap_range_buildings_gdf = buildings_gdf.loc[ |
|
1633
|
|
|
~buildings_gdf.index.isin(results_df.index) |
|
1634
|
|
|
] |
|
1635
|
|
|
|
|
1636
|
|
|
if len(cap_range_buildings_gdf) == 0: |
|
1637
|
|
|
logger.warning( |
|
1638
|
|
|
"There are no roofes available for capacity range " |
|
1639
|
|
|
f"{cap_range} kW in grid {bus_id}. Allowing dual use." |
|
1640
|
|
|
) |
|
1641
|
|
|
cap_range_buildings_gdf = buildings_gdf.copy() |
|
1642
|
|
|
|
|
1643
|
|
|
cap_range_buildings_gdf = cap_range_buildings_gdf.assign( |
|
1644
|
|
|
mean_cap=cap_range_buildings_gdf.max_cap * mean_load_factor, |
|
1645
|
|
|
load_factor=np.nan, |
|
1646
|
|
|
capacity=np.nan, |
|
1647
|
|
|
) |
|
1648
|
|
|
|
|
1649
|
|
|
total_mean_cap = cap_range_buildings_gdf.mean_cap.sum() |
|
1650
|
|
|
|
|
1651
|
|
|
elif total_mean_cap < pv_cap_range: |
|
1652
|
|
|
logger.warning( |
|
1653
|
|
|
f"Average roof utilization of the roof area in grid {bus_id} " |
|
1654
|
|
|
f"and capacity range {cap_range} kW is not sufficient. The " |
|
1655
|
|
|
"roof utilization will be above average." |
|
1656
|
|
|
) |
|
1657
|
|
|
|
|
1658
|
|
|
frac = max( |
|
1659
|
|
|
pv_cap_range / total_mean_cap, |
|
1660
|
|
|
1 / len(cap_range_buildings_gdf), |
|
1661
|
|
|
) |
|
1662
|
|
|
|
|
1663
|
|
|
samples_gdf = cap_range_buildings_gdf.sample( |
|
1664
|
|
|
frac=min(1, frac), |
|
1665
|
|
|
random_state=random_state, |
|
1666
|
|
|
) |
|
1667
|
|
|
|
|
1668
|
|
|
cap_range_dict = kwargs["prob_dict"][cap_range] |
|
1669
|
|
|
|
|
1670
|
|
|
values_dict = cap_range_dict["values"] |
|
1671
|
|
|
p_dict = cap_range_dict["probabilities"] |
|
1672
|
|
|
|
|
1673
|
|
|
load_factors = rng.choice( |
|
1674
|
|
|
a=values_dict["load_factor"], |
|
1675
|
|
|
size=len(samples_gdf), |
|
1676
|
|
|
p=p_dict["load_factor"], |
|
1677
|
|
|
) |
|
1678
|
|
|
|
|
1679
|
|
|
samples_gdf = samples_gdf.assign( |
|
1680
|
|
|
load_factor=load_factors, |
|
1681
|
|
|
capacity=( |
|
1682
|
|
|
samples_gdf.building_area |
|
1683
|
|
|
* load_factors |
|
1684
|
|
|
* kwargs["pv_cap_per_sq_m"] |
|
1685
|
|
|
).clip(lower=0.4), |
|
1686
|
|
|
) |
|
1687
|
|
|
|
|
1688
|
|
|
missing_factor = pv_cap_range / samples_gdf.capacity.sum() |
|
1689
|
|
|
|
|
1690
|
|
|
samples_gdf = samples_gdf.assign( |
|
1691
|
|
|
capacity=(samples_gdf.capacity * missing_factor), |
|
1692
|
|
|
load_factor=(samples_gdf.load_factor * missing_factor), |
|
1693
|
|
|
) |
|
1694
|
|
|
|
|
1695
|
|
|
assert np.isclose( |
|
1696
|
|
|
samples_gdf.capacity.sum(), |
|
1697
|
|
|
pv_cap_range, |
|
1698
|
|
|
rtol=1e-03, |
|
1699
|
|
|
), f"{samples_gdf.capacity.sum()} != {pv_cap_range}" |
|
1700
|
|
|
|
|
1701
|
|
|
results_df = pd.concat( |
|
1702
|
|
|
[ |
|
1703
|
|
|
results_df, |
|
1704
|
|
|
samples_gdf, |
|
1705
|
|
|
], |
|
1706
|
|
|
) |
|
1707
|
|
|
|
|
1708
|
|
|
total_missing_factor = pv_cap / results_df.capacity.sum() |
|
1709
|
|
|
|
|
1710
|
|
|
results_df = results_df.assign( |
|
1711
|
|
|
capacity=(results_df.capacity * total_missing_factor), |
|
1712
|
|
|
) |
|
1713
|
|
|
|
|
1714
|
|
|
assert np.isclose( |
|
1715
|
|
|
results_df.capacity.sum(), |
|
1716
|
|
|
pv_cap, |
|
1717
|
|
|
rtol=1e-03, |
|
1718
|
|
|
), f"{results_df.capacity.sum()} != {pv_cap}" |
|
1719
|
|
|
|
|
1720
|
|
|
return gpd.GeoDataFrame( |
|
1721
|
|
|
results_df, |
|
1722
|
|
|
crs=samples_gdf.crs, |
|
|
|
|
|
|
1723
|
|
|
geometry="geom", |
|
1724
|
|
|
) |
|
1725
|
|
|
|
|
1726
|
|
|
|
|
1727
|
|
|
@timer_func |
|
1728
|
|
|
def desaggregate_pv( |
|
1729
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1730
|
|
|
cap_df: pd.DataFrame, |
|
1731
|
|
|
**kwargs, |
|
1732
|
|
|
) -> gpd.GeoDataFrame: |
|
1733
|
|
|
""" |
|
1734
|
|
|
Desaggregate PV capacity on buildings within a given grid district. |
|
1735
|
|
|
|
|
1736
|
|
|
Parameters |
|
1737
|
|
|
----------- |
|
1738
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1739
|
|
|
GeoDataFrame containing OSM buildings data. |
|
1740
|
|
|
cap_df : pandas.DataFrame |
|
1741
|
|
|
DataFrame with total rooftop capacity per mv grid. |
|
1742
|
|
|
Other Parameters |
|
1743
|
|
|
----------- |
|
1744
|
|
|
prob_dict : dict |
|
1745
|
|
|
Dictionary with values and probabilities per capacity range. |
|
1746
|
|
|
cap_share_dict : dict |
|
1747
|
|
|
Dictionary with share of PV capacity from the total PV capacity within |
|
1748
|
|
|
capacity ranges. |
|
1749
|
|
|
building_area_range_dict : dict |
|
1750
|
|
|
Dictionary with estimated normal building area range per capacity |
|
1751
|
|
|
range. |
|
1752
|
|
|
load_factor_dict : dict |
|
1753
|
|
|
Dictionary with mean roof load factor per capacity range. |
|
1754
|
|
|
seed : int |
|
1755
|
|
|
Seed to use for random operations with NumPy and pandas. |
|
1756
|
|
|
pv_cap_per_sq_m : float, int |
|
1757
|
|
|
Average expected, installable PV capacity per square meter. |
|
1758
|
|
|
Returns |
|
1759
|
|
|
------- |
|
1760
|
|
|
geopandas.GeoDataFrame |
|
1761
|
|
|
GeoDataFrame containing OSM building data with desaggregated PV |
|
1762
|
|
|
plants. |
|
1763
|
|
|
""" |
|
1764
|
|
|
allocated_buildings_gdf = buildings_gdf.loc[~buildings_gdf.end_of_life] |
|
1765
|
|
|
|
|
1766
|
|
|
building_bus_ids = set(buildings_gdf.bus_id) |
|
1767
|
|
|
cap_bus_ids = set(cap_df.index) |
|
1768
|
|
|
|
|
1769
|
|
|
logger.debug( |
|
1770
|
|
|
f"Bus IDs from buildings: {len(building_bus_ids)}\nBus IDs from " |
|
1771
|
|
|
f"capacity: {len(cap_bus_ids)}" |
|
1772
|
|
|
) |
|
1773
|
|
|
|
|
1774
|
|
|
if len(building_bus_ids) > len(cap_bus_ids): |
|
1775
|
|
|
missing = building_bus_ids - cap_bus_ids |
|
1776
|
|
|
else: |
|
1777
|
|
|
missing = cap_bus_ids - building_bus_ids |
|
1778
|
|
|
|
|
1779
|
|
|
logger.debug(str(missing)) |
|
1780
|
|
|
|
|
1781
|
|
|
bus_ids = np.intersect1d(list(building_bus_ids), list(cap_bus_ids)) |
|
1782
|
|
|
|
|
1783
|
|
|
# assert set(buildings_gdf.bus_id.unique()) == set(cap_df.index) |
|
1784
|
|
|
|
|
1785
|
|
|
for bus_id in bus_ids: |
|
1786
|
|
|
buildings_grid_gdf = buildings_gdf.loc[buildings_gdf.bus_id == bus_id] |
|
1787
|
|
|
|
|
1788
|
|
|
pv_installed_gdf = buildings_grid_gdf.loc[ |
|
1789
|
|
|
~buildings_grid_gdf.end_of_life |
|
1790
|
|
|
] |
|
1791
|
|
|
|
|
1792
|
|
|
pv_installed = pv_installed_gdf.capacity.sum() |
|
1793
|
|
|
|
|
1794
|
|
|
pot_buildings_gdf = buildings_grid_gdf.drop( |
|
1795
|
|
|
index=pv_installed_gdf.index |
|
1796
|
|
|
) |
|
1797
|
|
|
|
|
1798
|
|
|
if len(pot_buildings_gdf) == 0: |
|
1799
|
|
|
logger.error( |
|
1800
|
|
|
f"In grid {bus_id} there are no potential buildings to " |
|
1801
|
|
|
f"allocate PV capacity to. The grid is skipped. This message " |
|
1802
|
|
|
f"should only appear doing test runs with few buildings." |
|
1803
|
|
|
) |
|
1804
|
|
|
|
|
1805
|
|
|
continue |
|
1806
|
|
|
|
|
1807
|
|
|
pv_target = cap_df.at[bus_id, "capacity"] |
|
1808
|
|
|
|
|
1809
|
|
|
logger.debug(f"pv_target: {pv_target}") |
|
1810
|
|
|
|
|
1811
|
|
|
pv_missing = pv_target - pv_installed |
|
1812
|
|
|
|
|
1813
|
|
|
if pv_missing <= 0: |
|
1814
|
|
|
logger.warning( |
|
1815
|
|
|
f"In grid {bus_id} there is more PV installed " |
|
1816
|
|
|
f"({pv_installed: g} kW) in status Quo than allocated within " |
|
1817
|
|
|
f"the scenario ({pv_target: g} kW). " |
|
1818
|
|
|
f"No new generators are added." |
|
1819
|
|
|
) |
|
1820
|
|
|
|
|
1821
|
|
|
continue |
|
1822
|
|
|
|
|
1823
|
|
|
if pot_buildings_gdf.max_cap.sum() < pv_missing: |
|
1824
|
|
|
logger.error( |
|
1825
|
|
|
f"In grid {bus_id} there is less PV potential (" |
|
1826
|
|
|
f"{pot_buildings_gdf.max_cap.sum():g} MW) than allocated PV " |
|
1827
|
|
|
f"capacity ({pv_missing:g} MW). The average roof utilization " |
|
1828
|
|
|
f"will be very high." |
|
1829
|
|
|
) |
|
1830
|
|
|
|
|
1831
|
|
|
gdf = desaggregate_pv_in_mv_grid( |
|
1832
|
|
|
buildings_gdf=pot_buildings_gdf, |
|
1833
|
|
|
pv_cap=pv_missing, |
|
1834
|
|
|
**kwargs, |
|
1835
|
|
|
) |
|
1836
|
|
|
|
|
1837
|
|
|
logger.debug(f"New cap in grid {bus_id}: {gdf.capacity.sum()}") |
|
1838
|
|
|
logger.debug(f"Installed cap in grid {bus_id}: {pv_installed}") |
|
1839
|
|
|
logger.debug( |
|
1840
|
|
|
f"Total cap in grid {bus_id}: {gdf.capacity.sum() + pv_installed}" |
|
1841
|
|
|
) |
|
1842
|
|
|
|
|
1843
|
|
|
if not np.isclose( |
|
1844
|
|
|
gdf.capacity.sum() + pv_installed, pv_target, rtol=1e-3 |
|
1845
|
|
|
): |
|
1846
|
|
|
logger.warning( |
|
1847
|
|
|
f"The desired capacity and actual capacity in grid {bus_id} " |
|
1848
|
|
|
f"differ.\n" |
|
1849
|
|
|
f"Desired cap: {pv_target}\nActual cap: " |
|
1850
|
|
|
f"{gdf.capacity.sum() + pv_installed}" |
|
1851
|
|
|
) |
|
1852
|
|
|
|
|
1853
|
|
|
pre_cap = allocated_buildings_gdf.capacity.sum() |
|
1854
|
|
|
new_cap = gdf.capacity.sum() |
|
1855
|
|
|
|
|
1856
|
|
|
allocated_buildings_gdf = pd.concat( |
|
1857
|
|
|
[ |
|
1858
|
|
|
allocated_buildings_gdf, |
|
1859
|
|
|
gdf, |
|
1860
|
|
|
] |
|
1861
|
|
|
) |
|
1862
|
|
|
|
|
1863
|
|
|
total_cap = allocated_buildings_gdf.capacity.sum() |
|
1864
|
|
|
|
|
1865
|
|
|
assert np.isclose(pre_cap + new_cap, total_cap) |
|
1866
|
|
|
|
|
1867
|
|
|
logger.debug("Desaggregated scenario.") |
|
1868
|
|
|
logger.debug(f"Scenario capacity: {cap_df.capacity.sum(): g}") |
|
1869
|
|
|
logger.debug( |
|
1870
|
|
|
f"Generator capacity: " f"{allocated_buildings_gdf.capacity.sum(): g}" |
|
1871
|
|
|
) |
|
1872
|
|
|
|
|
1873
|
|
|
return gpd.GeoDataFrame( |
|
1874
|
|
|
allocated_buildings_gdf, |
|
1875
|
|
|
crs=gdf.crs, |
|
|
|
|
|
|
1876
|
|
|
geometry="geom", |
|
1877
|
|
|
) |
|
1878
|
|
|
|
|
1879
|
|
|
|
|
1880
|
|
|
@timer_func |
|
1881
|
|
|
def add_buildings_meta_data( |
|
1882
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1883
|
|
|
prob_dict: dict, |
|
1884
|
|
|
seed: int, |
|
1885
|
|
|
) -> gpd.GeoDataFrame: |
|
1886
|
|
|
""" |
|
1887
|
|
|
Randomly add additional metadata to desaggregated PV plants. |
|
1888
|
|
|
Parameters |
|
1889
|
|
|
----------- |
|
1890
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1891
|
|
|
GeoDataFrame containing OSM buildings data with desaggregated PV |
|
1892
|
|
|
plants. |
|
1893
|
|
|
prob_dict : dict |
|
1894
|
|
|
Dictionary with values and probabilities per capacity range. |
|
1895
|
|
|
seed : int |
|
1896
|
|
|
Seed to use for random operations with NumPy and pandas. |
|
1897
|
|
|
Returns |
|
1898
|
|
|
------- |
|
1899
|
|
|
geopandas.GeoDataFrame |
|
1900
|
|
|
GeoDataFrame containing OSM building data with desaggregated PV |
|
1901
|
|
|
plants. |
|
1902
|
|
|
""" |
|
1903
|
|
|
rng = default_rng(seed=seed) |
|
1904
|
|
|
buildings_gdf = buildings_gdf.reset_index().rename( |
|
1905
|
|
|
columns={ |
|
1906
|
|
|
"index": "building_id", |
|
1907
|
|
|
} |
|
1908
|
|
|
) |
|
1909
|
|
|
|
|
1910
|
|
|
for (min_cap, max_cap), cap_range_prob_dict in prob_dict.items(): |
|
1911
|
|
|
cap_range_gdf = buildings_gdf.loc[ |
|
1912
|
|
|
(buildings_gdf.capacity >= min_cap) |
|
1913
|
|
|
& (buildings_gdf.capacity < max_cap) |
|
1914
|
|
|
] |
|
1915
|
|
|
|
|
1916
|
|
|
for key, values in cap_range_prob_dict["values"].items(): |
|
1917
|
|
|
if key == "load_factor": |
|
1918
|
|
|
continue |
|
1919
|
|
|
|
|
1920
|
|
|
gdf = cap_range_gdf.loc[ |
|
1921
|
|
|
cap_range_gdf[key].isna() |
|
1922
|
|
|
| cap_range_gdf[key].isnull() |
|
1923
|
|
|
| (cap_range_gdf[key] == "None") |
|
1924
|
|
|
] |
|
1925
|
|
|
|
|
1926
|
|
|
key_vals = rng.choice( |
|
1927
|
|
|
a=values, |
|
1928
|
|
|
size=len(gdf), |
|
1929
|
|
|
p=cap_range_prob_dict["probabilities"][key], |
|
1930
|
|
|
) |
|
1931
|
|
|
|
|
1932
|
|
|
buildings_gdf.loc[gdf.index, key] = key_vals |
|
1933
|
|
|
|
|
1934
|
|
|
return buildings_gdf |
|
1935
|
|
|
|
|
1936
|
|
|
|
|
1937
|
|
|
def add_commissioning_date( |
|
1938
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
1939
|
|
|
start: pd.Timestamp, |
|
1940
|
|
|
end: pd.Timestamp, |
|
1941
|
|
|
seed: int, |
|
1942
|
|
|
): |
|
1943
|
|
|
""" |
|
1944
|
|
|
Randomly and linear add start-up date to new pv generators. |
|
1945
|
|
|
Parameters |
|
1946
|
|
|
---------- |
|
1947
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
1948
|
|
|
GeoDataFrame containing OSM buildings data with desaggregated PV |
|
1949
|
|
|
plants. |
|
1950
|
|
|
start : pandas.Timestamp |
|
1951
|
|
|
Minimum Timestamp to use. |
|
1952
|
|
|
end : pandas.Timestamp |
|
1953
|
|
|
Maximum Timestamp to use. |
|
1954
|
|
|
seed : int |
|
1955
|
|
|
Seed to use for random operations with NumPy and pandas. |
|
1956
|
|
|
Returns |
|
1957
|
|
|
------- |
|
1958
|
|
|
geopandas.GeoDataFrame |
|
1959
|
|
|
GeoDataFrame containing OSM buildings data with start-up date added. |
|
1960
|
|
|
""" |
|
1961
|
|
|
rng = default_rng(seed=seed) |
|
1962
|
|
|
|
|
1963
|
|
|
date_range = pd.date_range(start=start, end=end, freq="1D") |
|
1964
|
|
|
|
|
1965
|
|
|
return buildings_gdf.assign( |
|
1966
|
|
|
commissioning_date=rng.choice(date_range, size=len(buildings_gdf)) |
|
1967
|
|
|
) |
|
1968
|
|
|
|
|
1969
|
|
|
|
|
1970
|
|
|
@timer_func |
|
1971
|
|
|
def allocate_scenarios( |
|
1972
|
|
|
mastr_gdf: gpd.GeoDataFrame, |
|
1973
|
|
|
valid_buildings_gdf: gpd.GeoDataFrame, |
|
1974
|
|
|
last_scenario_gdf: gpd.GeoDataFrame, |
|
1975
|
|
|
scenario: str, |
|
1976
|
|
|
): |
|
1977
|
|
|
""" |
|
1978
|
|
|
Desaggregate and allocate scenario pv rooftop ramp-ups onto buildings. |
|
1979
|
|
|
Parameters |
|
1980
|
|
|
---------- |
|
1981
|
|
|
mastr_gdf : geopandas.GeoDataFrame |
|
1982
|
|
|
GeoDataFrame containing geocoded MaStR data. |
|
1983
|
|
|
valid_buildings_gdf : geopandas.GeoDataFrame |
|
1984
|
|
|
GeoDataFrame containing OSM buildings data. |
|
1985
|
|
|
last_scenario_gdf : geopandas.GeoDataFrame |
|
1986
|
|
|
GeoDataFrame containing OSM buildings matched with pv generators from |
|
1987
|
|
|
temporally preceding scenario. |
|
1988
|
|
|
scenario : str |
|
1989
|
|
|
Scenario to desaggrgate and allocate. |
|
1990
|
|
|
Returns |
|
1991
|
|
|
------- |
|
1992
|
|
|
tuple |
|
1993
|
|
|
geopandas.GeoDataFrame |
|
1994
|
|
|
GeoDataFrame containing OSM buildings matched with pv generators. |
|
1995
|
|
|
pandas.DataFrame |
|
1996
|
|
|
DataFrame containing pv rooftop capacity per grid id. |
|
1997
|
|
|
""" |
|
1998
|
|
|
cap_per_bus_id_df = cap_per_bus_id(scenario) |
|
1999
|
|
|
|
|
2000
|
|
|
logger.debug( |
|
2001
|
|
|
f"cap_per_bus_id_df total capacity: {cap_per_bus_id_df.capacity.sum()}" |
|
2002
|
|
|
) |
|
2003
|
|
|
|
|
2004
|
|
|
last_scenario_gdf = determine_end_of_life_gens( |
|
2005
|
|
|
last_scenario_gdf, |
|
2006
|
|
|
SCENARIO_TIMESTAMP[scenario], |
|
2007
|
|
|
PV_ROOFTOP_LIFETIME, |
|
2008
|
|
|
) |
|
2009
|
|
|
|
|
2010
|
|
|
buildings_gdf = calculate_max_pv_cap_per_building( |
|
2011
|
|
|
valid_buildings_gdf, |
|
2012
|
|
|
last_scenario_gdf, |
|
2013
|
|
|
PV_CAP_PER_SQ_M, |
|
2014
|
|
|
ROOF_FACTOR, |
|
2015
|
|
|
) |
|
2016
|
|
|
|
|
2017
|
|
|
mastr_gdf = calculate_building_load_factor( |
|
2018
|
|
|
mastr_gdf, |
|
2019
|
|
|
buildings_gdf, |
|
2020
|
|
|
) |
|
2021
|
|
|
|
|
2022
|
|
|
probabilities_dict = probabilities( |
|
2023
|
|
|
mastr_gdf, |
|
2024
|
|
|
cap_ranges=CAP_RANGES, |
|
2025
|
|
|
) |
|
2026
|
|
|
|
|
2027
|
|
|
cap_share_dict = cap_share_per_cap_range( |
|
2028
|
|
|
mastr_gdf, |
|
2029
|
|
|
cap_ranges=CAP_RANGES, |
|
2030
|
|
|
) |
|
2031
|
|
|
|
|
2032
|
|
|
load_factor_dict = mean_load_factor_per_cap_range( |
|
2033
|
|
|
mastr_gdf, |
|
2034
|
|
|
cap_ranges=CAP_RANGES, |
|
2035
|
|
|
) |
|
2036
|
|
|
|
|
2037
|
|
|
building_area_range_dict = building_area_range_per_cap_range( |
|
2038
|
|
|
mastr_gdf, |
|
2039
|
|
|
cap_ranges=CAP_RANGES, |
|
2040
|
|
|
min_building_size=MIN_BUILDING_SIZE, |
|
2041
|
|
|
upper_quantile=UPPER_QUANTILE, |
|
2042
|
|
|
lower_quantile=LOWER_QUANTILE, |
|
2043
|
|
|
) |
|
2044
|
|
|
|
|
2045
|
|
|
allocated_buildings_gdf = desaggregate_pv( |
|
2046
|
|
|
buildings_gdf=buildings_gdf, |
|
2047
|
|
|
cap_df=cap_per_bus_id_df, |
|
2048
|
|
|
prob_dict=probabilities_dict, |
|
2049
|
|
|
cap_share_dict=cap_share_dict, |
|
2050
|
|
|
building_area_range_dict=building_area_range_dict, |
|
2051
|
|
|
load_factor_dict=load_factor_dict, |
|
2052
|
|
|
seed=SEED, |
|
2053
|
|
|
pv_cap_per_sq_m=PV_CAP_PER_SQ_M, |
|
2054
|
|
|
) |
|
2055
|
|
|
|
|
2056
|
|
|
allocated_buildings_gdf = allocated_buildings_gdf.assign(scenario=scenario) |
|
2057
|
|
|
|
|
2058
|
|
|
meta_buildings_gdf = frame_to_numeric( |
|
2059
|
|
|
add_buildings_meta_data( |
|
2060
|
|
|
allocated_buildings_gdf, |
|
2061
|
|
|
probabilities_dict, |
|
2062
|
|
|
SEED, |
|
2063
|
|
|
) |
|
2064
|
|
|
) |
|
2065
|
|
|
|
|
2066
|
|
|
return ( |
|
2067
|
|
|
add_commissioning_date( |
|
2068
|
|
|
meta_buildings_gdf, |
|
2069
|
|
|
start=last_scenario_gdf.commissioning_date.max(), |
|
2070
|
|
|
end=SCENARIO_TIMESTAMP[scenario], |
|
2071
|
|
|
seed=SEED, |
|
2072
|
|
|
), |
|
2073
|
|
|
cap_per_bus_id_df, |
|
2074
|
|
|
) |
|
2075
|
|
|
|
|
2076
|
|
|
|
|
2077
|
|
|
class EgonPowerPlantPvRoofBuilding(Base): |
|
2078
|
|
|
""" |
|
2079
|
|
|
Class definition of table supply.egon_power_plants_pv_roof_building. |
|
2080
|
|
|
|
|
2081
|
|
|
""" |
|
2082
|
|
|
__tablename__ = "egon_power_plants_pv_roof_building" |
|
2083
|
|
|
__table_args__ = {"schema": "supply"} |
|
2084
|
|
|
|
|
2085
|
|
|
index = Column(Integer, primary_key=True, index=True) |
|
2086
|
|
|
scenario = Column(String) |
|
2087
|
|
|
bus_id = Column(Integer, nullable=True) |
|
2088
|
|
|
building_id = Column(Integer) |
|
2089
|
|
|
gens_id = Column(String, nullable=True) |
|
2090
|
|
|
capacity = Column(Float) |
|
2091
|
|
|
orientation_uniform = Column(Float) |
|
2092
|
|
|
orientation_primary = Column(String) |
|
2093
|
|
|
orientation_primary_angle = Column(String) |
|
2094
|
|
|
voltage_level = Column(Integer) |
|
2095
|
|
|
weather_cell_id = Column(Integer) |
|
2096
|
|
|
|
|
2097
|
|
|
|
|
2098
|
|
|
def add_metadata(): |
|
2099
|
|
|
schema = "supply" |
|
2100
|
|
|
table = "egon_power_plants_pv_roof_building" |
|
2101
|
|
|
name = f"{schema}.{table}" |
|
2102
|
|
|
deposit_id_mastr = config.datasets()["mastr_new"]["deposit_id"] |
|
2103
|
|
|
deposit_id_data_bundle = config.datasets()["data-bundle"]["sources"][ |
|
2104
|
|
|
"zenodo" |
|
2105
|
|
|
]["deposit_id"] |
|
2106
|
|
|
|
|
2107
|
|
|
contris = contributors(["kh", "kh"]) |
|
2108
|
|
|
|
|
2109
|
|
|
contris[0]["date"] = "2023-03-16" |
|
2110
|
|
|
|
|
2111
|
|
|
contris[0]["object"] = "metadata" |
|
2112
|
|
|
contris[1]["object"] = "dataset" |
|
2113
|
|
|
|
|
2114
|
|
|
contris[0]["comment"] = "Add metadata to dataset." |
|
2115
|
|
|
contris[1]["comment"] = "Add workflow to generate dataset." |
|
2116
|
|
|
|
|
2117
|
|
|
meta = { |
|
2118
|
|
|
"name": name, |
|
2119
|
|
|
"title": "eGon power plants rooftop solar", |
|
2120
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
|
2121
|
|
|
"description": ( |
|
2122
|
|
|
"eGon power plants rooftop solar systems allocated to buildings" |
|
2123
|
|
|
), |
|
2124
|
|
|
"language": "en-US", |
|
2125
|
|
|
"keywords": ["photovoltaik", "solar", "pv", "mastr", "status quo"], |
|
2126
|
|
|
"publicationDate": datetime.date.today().isoformat(), |
|
2127
|
|
|
"context": context(), |
|
2128
|
|
|
"spatial": { |
|
2129
|
|
|
"location": "none", |
|
2130
|
|
|
"extent": "Germany", |
|
2131
|
|
|
"resolution": "building", |
|
2132
|
|
|
}, |
|
2133
|
|
|
"temporal": { |
|
2134
|
|
|
"referenceDate": ( |
|
2135
|
|
|
config.datasets()["mastr_new"]["egon2021_date_max"].split(" ")[ |
|
2136
|
|
|
0 |
|
2137
|
|
|
] |
|
2138
|
|
|
), |
|
2139
|
|
|
"timeseries": {}, |
|
2140
|
|
|
}, |
|
2141
|
|
|
"sources": [ |
|
2142
|
|
|
{ |
|
2143
|
|
|
"title": "Data bundle for egon-data", |
|
2144
|
|
|
"description": ( |
|
2145
|
|
|
"Data bundle for egon-data: A transparent and " |
|
2146
|
|
|
"reproducible data processing pipeline for energy " |
|
2147
|
|
|
"system modeling" |
|
2148
|
|
|
), |
|
2149
|
|
|
"path": ( |
|
2150
|
|
|
"https://zenodo.org/record/" |
|
2151
|
|
|
f"{deposit_id_data_bundle}#.Y_dWM4CZMVM" |
|
2152
|
|
|
), |
|
2153
|
|
|
"licenses": [license_dedl(attribution="© Cußmann, Ilka")], |
|
2154
|
|
|
}, |
|
2155
|
|
|
{ |
|
2156
|
|
|
"title": ("open-MaStR power unit registry for eGo^n project"), |
|
2157
|
|
|
"description": ( |
|
2158
|
|
|
"Data from Marktstammdatenregister (MaStR) data using " |
|
2159
|
|
|
"the data dump from 2022-11-17 for eGon-data." |
|
2160
|
|
|
), |
|
2161
|
|
|
"path": ( |
|
2162
|
|
|
f"https://zenodo.org/record/{deposit_id_mastr}" |
|
2163
|
|
|
), |
|
2164
|
|
|
"licenses": [license_dedl(attribution="© Amme, Jonathan")], |
|
2165
|
|
|
}, |
|
2166
|
|
|
sources()["openstreetmap"], |
|
2167
|
|
|
sources()["era5"], |
|
2168
|
|
|
sources()["vg250"], |
|
2169
|
|
|
sources()["egon-data"], |
|
2170
|
|
|
], |
|
2171
|
|
|
"licenses": [license_odbl("© eGon development team")], |
|
2172
|
|
|
"contributors": contris, |
|
2173
|
|
|
"resources": [ |
|
2174
|
|
|
{ |
|
2175
|
|
|
"profile": "tabular-data-resource", |
|
2176
|
|
|
"name": name, |
|
2177
|
|
|
"path": "None", |
|
2178
|
|
|
"format": "PostgreSQL", |
|
2179
|
|
|
"encoding": "UTF-8", |
|
2180
|
|
|
"schema": { |
|
2181
|
|
|
"fields": generate_resource_fields_from_db_table( |
|
2182
|
|
|
schema, |
|
2183
|
|
|
table, |
|
2184
|
|
|
), |
|
2185
|
|
|
"primaryKey": "index", |
|
2186
|
|
|
}, |
|
2187
|
|
|
"dialect": {"delimiter": "", "decimalSeparator": ""}, |
|
2188
|
|
|
} |
|
2189
|
|
|
], |
|
2190
|
|
|
"review": {"path": "", "badge": ""}, |
|
2191
|
|
|
"metaMetadata": meta_metadata(), |
|
2192
|
|
|
"_comment": { |
|
2193
|
|
|
"metadata": ( |
|
2194
|
|
|
"Metadata documentation and explanation (https://github." |
|
2195
|
|
|
"com/OpenEnergyPlatform/oemetadata/blob/master/metadata/" |
|
2196
|
|
|
"v141/metadata_key_description.md)" |
|
2197
|
|
|
), |
|
2198
|
|
|
"dates": ( |
|
2199
|
|
|
"Dates and time must follow the ISO8601 including time " |
|
2200
|
|
|
"zone (YYYY-MM-DD or YYYY-MM-DDThh:mm:ss±hh)" |
|
2201
|
|
|
), |
|
2202
|
|
|
"units": "Use a space between numbers and units (100 m)", |
|
2203
|
|
|
"languages": ( |
|
2204
|
|
|
"Languages must follow the IETF (BCP47) format (en-GB, " |
|
2205
|
|
|
"en-US, de-DE)" |
|
2206
|
|
|
), |
|
2207
|
|
|
"licenses": ( |
|
2208
|
|
|
"License name must follow the SPDX License List " |
|
2209
|
|
|
"(https://spdx.org/licenses/)" |
|
2210
|
|
|
), |
|
2211
|
|
|
"review": ( |
|
2212
|
|
|
"Following the OEP Data Review (https://github.com/" |
|
2213
|
|
|
"OpenEnergyPlatform/data-preprocessing/wiki)" |
|
2214
|
|
|
), |
|
2215
|
|
|
"none": "If not applicable use (none)", |
|
2216
|
|
|
}, |
|
2217
|
|
|
} |
|
2218
|
|
|
|
|
2219
|
|
|
dialect = get_dialect(meta_metadata()["metadataVersion"])() |
|
2220
|
|
|
|
|
2221
|
|
|
meta = dialect.compile_and_render(dialect.parse(json.dumps(meta))) |
|
2222
|
|
|
|
|
2223
|
|
|
db.submit_comment( |
|
2224
|
|
|
f"'{json.dumps(meta)}'", |
|
2225
|
|
|
schema, |
|
2226
|
|
|
table, |
|
2227
|
|
|
) |
|
2228
|
|
|
|
|
2229
|
|
|
|
|
2230
|
|
|
def create_scenario_table(buildings_gdf): |
|
2231
|
|
|
"""Create mapping table pv_unit <-> building for scenario""" |
|
2232
|
|
|
EgonPowerPlantPvRoofBuilding.__table__.drop(bind=engine, checkfirst=True) |
|
2233
|
|
|
EgonPowerPlantPvRoofBuilding.__table__.create(bind=engine, checkfirst=True) |
|
2234
|
|
|
|
|
2235
|
|
|
buildings_gdf[COLS_TO_EXPORT].reset_index().to_sql( |
|
2236
|
|
|
name=EgonPowerPlantPvRoofBuilding.__table__.name, |
|
2237
|
|
|
schema=EgonPowerPlantPvRoofBuilding.__table__.schema, |
|
2238
|
|
|
con=db.engine(), |
|
2239
|
|
|
if_exists="append", |
|
2240
|
|
|
index=False, |
|
2241
|
|
|
) |
|
2242
|
|
|
|
|
2243
|
|
|
add_metadata() |
|
2244
|
|
|
|
|
2245
|
|
|
|
|
2246
|
|
|
def add_weather_cell_id(buildings_gdf: gpd.GeoDataFrame) -> gpd.GeoDataFrame: |
|
2247
|
|
|
sql = """ |
|
2248
|
|
|
SELECT building_id, zensus_population_id |
|
2249
|
|
|
FROM boundaries.egon_map_zensus_mvgd_buildings |
|
2250
|
|
|
""" |
|
2251
|
|
|
|
|
2252
|
|
|
buildings_gdf = buildings_gdf.merge( |
|
2253
|
|
|
right=db.select_dataframe(sql).drop_duplicates(subset="building_id"), |
|
2254
|
|
|
how="left", |
|
2255
|
|
|
on="building_id", |
|
2256
|
|
|
) |
|
2257
|
|
|
|
|
2258
|
|
|
sql = """ |
|
2259
|
|
|
SELECT zensus_population_id, w_id as weather_cell_id |
|
2260
|
|
|
FROM boundaries.egon_map_zensus_weather_cell |
|
2261
|
|
|
""" |
|
2262
|
|
|
|
|
2263
|
|
|
buildings_gdf = buildings_gdf.merge( |
|
2264
|
|
|
right=db.select_dataframe(sql).drop_duplicates( |
|
2265
|
|
|
subset="zensus_population_id" |
|
2266
|
|
|
), |
|
2267
|
|
|
how="left", |
|
2268
|
|
|
on="zensus_population_id", |
|
2269
|
|
|
) |
|
2270
|
|
|
|
|
2271
|
|
|
if buildings_gdf.weather_cell_id.isna().any(): |
|
2272
|
|
|
missing = buildings_gdf.loc[ |
|
2273
|
|
|
buildings_gdf.weather_cell_id.isna(), "building_id" |
|
2274
|
|
|
].tolist() |
|
2275
|
|
|
|
|
2276
|
|
|
raise ValueError( |
|
2277
|
|
|
f"Following buildings don't have a weather cell id: {missing}" |
|
2278
|
|
|
) |
|
2279
|
|
|
|
|
2280
|
|
|
return buildings_gdf |
|
2281
|
|
|
|
|
2282
|
|
|
|
|
2283
|
|
|
def add_bus_ids_sq( |
|
2284
|
|
|
buildings_gdf: gpd.GeoDataFrame, |
|
2285
|
|
|
) -> gpd.GeoDataFrame: |
|
2286
|
|
|
"""Add bus ids for status_quo units |
|
2287
|
|
|
|
|
2288
|
|
|
Parameters |
|
2289
|
|
|
----------- |
|
2290
|
|
|
buildings_gdf : geopandas.GeoDataFrame |
|
2291
|
|
|
GeoDataFrame containing OSM buildings data with desaggregated PV |
|
2292
|
|
|
plants. |
|
2293
|
|
|
Returns |
|
2294
|
|
|
------- |
|
2295
|
|
|
geopandas.GeoDataFrame |
|
2296
|
|
|
GeoDataFrame containing OSM building data with bus_id per |
|
2297
|
|
|
generator. |
|
2298
|
|
|
""" |
|
2299
|
|
|
grid_districts_gdf = grid_districts(EPSG) |
|
2300
|
|
|
|
|
2301
|
|
|
mask = buildings_gdf.scenario == "status_quo" |
|
2302
|
|
|
buildings_gdf.loc[mask, "bus_id"] = ( |
|
2303
|
|
|
buildings_gdf.loc[mask] |
|
2304
|
|
|
.sjoin(grid_districts_gdf, how="left") |
|
2305
|
|
|
.index_right |
|
2306
|
|
|
) |
|
2307
|
|
|
|
|
2308
|
|
|
return buildings_gdf |
|
2309
|
|
|
|
|
2310
|
|
|
|
|
2311
|
|
View Code Duplication |
def infer_voltage_level( |
|
|
|
|
|
|
2312
|
|
|
units_gdf: gpd.GeoDataFrame, |
|
2313
|
|
|
) -> gpd.GeoDataFrame: |
|
2314
|
|
|
""" |
|
2315
|
|
|
Infer nan values in voltage level derived from generator capacity to |
|
2316
|
|
|
the power plants. |
|
2317
|
|
|
|
|
2318
|
|
|
Parameters |
|
2319
|
|
|
----------- |
|
2320
|
|
|
units_gdf : geopandas.GeoDataFrame |
|
2321
|
|
|
GeoDataFrame containing units with voltage levels from MaStR |
|
2322
|
|
|
Returnsunits_gdf: gpd.GeoDataFrame |
|
2323
|
|
|
------- |
|
2324
|
|
|
geopandas.GeoDataFrame |
|
2325
|
|
|
GeoDataFrame containing units all having assigned a voltage level. |
|
2326
|
|
|
""" |
|
2327
|
|
|
|
|
2328
|
|
|
def voltage_levels(p: float) -> int: |
|
2329
|
|
|
if p <= 0.1: |
|
2330
|
|
|
return 7 |
|
2331
|
|
|
elif p <= 0.2: |
|
2332
|
|
|
return 6 |
|
2333
|
|
|
elif p <= 5.5: |
|
2334
|
|
|
return 5 |
|
2335
|
|
|
elif p <= 20: |
|
2336
|
|
|
return 4 |
|
2337
|
|
|
elif p <= 120: |
|
2338
|
|
|
return 3 |
|
2339
|
|
|
return 1 |
|
2340
|
|
|
|
|
2341
|
|
|
units_gdf["voltage_level_inferred"] = False |
|
2342
|
|
|
mask = units_gdf.voltage_level.isna() |
|
2343
|
|
|
units_gdf.loc[mask, "voltage_level_inferred"] = True |
|
2344
|
|
|
units_gdf.loc[mask, "voltage_level"] = units_gdf.loc[mask].capacity.apply( |
|
2345
|
|
|
voltage_levels |
|
2346
|
|
|
) |
|
2347
|
|
|
|
|
2348
|
|
|
return units_gdf |
|
2349
|
|
|
|
|
2350
|
|
|
|
|
2351
|
|
|
def pv_rooftop_to_buildings(): |
|
2352
|
|
|
"""Main script, executed as task""" |
|
2353
|
|
|
|
|
2354
|
|
|
mastr_gdf = load_mastr_data() |
|
2355
|
|
|
|
|
2356
|
|
|
buildings_gdf = load_building_data() |
|
2357
|
|
|
|
|
2358
|
|
|
desagg_mastr_gdf, desagg_buildings_gdf = allocate_to_buildings( |
|
2359
|
|
|
mastr_gdf, buildings_gdf |
|
2360
|
|
|
) |
|
2361
|
|
|
|
|
2362
|
|
|
all_buildings_gdf = ( |
|
2363
|
|
|
desagg_mastr_gdf.assign(scenario="status_quo") |
|
2364
|
|
|
.reset_index() |
|
2365
|
|
|
.rename(columns={"geometry": "geom"}) |
|
2366
|
|
|
) |
|
2367
|
|
|
|
|
2368
|
|
|
scenario_buildings_gdf = all_buildings_gdf.copy() |
|
2369
|
|
|
|
|
2370
|
|
|
cap_per_bus_id_df = pd.DataFrame() |
|
2371
|
|
|
|
|
2372
|
|
|
for scenario in SCENARIOS: |
|
2373
|
|
|
logger.debug(f"Desaggregating scenario {scenario}.") |
|
2374
|
|
|
( |
|
2375
|
|
|
scenario_buildings_gdf, |
|
2376
|
|
|
cap_per_bus_id_scenario_df, |
|
2377
|
|
|
) = allocate_scenarios( # noqa: F841 |
|
2378
|
|
|
desagg_mastr_gdf, |
|
2379
|
|
|
desagg_buildings_gdf, |
|
2380
|
|
|
scenario_buildings_gdf, |
|
2381
|
|
|
scenario, |
|
2382
|
|
|
) |
|
2383
|
|
|
|
|
2384
|
|
|
all_buildings_gdf = gpd.GeoDataFrame( |
|
2385
|
|
|
pd.concat( |
|
2386
|
|
|
[all_buildings_gdf, scenario_buildings_gdf], ignore_index=True |
|
2387
|
|
|
), |
|
2388
|
|
|
crs=scenario_buildings_gdf.crs, |
|
2389
|
|
|
geometry="geom", |
|
2390
|
|
|
) |
|
2391
|
|
|
|
|
2392
|
|
|
cap_per_bus_id_df = pd.concat( |
|
2393
|
|
|
[cap_per_bus_id_df, cap_per_bus_id_scenario_df] |
|
2394
|
|
|
) |
|
2395
|
|
|
|
|
2396
|
|
|
# add weather cell |
|
2397
|
|
|
all_buildings_gdf = add_weather_cell_id(all_buildings_gdf) |
|
2398
|
|
|
|
|
2399
|
|
|
# add bus IDs for status quo scenario |
|
2400
|
|
|
all_buildings_gdf = add_bus_ids_sq(all_buildings_gdf) |
|
2401
|
|
|
|
|
2402
|
|
|
# export scenario |
|
2403
|
|
|
create_scenario_table(infer_voltage_level(all_buildings_gdf)) |
|
2404
|
|
|
|