|
1
|
|
|
import geopandas as gpd |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
import pandas as pd |
|
4
|
|
|
|
|
5
|
|
|
from egon.data import db |
|
6
|
|
|
from egon.data.datasets.mastr import WORKING_DIR_MASTR_NEW |
|
7
|
|
|
import egon.data.config |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
def insert(): |
|
11
|
|
|
def mastr_existing_pv(pow_per_area): |
|
12
|
|
|
|
|
13
|
|
|
"""Import MaStR data from csv-files. |
|
14
|
|
|
|
|
15
|
|
|
Parameters |
|
16
|
|
|
---------- |
|
17
|
|
|
pow_per_area: int |
|
18
|
|
|
Assumption for areas of existing pv farms and power of new built |
|
19
|
|
|
pv farms depending on area in kW/m² |
|
20
|
|
|
|
|
21
|
|
|
""" |
|
22
|
|
|
# get config |
|
23
|
|
|
cfg = egon.data.config.datasets()["power_plants"] |
|
24
|
|
|
|
|
25
|
|
|
# import MaStR data: locations, grid levels and installed capacities |
|
26
|
|
|
|
|
27
|
|
|
# get relevant pv plants: ground mounted |
|
28
|
|
|
df = pd.read_csv( |
|
29
|
|
|
WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_pv"], |
|
30
|
|
|
usecols=[ |
|
31
|
|
|
"Lage", |
|
32
|
|
|
"Laengengrad", |
|
33
|
|
|
"Breitengrad", |
|
34
|
|
|
"Nettonennleistung", |
|
35
|
|
|
"EinheitMastrNummer", |
|
36
|
|
|
"LokationMastrNummer", |
|
37
|
|
|
], |
|
38
|
|
|
) |
|
39
|
|
|
df = df[df["Lage"] == "Freiflaeche"] |
|
40
|
|
|
|
|
41
|
|
|
# examine data concerning geographical locations and drop NaNs |
|
42
|
|
|
x1 = df["Laengengrad"].isnull().sum() |
|
43
|
|
|
x2 = df["Breitengrad"].isnull().sum() |
|
44
|
|
|
print(" ") |
|
45
|
|
|
print("Examination of MaStR data set:") |
|
46
|
|
|
print("original number of rows in the data set: " + str(len(df))) |
|
47
|
|
|
print("NaNs for longitude and latitude: " + str(x1) + " & " + str(x2)) |
|
48
|
|
|
df.dropna(inplace=True) |
|
49
|
|
|
print("Number of rows after neglecting NaNs: " + str(len(df))) |
|
50
|
|
|
print(" ") |
|
51
|
|
|
|
|
52
|
|
|
# derive dataframe for locations |
|
53
|
|
|
mastr = gpd.GeoDataFrame( |
|
54
|
|
|
index=df.index, |
|
55
|
|
|
geometry=gpd.points_from_xy(df["Laengengrad"], df["Breitengrad"]), |
|
56
|
|
|
crs={"init": "epsg:4326"}, |
|
57
|
|
|
) |
|
58
|
|
|
mastr = mastr.to_crs(3035) |
|
59
|
|
|
|
|
60
|
|
|
# derive installed capacities |
|
61
|
|
|
mastr["installed capacity in kW"] = df["Nettonennleistung"] |
|
62
|
|
|
|
|
63
|
|
|
# create buffer around locations |
|
64
|
|
|
|
|
65
|
|
|
# calculate bufferarea and -radius considering installed capacity |
|
66
|
|
|
df_radius = ( |
|
67
|
|
|
mastr["installed capacity in kW"].div(pow_per_area * np.pi) ** 0.5 |
|
68
|
|
|
) # in m |
|
69
|
|
|
|
|
70
|
|
|
# create buffer |
|
71
|
|
|
mastr["buffer"] = mastr["geometry"].buffer(df_radius) |
|
72
|
|
|
mastr["buffer"].crs = 3035 |
|
73
|
|
|
|
|
74
|
|
|
# derive MaStR-Nummer |
|
75
|
|
|
mastr["LokationMastrNummer"] = df["LokationMastrNummer"] |
|
76
|
|
|
|
|
77
|
|
|
# derive voltage level |
|
78
|
|
|
|
|
79
|
|
|
mastr["voltage_level"] = pd.Series(dtype=int) |
|
80
|
|
|
lvl = pd.read_csv( |
|
81
|
|
|
WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_location"], |
|
82
|
|
|
usecols=["Spannungsebene", "MaStRNummer"], |
|
83
|
|
|
) |
|
84
|
|
|
|
|
85
|
|
|
# assign voltage_level to MaStR-unit: |
|
86
|
|
|
|
|
87
|
|
|
vlevel_mapping = { |
|
88
|
|
|
"Höchstspannung": 1, |
|
89
|
|
|
"UmspannungZurHochspannung": 2, |
|
90
|
|
|
"Hochspannung": 3, |
|
91
|
|
|
"UmspannungZurMittelspannung": 4, |
|
92
|
|
|
"Mittelspannung": 5, |
|
93
|
|
|
"UmspannungZurNiederspannung": 6, |
|
94
|
|
|
"Niederspannung": 7, |
|
95
|
|
|
} |
|
96
|
|
|
|
|
97
|
|
|
mastr = mastr.merge( |
|
98
|
|
|
lvl[["MaStRNummer", "Spannungsebene"]], |
|
99
|
|
|
left_on="LokationMastrNummer", |
|
100
|
|
|
right_on="MaStRNummer", |
|
101
|
|
|
how="left", |
|
102
|
|
|
) |
|
103
|
|
|
|
|
104
|
|
|
mastr["voltage_level"] = mastr.Spannungsebene.replace(vlevel_mapping) |
|
105
|
|
|
|
|
106
|
|
|
mastr.drop(["MaStRNummer", "Spannungsebene"], axis=1, inplace=True) |
|
107
|
|
|
|
|
108
|
|
|
# ### examine data concerning voltage level |
|
109
|
|
|
x1 = mastr["voltage_level"].isnull().sum() |
|
110
|
|
|
print(" ") |
|
111
|
|
|
print("Examination of voltage levels in MaStR data set:") |
|
112
|
|
|
print("Original number of rows in MaStR: " + str(len(mastr))) |
|
113
|
|
|
print( |
|
114
|
|
|
"NaNs in voltage level caused by a) a missing assignment to the " |
|
115
|
|
|
"number or b) insufficient data: " + str(x1) |
|
116
|
|
|
) |
|
117
|
|
|
# drop PVs with missing values due to a) no assignment of |
|
118
|
|
|
# MaStR-numbers or b) missing data in row |
|
119
|
|
|
mastr.dropna(inplace=True) |
|
120
|
|
|
print("Number of rows after neglecting NaNs: " + str(len(mastr))) |
|
121
|
|
|
|
|
122
|
|
|
# drop PVs in low voltage level |
|
123
|
|
|
index_names = mastr[mastr["voltage_level"] == "Niederspannung"].index |
|
124
|
|
|
x2 = len(index_names) |
|
125
|
|
|
mastr.drop(index_names, inplace=True) |
|
126
|
|
|
index_names = mastr[ |
|
127
|
|
|
mastr["voltage_level"] == "UmspannungZurNiederspannung" |
|
128
|
|
|
].index |
|
129
|
|
|
x3 = len(index_names) |
|
130
|
|
|
mastr.drop(index_names, inplace=True) |
|
131
|
|
|
|
|
132
|
|
|
# ### further examination |
|
133
|
|
|
print("Number of PVs in low voltage level: " + str(x2)) |
|
134
|
|
|
print("Number of PVs in LVMV level: " + str(x3)) |
|
135
|
|
|
print( |
|
136
|
|
|
"Number of rows after dropping entries assigned to these levels: " |
|
137
|
|
|
+ str(len(mastr)) |
|
138
|
|
|
) |
|
139
|
|
|
print(" ") |
|
140
|
|
|
|
|
141
|
|
|
return mastr |
|
142
|
|
|
|
|
143
|
|
|
def potential_areas(con, join_buffer): |
|
144
|
|
|
|
|
145
|
|
|
"""Import potential areas and choose and prepare areas suitable for PV |
|
146
|
|
|
ground mounted. |
|
147
|
|
|
|
|
148
|
|
|
Parameters |
|
149
|
|
|
---------- |
|
150
|
|
|
con: |
|
151
|
|
|
Connection to database |
|
152
|
|
|
join_buffer: int |
|
153
|
|
|
Maximum distance for joining of potential areas (only small ones |
|
154
|
|
|
to big ones) in m |
|
155
|
|
|
|
|
156
|
|
|
""" |
|
157
|
|
|
|
|
158
|
|
|
# import potential areas: railways and roads & agriculture |
|
159
|
|
|
|
|
160
|
|
|
# roads and railway |
|
161
|
|
|
sql = ( |
|
162
|
|
|
"SELECT id, geom FROM " |
|
163
|
|
|
"supply.egon_re_potential_area_pv_road_railway" |
|
164
|
|
|
) |
|
165
|
|
|
potentials_rora = gpd.GeoDataFrame.from_postgis(sql, con) |
|
166
|
|
|
potentials_rora = potentials_rora.set_index("id") |
|
167
|
|
|
|
|
168
|
|
|
# agriculture |
|
169
|
|
|
sql = ( |
|
170
|
|
|
"SELECT id, geom FROM " |
|
171
|
|
|
"supply.egon_re_potential_area_pv_agriculture" |
|
172
|
|
|
) |
|
173
|
|
|
potentials_agri = gpd.GeoDataFrame.from_postgis(sql, con) |
|
174
|
|
|
potentials_agri = potentials_agri.set_index("id") |
|
175
|
|
|
|
|
176
|
|
|
# add areas < 1 ha to bigger areas if they are very close, otherwise |
|
177
|
|
|
# exclude areas < 1 ha |
|
178
|
|
|
|
|
179
|
|
|
# calculate area |
|
180
|
|
|
potentials_rora["area"] = potentials_rora.area |
|
181
|
|
|
potentials_agri["area"] = potentials_agri.area |
|
182
|
|
|
|
|
183
|
|
|
# roads and railways |
|
184
|
|
|
|
|
185
|
|
|
# ### counting variable for examination |
|
186
|
|
|
before = len(potentials_rora) |
|
187
|
|
|
|
|
188
|
|
|
# get small areas and create buffer for joining around them |
|
189
|
|
|
small_areas = potentials_rora[potentials_rora["area"] < 10000] |
|
190
|
|
|
small_buffers = small_areas.copy() |
|
191
|
|
|
small_buffers["geom"] = small_areas["geom"].buffer(join_buffer) |
|
192
|
|
|
|
|
193
|
|
|
# drop small areas in potential areas |
|
194
|
|
|
index_names = potentials_rora[potentials_rora["area"] < 10000].index |
|
195
|
|
|
potentials_rora.drop(index_names, inplace=True) |
|
196
|
|
|
|
|
197
|
|
|
# check intersection of small areas with other potential areas |
|
198
|
|
|
overlay = gpd.sjoin(potentials_rora, small_buffers) |
|
199
|
|
|
o = overlay["index_right"] |
|
200
|
|
|
o.drop_duplicates(inplace=True) |
|
201
|
|
|
|
|
202
|
|
|
# add small areas to big ones if buffer intersects |
|
203
|
|
|
for i in range(0, len(o)): |
|
204
|
|
|
index_potentials = o.index[i] |
|
205
|
|
|
index_small = o.iloc[i] |
|
206
|
|
|
x = potentials_rora["geom"].loc[index_potentials] |
|
207
|
|
|
y = small_areas["geom"].loc[index_small] |
|
208
|
|
|
join = gpd.GeoSeries(data=[x, y]) |
|
209
|
|
|
potentials_rora["geom"].loc[index_potentials] = join.unary_union |
|
210
|
|
|
|
|
211
|
|
|
# ### examination of joining of areas |
|
212
|
|
|
count_small = len(small_buffers) |
|
213
|
|
|
count_join = len(o) |
|
214
|
|
|
count_delete = count_small - count_join |
|
215
|
|
|
print(" ") |
|
216
|
|
|
print( |
|
217
|
|
|
"Examination of potential areas in category 'Roads and Railways'" |
|
218
|
|
|
) |
|
219
|
|
|
print("Length of original data frame: " + str(before)) |
|
220
|
|
|
print("Number of small areas: " + str(count_small)) |
|
221
|
|
|
print("Number of joins: " + str(count_join)) |
|
222
|
|
|
print("Deleted areas (not joined): " + str(count_delete)) |
|
223
|
|
|
print("Length of resulting data frame: " + str(len(potentials_rora))) |
|
224
|
|
|
print(" ") |
|
225
|
|
|
|
|
226
|
|
|
# agriculture |
|
227
|
|
|
|
|
228
|
|
|
# ### counting variable for examination |
|
229
|
|
|
before = len(potentials_agri) |
|
230
|
|
|
|
|
231
|
|
|
# get small areas and create buffer for joining around them |
|
232
|
|
|
small_areas = potentials_agri[potentials_agri["area"] < 10000] |
|
233
|
|
|
small_buffers = small_areas.copy() |
|
234
|
|
|
small_buffers["geom"] = small_areas["geom"].buffer(join_buffer) |
|
235
|
|
|
|
|
236
|
|
|
# drop small areas in potential areas |
|
237
|
|
|
index_names = potentials_agri[potentials_agri["area"] < 10000].index |
|
238
|
|
|
potentials_agri.drop(index_names, inplace=True) |
|
239
|
|
|
|
|
240
|
|
|
# check intersection of small areas with other potential areas |
|
241
|
|
|
overlay = gpd.sjoin(potentials_agri, small_buffers) |
|
242
|
|
|
o = overlay["index_right"] |
|
243
|
|
|
o.drop_duplicates(inplace=True) |
|
244
|
|
|
|
|
245
|
|
|
# add small areas to big ones if buffer intersects |
|
246
|
|
|
for i in range(0, len(o)): |
|
247
|
|
|
index_potentials = o.index[i] |
|
248
|
|
|
index_small = o.iloc[i] |
|
249
|
|
|
x = potentials_agri["geom"].loc[index_potentials] |
|
250
|
|
|
y = small_areas["geom"].loc[index_small] |
|
251
|
|
|
join = gpd.GeoSeries(data=[x, y]) |
|
252
|
|
|
potentials_agri["geom"].loc[index_potentials] = join.unary_union |
|
253
|
|
|
|
|
254
|
|
|
# ### examination of joining of areas |
|
255
|
|
|
count_small = len(small_buffers) |
|
256
|
|
|
count_join = len(o) |
|
257
|
|
|
count_delete = count_small - count_join |
|
258
|
|
|
print(" ") |
|
259
|
|
|
print("Examination of potential areas in category 'Agriculture'") |
|
260
|
|
|
print("Length of original data frame: " + str(before)) |
|
261
|
|
|
print("Number of small areas: " + str(count_small)) |
|
262
|
|
|
print("Number of joins: " + str(count_join)) |
|
263
|
|
|
print("Deleted areas (not joined): " + str(count_delete)) |
|
264
|
|
|
print("Length of resulting data frame: " + str(len(potentials_agri))) |
|
265
|
|
|
print(" ") |
|
266
|
|
|
|
|
267
|
|
|
# calculate new areas |
|
268
|
|
|
potentials_rora["area"] = potentials_rora.area |
|
269
|
|
|
potentials_agri["area"] = potentials_agri.area |
|
270
|
|
|
|
|
271
|
|
|
# check intersection of potential areas |
|
272
|
|
|
|
|
273
|
|
|
# ### counting variable |
|
274
|
|
|
agri_vorher = len(potentials_agri) |
|
275
|
|
|
|
|
276
|
|
|
# if areas intersect, keep road & railway potential areas and drop |
|
277
|
|
|
# agricultural ones |
|
278
|
|
|
overlay = gpd.sjoin(potentials_rora, potentials_agri) |
|
279
|
|
|
o = overlay["index_right"] |
|
280
|
|
|
o.drop_duplicates(inplace=True) |
|
281
|
|
|
for i in range(0, len(o)): |
|
282
|
|
|
index = o.iloc[i] |
|
283
|
|
|
potentials_agri.drop([index], inplace=True) |
|
284
|
|
|
|
|
285
|
|
|
# ### examination of intersection of areas |
|
286
|
|
|
print(" ") |
|
287
|
|
|
print("Review function to avoid intersection of potential areas:") |
|
288
|
|
|
print("Initial length potentials_agri: " + str(agri_vorher)) |
|
289
|
|
|
print("Number of occurred cases: " + str(len(o))) |
|
290
|
|
|
print("Resulting length potentials_agri: " + str(len(potentials_agri))) |
|
291
|
|
|
print(" ") |
|
292
|
|
|
|
|
293
|
|
|
return potentials_rora, potentials_agri |
|
294
|
|
|
|
|
295
|
|
|
def select_pot_areas(mastr, potentials_pot): |
|
296
|
|
|
|
|
297
|
|
|
"""Select potential areas where there are existing pv parks |
|
298
|
|
|
(MaStR-data). |
|
299
|
|
|
|
|
300
|
|
|
Parameters |
|
301
|
|
|
---------- |
|
302
|
|
|
mastr: gpd.GeoDataFrame() |
|
303
|
|
|
MaStR-DataFrame with existing pv parks |
|
304
|
|
|
potentials_pot: gpd.GeoDataFrame() |
|
305
|
|
|
Suitable potential areas |
|
306
|
|
|
|
|
307
|
|
|
""" |
|
308
|
|
|
|
|
309
|
|
|
# select potential areas with existing pv parks |
|
310
|
|
|
# (potential areas intersect buffer around existing plants) |
|
311
|
|
|
|
|
312
|
|
|
# prepare dataframes to check intersection |
|
313
|
|
|
pvs = gpd.GeoDataFrame() |
|
314
|
|
|
pvs["geom"] = mastr["buffer"].copy() |
|
315
|
|
|
pvs.crs = 3035 |
|
316
|
|
|
pvs = pvs.set_geometry("geom") |
|
317
|
|
|
potentials = gpd.GeoDataFrame() |
|
318
|
|
|
potentials["geom"] = potentials_pot["geom"].copy() |
|
319
|
|
|
potentials.crs = 3035 |
|
320
|
|
|
potentials = potentials.set_geometry("geom") |
|
321
|
|
|
|
|
322
|
|
|
# check intersection of potential areas with exisiting PVs (MaStR) |
|
323
|
|
|
overlay = gpd.sjoin(pvs, potentials) |
|
324
|
|
|
o = overlay["index_right"] |
|
325
|
|
|
o.drop_duplicates(inplace=True) |
|
326
|
|
|
|
|
327
|
|
|
# define selected potentials areas |
|
328
|
|
|
pot_sel = potentials_pot.copy() |
|
329
|
|
|
pot_sel["selected"] = pd.Series() |
|
330
|
|
|
pot_sel["voltage_level"] = pd.Series(dtype=int) |
|
331
|
|
|
for i in range(0, len(o)): |
|
332
|
|
|
index_pot = o.iloc[i] |
|
333
|
|
|
pot_sel["selected"].loc[index_pot] = True |
|
334
|
|
|
# get voltage level of existing PVs |
|
335
|
|
|
index_pv = o.index[i] |
|
336
|
|
|
pot_sel["voltage_level"] = mastr["voltage_level"].loc[index_pv] |
|
337
|
|
|
pot_sel = pot_sel[pot_sel["selected"] == True] |
|
338
|
|
|
pot_sel.drop("selected", axis=1, inplace=True) |
|
339
|
|
|
|
|
340
|
|
|
# drop selected existing pv parks from mastr |
|
341
|
|
|
mastr.drop(index=o.index, inplace=True) |
|
342
|
|
|
|
|
343
|
|
|
return (pot_sel, mastr) |
|
344
|
|
|
|
|
345
|
|
|
def build_pv(pv_pot, pow_per_area): |
|
346
|
|
|
|
|
347
|
|
|
"""Build new pv parks in selected potential areas. |
|
348
|
|
|
|
|
349
|
|
|
Parameters |
|
350
|
|
|
---------- |
|
351
|
|
|
pv_pot: gpd.GeoDataFrame() |
|
352
|
|
|
Selected potential areas |
|
353
|
|
|
pow_per_area: int |
|
354
|
|
|
Assumption for areas of existing pv farms and power of new built |
|
355
|
|
|
pv farms depending on area in kW/m² |
|
356
|
|
|
|
|
357
|
|
|
""" |
|
358
|
|
|
|
|
359
|
|
|
# build pv farms in selected areas |
|
360
|
|
|
|
|
361
|
|
|
# calculation of centroids |
|
362
|
|
|
pv_pot["centroid"] = pv_pot["geom"].representative_point() |
|
363
|
|
|
|
|
364
|
|
|
# calculation of power in kW |
|
365
|
|
|
pv_pot["installed capacity in kW"] = pd.Series() |
|
366
|
|
|
pv_pot["installed capacity in kW"] = pv_pot["area"] * pow_per_area |
|
367
|
|
|
|
|
368
|
|
|
# check for maximal capacity for PV ground mounted |
|
369
|
|
|
limit_cap = 120000 # in kW |
|
370
|
|
|
pv_pot["installed capacity in kW"] = pv_pot[ |
|
371
|
|
|
"installed capacity in kW" |
|
372
|
|
|
].apply(lambda x: x if x < limit_cap else limit_cap) |
|
373
|
|
|
|
|
374
|
|
|
return pv_pot |
|
375
|
|
|
|
|
376
|
|
|
def adapt_grid_level(pv_pot, max_dist_hv, con): |
|
377
|
|
|
|
|
378
|
|
|
"""Check and if needed adapt grid level of newly built pv parks. |
|
379
|
|
|
|
|
380
|
|
|
Parameters |
|
381
|
|
|
---------- |
|
382
|
|
|
pv_pot: gpd.GeoDataFrame() |
|
383
|
|
|
Newly built pv parks on selected potential areas |
|
384
|
|
|
max_dist_hv: int |
|
385
|
|
|
Assumption for maximum distance of park with hv-power to next |
|
386
|
|
|
substation in m |
|
387
|
|
|
con: |
|
388
|
|
|
Connection to database |
|
389
|
|
|
|
|
390
|
|
|
""" |
|
391
|
|
|
|
|
392
|
|
|
# divide dataframe in MV and HV |
|
393
|
|
|
pv_pot_mv = pv_pot[pv_pot["voltage_level"] == 5] |
|
394
|
|
|
pv_pot_hv = pv_pot[pv_pot["voltage_level"] == 4] |
|
395
|
|
|
|
|
396
|
|
|
# check installed capacity in MV |
|
397
|
|
|
|
|
398
|
|
|
max_cap_mv = 5500 # in kW |
|
399
|
|
|
|
|
400
|
|
|
# find PVs which need to be HV or to have reduced capacity |
|
401
|
|
|
pv_pot_mv_to_hv = pv_pot_mv[ |
|
402
|
|
|
pv_pot_mv["installed capacity in kW"] > max_cap_mv |
|
403
|
|
|
] |
|
404
|
|
|
|
|
405
|
|
|
if len(pv_pot_mv_to_hv) > 0: |
|
406
|
|
|
|
|
407
|
|
|
# import data for HV substations |
|
408
|
|
|
|
|
409
|
|
|
sql = "SELECT point, voltage FROM grid.egon_hvmv_substation" |
|
410
|
|
|
hvmv_substation = gpd.GeoDataFrame.from_postgis( |
|
411
|
|
|
sql, con, geom_col="point" |
|
412
|
|
|
) |
|
413
|
|
|
hvmv_substation = hvmv_substation.to_crs(3035) |
|
414
|
|
|
hvmv_substation["voltage"] = hvmv_substation["voltage"].apply( |
|
415
|
|
|
lambda x: int(x.split(";")[0]) |
|
416
|
|
|
) |
|
417
|
|
|
hv_substations = hvmv_substation[ |
|
418
|
|
|
hvmv_substation["voltage"] >= 110000 |
|
419
|
|
|
] |
|
420
|
|
|
hv_substations = ( |
|
421
|
|
|
hv_substations.unary_union |
|
422
|
|
|
) # join all the hv_substations |
|
423
|
|
|
|
|
424
|
|
|
# check distance to HV substations of PVs with too high installed |
|
425
|
|
|
# capacity for MV |
|
426
|
|
|
|
|
427
|
|
|
# calculate distance to substations |
|
428
|
|
|
pv_pot_mv_to_hv["dist_to_HV"] = ( |
|
429
|
|
|
pv_pot_mv_to_hv["geom"].to_crs(3035).distance(hv_substations) |
|
430
|
|
|
) |
|
431
|
|
|
|
|
432
|
|
|
# adjust grid level and keep capacity if transmission lines are |
|
433
|
|
|
# close |
|
434
|
|
|
pv_pot_mv_to_hv = pv_pot_mv_to_hv[ |
|
435
|
|
|
pv_pot_mv_to_hv["dist_to_HV"] <= max_dist_hv |
|
436
|
|
|
] |
|
437
|
|
|
pv_pot_mv_to_hv = pv_pot_mv_to_hv.drop(columns=["dist_to_HV"]) |
|
438
|
|
|
pv_pot_hv = pv_pot_hv.append(pv_pot_mv_to_hv) |
|
439
|
|
|
|
|
440
|
|
|
# delete PVs which are now HV from MV dataframe |
|
441
|
|
|
for index, pot in pv_pot_mv_to_hv.iterrows(): |
|
442
|
|
|
pv_pot_mv = pv_pot_mv.drop([index]) |
|
443
|
|
|
pv_pot_hv["voltage_level"] = 4 |
|
444
|
|
|
|
|
445
|
|
|
# keep grid level adjust capacity if transmission lines are too |
|
446
|
|
|
# far |
|
447
|
|
|
pv_pot_mv["installed capacity in kW"] = pv_pot_mv[ |
|
448
|
|
|
"installed capacity in kW" |
|
449
|
|
|
].apply(lambda x: x if x < max_cap_mv else max_cap_mv) |
|
450
|
|
|
pv_pot_mv["voltage_level"] = 5 |
|
451
|
|
|
|
|
452
|
|
|
pv_pot = pv_pot_mv.append(pv_pot_hv) |
|
453
|
|
|
|
|
454
|
|
|
return pv_pot |
|
455
|
|
|
|
|
456
|
|
|
def build_additional_pv(potentials, pv, pow_per_area, con): |
|
457
|
|
|
|
|
458
|
|
|
"""Build additional pv parks if pv parks on selected potential areas |
|
459
|
|
|
do not hit the target value. |
|
460
|
|
|
|
|
461
|
|
|
Parameters |
|
462
|
|
|
---------- |
|
463
|
|
|
potenatials: gpd.GeoDataFrame() |
|
464
|
|
|
All suitable potential areas |
|
465
|
|
|
pv: gpd.GeoDataFrame() |
|
466
|
|
|
Newly built pv parks on selected potential areas |
|
467
|
|
|
pow_per_area: int |
|
468
|
|
|
Assumption for areas of existing pv farms and power of new built |
|
469
|
|
|
pv farms depending on area in kW/m² |
|
470
|
|
|
con: |
|
471
|
|
|
Connection to database |
|
472
|
|
|
|
|
473
|
|
|
""" |
|
474
|
|
|
|
|
475
|
|
|
# get MV grid districts |
|
476
|
|
|
sql = "SELECT bus_id, geom FROM grid.egon_mv_grid_district" |
|
477
|
|
|
distr = gpd.GeoDataFrame.from_postgis(sql, con) |
|
478
|
|
|
distr = distr.set_index("bus_id") |
|
479
|
|
|
|
|
480
|
|
|
# identify potential areas where there are no PV parks yet |
|
481
|
|
|
for index, pv in pv.iterrows(): |
|
482
|
|
|
potentials = potentials.drop([index]) |
|
483
|
|
|
|
|
484
|
|
|
# aggregate potential area per MV grid district |
|
485
|
|
|
pv_per_distr = gpd.GeoDataFrame() |
|
486
|
|
|
pv_per_distr["geom"] = distr["geom"].copy() |
|
487
|
|
|
centroids = potentials.copy() |
|
488
|
|
|
centroids["geom"] = centroids["geom"].representative_point() |
|
489
|
|
|
|
|
490
|
|
|
overlay = gpd.sjoin(centroids, distr) |
|
491
|
|
|
|
|
492
|
|
|
# ### examine potential area per grid district |
|
493
|
|
|
anz = len(overlay) |
|
494
|
|
|
anz_distr = len(overlay["index_right"].unique()) |
|
495
|
|
|
size = 137500 # m2 Fläche für > 5,5 MW: (5500 kW / (0,04 kW/m2)) |
|
496
|
|
|
anz_big = len(overlay[overlay["area"] >= size]) |
|
497
|
|
|
anz_small = len(overlay[overlay["area"] < size]) |
|
498
|
|
|
|
|
499
|
|
|
print(" ") |
|
500
|
|
|
print( |
|
501
|
|
|
"Examination of remaining potential areas in MV grid districts: " |
|
502
|
|
|
) |
|
503
|
|
|
print("Number of potential areas: " + str(anz)) |
|
504
|
|
|
print(" -> distributed to " + str(anz_distr) + " districts") |
|
505
|
|
|
print("Number of areas with a potential >= 5,5 MW: " + str(anz_big)) |
|
506
|
|
|
print("Number of areas with a potential < 5,5 MW: " + str(anz_small)) |
|
507
|
|
|
print(" ") |
|
508
|
|
|
|
|
509
|
|
|
for index, dist in distr.iterrows(): |
|
510
|
|
|
pots = overlay[overlay["index_right"] == index]["geom"].index |
|
511
|
|
|
p = gpd.GeoSeries(index=pots) |
|
512
|
|
|
for i in pots: |
|
513
|
|
|
p.loc[i] = potentials["geom"].loc[i] |
|
514
|
|
|
pv_per_distr["geom"].loc[index] = p.unary_union |
|
515
|
|
|
|
|
516
|
|
|
# calculate area per MV grid district and linearly distribute needed |
|
517
|
|
|
# capacity considering pow_per_area |
|
518
|
|
|
pv_per_distr["area"] = pv_per_distr["geom"].area |
|
519
|
|
|
pv_per_distr["installed capacity in kW"] = ( |
|
520
|
|
|
pv_per_distr["area"] * pow_per_area |
|
521
|
|
|
) |
|
522
|
|
|
|
|
523
|
|
|
# calculate centroid |
|
524
|
|
|
pv_per_distr["centroid"] = pv_per_distr["geom"].representative_point() |
|
525
|
|
|
|
|
526
|
|
|
return pv_per_distr |
|
527
|
|
|
|
|
528
|
|
|
def check_target( |
|
529
|
|
|
pv_rora_i, |
|
530
|
|
|
pv_agri_i, |
|
531
|
|
|
pv_exist_i, |
|
532
|
|
|
potentials_rora_i, |
|
533
|
|
|
potentials_agri_i, |
|
534
|
|
|
target_power, |
|
535
|
|
|
pow_per_area, |
|
536
|
|
|
con, |
|
537
|
|
|
): |
|
538
|
|
|
|
|
539
|
|
|
"""Check target value per scenario and per state. |
|
540
|
|
|
|
|
541
|
|
|
Parameters |
|
542
|
|
|
---------- |
|
543
|
|
|
pv_rora_i: gpd.GeoDataFrame() |
|
544
|
|
|
Newly built pv parks on selected potential areas of road and |
|
545
|
|
|
railways p |
|
546
|
|
|
pv_agri_i: gpd.GeoDataFrame() |
|
547
|
|
|
Newly built pv parks on selected potential areas of agriculture |
|
548
|
|
|
pv_exist_i: gpd.GeoDataFrame() |
|
549
|
|
|
existing pv parks that don't intercept any potential area |
|
550
|
|
|
potenatials_rora_i: gpd.GeoDataFrame() |
|
551
|
|
|
All suitable potential areas of road and railway |
|
552
|
|
|
potenatials_rora_i: gpd.GeoDataFrame() |
|
553
|
|
|
All suitable potential areas of agriculture |
|
554
|
|
|
target_power: int |
|
555
|
|
|
Target for installed capacity of pv ground mounted in referenced |
|
556
|
|
|
state |
|
557
|
|
|
pow_per_area: int |
|
558
|
|
|
Assumption for areas of existing pv farms and power of new built |
|
559
|
|
|
pv farms depending on area in kW/m² |
|
560
|
|
|
con: |
|
561
|
|
|
Connection to database |
|
562
|
|
|
|
|
563
|
|
|
""" |
|
564
|
|
|
|
|
565
|
|
|
# sum overall installed capacity for MV and HV |
|
566
|
|
|
|
|
567
|
|
|
total_pv_power = ( |
|
568
|
|
|
pv_rora_i["installed capacity in kW"].sum() |
|
569
|
|
|
+ pv_agri_i["installed capacity in kW"].sum() |
|
570
|
|
|
+ pv_exist_i["installed capacity in kW"].sum() |
|
571
|
|
|
) |
|
572
|
|
|
|
|
573
|
|
|
pv_per_distr_i = gpd.GeoDataFrame() |
|
574
|
|
|
|
|
575
|
|
|
# check target value |
|
576
|
|
|
|
|
577
|
|
|
### |
|
578
|
|
|
print(" ") |
|
579
|
|
|
print( |
|
580
|
|
|
"Installed capacity on areas with existing plants: " |
|
581
|
|
|
+ str(total_pv_power / 1000) |
|
582
|
|
|
+ " MW" |
|
583
|
|
|
) |
|
584
|
|
|
|
|
585
|
|
|
# linear scale farms to meet target if sum of installed capacity is |
|
586
|
|
|
# too high |
|
587
|
|
|
if total_pv_power >= target_power: |
|
588
|
|
|
|
|
589
|
|
|
scale_factor = target_power / total_pv_power |
|
590
|
|
|
pv_rora_i["installed capacity in kW"] = ( |
|
591
|
|
|
pv_rora_i["installed capacity in kW"] * scale_factor |
|
592
|
|
|
) |
|
593
|
|
|
pv_agri_i["installed capacity in kW"] = ( |
|
594
|
|
|
pv_agri_i["installed capacity in kW"] * scale_factor |
|
595
|
|
|
) |
|
596
|
|
|
pv_exist_i["installed capacity in kW"] = ( |
|
597
|
|
|
pv_exist_i["installed capacity in kW"] * scale_factor |
|
598
|
|
|
) |
|
599
|
|
|
|
|
600
|
|
|
pv_per_distr_i["grid_district"] = pd.Series() |
|
601
|
|
|
pv_per_distr_i["installed capacity in kW"] = pd.Series(0) |
|
602
|
|
|
|
|
603
|
|
|
### |
|
604
|
|
|
print( |
|
605
|
|
|
"Expansion of existing PV parks on potential areas to " |
|
606
|
|
|
"achieve target capacity is sufficient." |
|
607
|
|
|
) |
|
608
|
|
|
print( |
|
609
|
|
|
"Installed power is greater than the target value, scaling " |
|
610
|
|
|
"is applied:" |
|
611
|
|
|
) |
|
612
|
|
|
print("Scaling factor: " + str(scale_factor)) |
|
613
|
|
|
|
|
614
|
|
|
# build new pv parks if sum of installed capacity is below target |
|
615
|
|
|
# value |
|
616
|
|
|
elif total_pv_power < target_power: |
|
617
|
|
|
|
|
618
|
|
|
rest_cap = target_power - total_pv_power |
|
619
|
|
|
|
|
620
|
|
|
### |
|
621
|
|
|
print( |
|
622
|
|
|
"Expansion of existing PV parks on potential areas to " |
|
623
|
|
|
"achieve target capacity is unsufficient:" |
|
624
|
|
|
) |
|
625
|
|
|
print("Residual capacity: " + str(rest_cap / 1000) + " MW") |
|
626
|
|
|
print( |
|
627
|
|
|
"Residual capacity will initially be distributed via " |
|
628
|
|
|
"remaining potential areas 'Road & Railway'." |
|
629
|
|
|
) |
|
630
|
|
|
|
|
631
|
|
|
# build pv parks in potential areas road & railway |
|
632
|
|
|
pv_per_distr_i = build_additional_pv( |
|
633
|
|
|
potentials_rora_i, pv_rora_i, pow_per_area, con |
|
634
|
|
|
) |
|
635
|
|
|
# change index to add different Dataframes in the end |
|
636
|
|
|
pv_per_distr_i["grid_district"] = pv_per_distr_i.index.copy() |
|
637
|
|
|
pv_per_distr_i.index = range(0, len(pv_per_distr_i)) |
|
638
|
|
|
# delete empty grid districts |
|
639
|
|
|
index_names = pv_per_distr_i[ |
|
640
|
|
|
pv_per_distr_i["installed capacity in kW"].isna() |
|
641
|
|
|
].index |
|
642
|
|
|
pv_per_distr_i.drop(index_names, inplace=True) |
|
643
|
|
|
|
|
644
|
|
|
if pv_per_distr_i["installed capacity in kW"].sum() > rest_cap: |
|
645
|
|
|
scale_factor = ( |
|
646
|
|
|
rest_cap / pv_per_distr_i["installed capacity in kW"].sum() |
|
647
|
|
|
) |
|
648
|
|
|
pv_per_distr_i["installed capacity in kW"] = ( |
|
649
|
|
|
pv_per_distr_i["installed capacity in kW"] * scale_factor |
|
650
|
|
|
) |
|
651
|
|
|
|
|
652
|
|
|
### |
|
653
|
|
|
print( |
|
654
|
|
|
"Residual capacity got distributed via scaling factor " |
|
655
|
|
|
+ str(scale_factor) |
|
656
|
|
|
+ " to remaining potential areas 'Road & Railway'." |
|
657
|
|
|
) |
|
658
|
|
|
|
|
659
|
|
|
# build pv parks on potential areas agriculture if still necessary |
|
660
|
|
|
elif pv_per_distr_i["installed capacity in kW"].sum() < rest_cap: |
|
661
|
|
|
|
|
662
|
|
|
rest_cap = ( |
|
663
|
|
|
target_power |
|
664
|
|
|
- total_pv_power |
|
665
|
|
|
- pv_per_distr_i["installed capacity in kW"].sum() |
|
666
|
|
|
) |
|
667
|
|
|
|
|
668
|
|
|
### |
|
669
|
|
|
print( |
|
670
|
|
|
"Distribution via potential areas Road & Railway " |
|
671
|
|
|
"unsufficient to achieve target capacity:" |
|
672
|
|
|
) |
|
673
|
|
|
print("Residual capacity: " + str(rest_cap / 1000) + " MW") |
|
674
|
|
|
print( |
|
675
|
|
|
"Residual capacity is distributed to remaining potential " |
|
676
|
|
|
"areas 'Agriculture'." |
|
677
|
|
|
) |
|
678
|
|
|
|
|
679
|
|
|
pv_per_distr_i_2 = build_additional_pv( |
|
680
|
|
|
potentials_agri_i, pv_agri_i, pow_per_area, con |
|
681
|
|
|
) |
|
682
|
|
|
# change index to add different Dataframes in the end |
|
683
|
|
|
pv_per_distr_i_2["grid_district"] = pv_per_distr_i_2.index |
|
684
|
|
|
pv_per_distr_i_2.index = range(len(pv_per_distr_i_2)) |
|
685
|
|
|
|
|
686
|
|
|
# delete empty grid districts |
|
687
|
|
|
index_names = pv_per_distr_i_2[ |
|
688
|
|
|
pv_per_distr_i_2["installed capacity in kW"].isna() |
|
689
|
|
|
].index |
|
690
|
|
|
pv_per_distr_i_2.drop(index_names, inplace=True) |
|
691
|
|
|
|
|
692
|
|
|
if ( |
|
693
|
|
|
pv_per_distr_i_2["installed capacity in kW"].sum() |
|
694
|
|
|
> rest_cap |
|
695
|
|
|
): |
|
696
|
|
|
scale_factor = ( |
|
697
|
|
|
rest_cap |
|
698
|
|
|
/ pv_per_distr_i_2["installed capacity in kW"].sum() |
|
699
|
|
|
) |
|
700
|
|
|
pv_per_distr_i_2["installed capacity in kW"] = ( |
|
701
|
|
|
pv_per_distr_i_2["installed capacity in kW"] |
|
702
|
|
|
* scale_factor |
|
703
|
|
|
) |
|
704
|
|
|
|
|
705
|
|
|
### |
|
706
|
|
|
print( |
|
707
|
|
|
"Residual capacity got distributed via scaling " |
|
708
|
|
|
"factor " |
|
709
|
|
|
+ str(scale_factor) |
|
710
|
|
|
+ " to remaining potential areas 'Road & Railway' " |
|
711
|
|
|
"and 'Agriculture'." |
|
712
|
|
|
) |
|
713
|
|
|
|
|
714
|
|
|
pv_per_distr_i = pv_per_distr_i.append( |
|
715
|
|
|
pv_per_distr_i_2, ignore_index=True |
|
716
|
|
|
) |
|
717
|
|
|
|
|
718
|
|
|
# assign grid level to pv_per_distr |
|
719
|
|
|
v_lvl = pd.Series(dtype=int, index=pv_per_distr_i.index) |
|
720
|
|
|
for index, distr in pv_per_distr_i.iterrows(): |
|
721
|
|
|
if distr["installed capacity in kW"] > 5500: # > 5 MW |
|
722
|
|
|
v_lvl[index] = 4 |
|
723
|
|
|
else: |
|
724
|
|
|
v_lvl[index] = 5 |
|
725
|
|
|
pv_per_distr_i["voltage_level"] = v_lvl |
|
726
|
|
|
|
|
727
|
|
|
# new overall installed capacity |
|
728
|
|
|
total_pv_power = ( |
|
729
|
|
|
pv_rora_i["installed capacity in kW"].sum() |
|
730
|
|
|
+ pv_agri_i["installed capacity in kW"].sum() |
|
731
|
|
|
+ pv_exist_i["installed capacity in kW"].sum() |
|
732
|
|
|
+ pv_per_distr_i["installed capacity in kW"].sum() |
|
733
|
|
|
) |
|
734
|
|
|
|
|
735
|
|
|
### |
|
736
|
|
|
print( |
|
737
|
|
|
"Total installed capacity of PV farms: " |
|
738
|
|
|
+ str(total_pv_power / 1000) |
|
739
|
|
|
+ " MW" |
|
740
|
|
|
) |
|
741
|
|
|
print(" ") |
|
742
|
|
|
|
|
743
|
|
|
pv_rora_i = pv_rora_i[pv_rora_i["installed capacity in kW"] > 0] |
|
744
|
|
|
pv_agri_i = pv_agri_i[pv_agri_i["installed capacity in kW"] > 0] |
|
745
|
|
|
pv_exist_i = pv_exist_i[pv_exist_i["installed capacity in kW"] > 0] |
|
746
|
|
|
pv_per_distr_i = pv_per_distr_i[ |
|
747
|
|
|
pv_per_distr_i["installed capacity in kW"] > 0 |
|
748
|
|
|
] |
|
749
|
|
|
|
|
750
|
|
|
return pv_rora_i, pv_agri_i, pv_exist_i, pv_per_distr_i |
|
751
|
|
|
|
|
752
|
|
|
def keep_existing_pv(mastr, con): |
|
753
|
|
|
pv_exist = mastr[ |
|
754
|
|
|
[ |
|
755
|
|
|
"geometry", |
|
756
|
|
|
"installed capacity in kW", |
|
757
|
|
|
"voltage_level", |
|
758
|
|
|
] |
|
759
|
|
|
] |
|
760
|
|
|
pv_exist.rename(columns={"geometry": "centroid"}, inplace=True) |
|
761
|
|
|
pv_exist = gpd.GeoDataFrame(pv_exist, geometry="centroid", crs=3035) |
|
762
|
|
|
|
|
763
|
|
|
# German states |
|
764
|
|
|
sql = "SELECT geometry as geom, gf FROM boundaries.vg250_lan" |
|
765
|
|
|
land = gpd.GeoDataFrame.from_postgis(sql, con).to_crs(3035) |
|
766
|
|
|
land = land[(land["gf"] != 1) & (land["gf"] != 2)] |
|
767
|
|
|
land = land.unary_union |
|
768
|
|
|
pv_exist = gpd.clip(pv_exist, land) |
|
769
|
|
|
|
|
770
|
|
|
return pv_exist |
|
771
|
|
|
|
|
772
|
|
|
def run_methodology( |
|
773
|
|
|
con=db.engine(), |
|
774
|
|
|
pow_per_area=0.04, |
|
775
|
|
|
join_buffer=10, |
|
776
|
|
|
max_dist_hv=20000, |
|
777
|
|
|
show_map=False, |
|
778
|
|
|
): |
|
779
|
|
|
|
|
780
|
|
|
"""Execute methodology to distribute pv ground mounted. |
|
781
|
|
|
|
|
782
|
|
|
Parameters |
|
783
|
|
|
---------- |
|
784
|
|
|
con: |
|
785
|
|
|
Connection to database |
|
786
|
|
|
pow_per_area: int, default 0.4 |
|
787
|
|
|
Assumption for areas of existing pv farms and power of new built |
|
788
|
|
|
pv farms depending on area in kW/m² |
|
789
|
|
|
join_buffer : int, default 10 |
|
790
|
|
|
Maximum distance for joining of potential areas (only small ones |
|
791
|
|
|
to big ones) in m |
|
792
|
|
|
max_dist_hv : int, default 20000 |
|
793
|
|
|
Assumption for maximum distance of park with hv-power to next |
|
794
|
|
|
substation in m |
|
795
|
|
|
show_map: boolean |
|
796
|
|
|
Optional creation of map to show distribution of installed |
|
797
|
|
|
capacity |
|
798
|
|
|
|
|
799
|
|
|
""" |
|
800
|
|
|
|
|
801
|
|
|
### |
|
802
|
|
|
print(" ") |
|
803
|
|
|
print("MaStR-Data") |
|
804
|
|
|
print(" ") |
|
805
|
|
|
|
|
806
|
|
|
# MaStR-data: existing PV farms |
|
807
|
|
|
mastr = mastr_existing_pv(pow_per_area) |
|
808
|
|
|
|
|
809
|
|
|
### |
|
810
|
|
|
print(" ") |
|
811
|
|
|
print("potential area") |
|
812
|
|
|
print(" ") |
|
813
|
|
|
|
|
814
|
|
|
# database-data: potential areas for new PV farms |
|
815
|
|
|
potentials_rora, potentials_agri = potential_areas(con, join_buffer) |
|
816
|
|
|
|
|
817
|
|
|
### |
|
818
|
|
|
print(" ") |
|
819
|
|
|
print("select potentials area") |
|
820
|
|
|
print(" ") |
|
821
|
|
|
|
|
822
|
|
|
# select potential areas with existing PV farms to build new PV farms |
|
823
|
|
|
pv_rora, mastr = select_pot_areas(mastr, potentials_rora) |
|
824
|
|
|
pv_agri, mastr = select_pot_areas(mastr, potentials_agri) |
|
825
|
|
|
|
|
826
|
|
|
### |
|
827
|
|
|
print(" ") |
|
828
|
|
|
print( |
|
829
|
|
|
"build PV parks where there is PV ground mounted already " |
|
830
|
|
|
"(-> MaStR) on potential area" |
|
831
|
|
|
) |
|
832
|
|
|
print(" ") |
|
833
|
|
|
|
|
834
|
|
|
# build new PV farms |
|
835
|
|
|
pv_rora = build_pv(pv_rora, pow_per_area) |
|
836
|
|
|
pv_agri = build_pv(pv_agri, pow_per_area) |
|
837
|
|
|
|
|
838
|
|
|
# keep the existing pv_farms that don't intercept potential areas |
|
839
|
|
|
exist = keep_existing_pv(mastr, con) |
|
840
|
|
|
|
|
841
|
|
|
### |
|
842
|
|
|
print(" ") |
|
843
|
|
|
print("adapt grid level of PV parks") |
|
844
|
|
|
print(" ") |
|
845
|
|
|
|
|
846
|
|
|
# adapt grid level to new farms |
|
847
|
|
|
rora = adapt_grid_level(pv_rora, max_dist_hv, con) |
|
848
|
|
|
agri = adapt_grid_level(pv_agri, max_dist_hv, con) |
|
849
|
|
|
|
|
850
|
|
|
### |
|
851
|
|
|
print(" ") |
|
852
|
|
|
print( |
|
853
|
|
|
"check target value and build more PV parks on potential area if " |
|
854
|
|
|
"necessary" |
|
855
|
|
|
) |
|
856
|
|
|
print(" ") |
|
857
|
|
|
|
|
858
|
|
|
# 1) scenario: eGon2035 |
|
859
|
|
|
|
|
860
|
|
|
### |
|
861
|
|
|
print(" ") |
|
862
|
|
|
print("scenario: eGon2035") |
|
863
|
|
|
print(" ") |
|
864
|
|
|
|
|
865
|
|
|
# German states |
|
866
|
|
|
sql = "SELECT geometry as geom, nuts FROM boundaries.vg250_lan" |
|
867
|
|
|
states = gpd.GeoDataFrame.from_postgis(sql, con) |
|
868
|
|
|
|
|
869
|
|
|
# assumption for target value of installed capacity |
|
870
|
|
|
sql = ( |
|
871
|
|
|
"SELECT capacity,scenario_name,nuts FROM " |
|
872
|
|
|
"supply.egon_scenario_capacities WHERE carrier='solar'" |
|
873
|
|
|
) |
|
874
|
|
|
target = pd.read_sql(sql, con) |
|
875
|
|
|
target = target[target["scenario_name"] == "eGon2035"] |
|
876
|
|
|
nuts = np.unique(target["nuts"]) |
|
877
|
|
|
|
|
878
|
|
|
# initialize final dataframe |
|
879
|
|
|
pv_rora = gpd.GeoDataFrame() |
|
880
|
|
|
pv_agri = gpd.GeoDataFrame() |
|
881
|
|
|
pv_exist = gpd.GeoDataFrame() |
|
882
|
|
|
pv_per_distr = gpd.GeoDataFrame() |
|
883
|
|
|
|
|
884
|
|
|
# prepare selection per state |
|
885
|
|
|
rora = rora.set_geometry("centroid") |
|
886
|
|
|
agri = agri.set_geometry("centroid") |
|
887
|
|
|
potentials_rora = potentials_rora.set_geometry("geom") |
|
888
|
|
|
potentials_agri = potentials_agri.set_geometry("geom") |
|
889
|
|
|
|
|
890
|
|
|
# check target value per state |
|
891
|
|
|
for i in nuts: |
|
892
|
|
|
|
|
893
|
|
|
target_power = ( |
|
894
|
|
|
target[target["nuts"] == i]["capacity"].iloc[0] * 1000 |
|
895
|
|
|
) |
|
896
|
|
|
|
|
897
|
|
|
### |
|
898
|
|
|
land = target[target["nuts"] == i]["nuts"].iloc[0] |
|
899
|
|
|
print(" ") |
|
900
|
|
|
print("Bundesland (NUTS): " + land) |
|
901
|
|
|
print("target power: " + str(target_power / 1000) + " MW") |
|
902
|
|
|
|
|
903
|
|
|
# select state |
|
904
|
|
|
state = states[states["nuts"] == i] |
|
905
|
|
|
state = state.to_crs(3035) |
|
906
|
|
|
|
|
907
|
|
|
# select PVs in state |
|
908
|
|
|
rora_i = gpd.sjoin(rora, state) |
|
909
|
|
|
agri_i = gpd.sjoin(agri, state) |
|
910
|
|
|
exist_i = gpd.sjoin(exist, state) |
|
911
|
|
|
rora_i.drop("index_right", axis=1, inplace=True) |
|
912
|
|
|
agri_i.drop("index_right", axis=1, inplace=True) |
|
913
|
|
|
exist_i.drop("index_right", axis=1, inplace=True) |
|
914
|
|
|
rora_i.drop_duplicates(inplace=True) |
|
915
|
|
|
agri_i.drop_duplicates(inplace=True) |
|
916
|
|
|
exist_i.drop_duplicates(inplace=True) |
|
917
|
|
|
|
|
918
|
|
|
# select potential areas in state |
|
919
|
|
|
potentials_rora_i = gpd.sjoin(potentials_rora, state) |
|
920
|
|
|
potentials_agri_i = gpd.sjoin(potentials_agri, state) |
|
921
|
|
|
potentials_rora_i.drop("index_right", axis=1, inplace=True) |
|
922
|
|
|
potentials_agri_i.drop("index_right", axis=1, inplace=True) |
|
923
|
|
|
potentials_rora_i.drop_duplicates(inplace=True) |
|
924
|
|
|
potentials_agri_i.drop_duplicates(inplace=True) |
|
925
|
|
|
|
|
926
|
|
|
# check target value and adapt installed capacity if necessary |
|
927
|
|
|
rora_i, agri_i, exist_i, distr_i = check_target( |
|
928
|
|
|
rora_i, |
|
929
|
|
|
agri_i, |
|
930
|
|
|
exist_i, |
|
931
|
|
|
potentials_rora_i, |
|
932
|
|
|
potentials_agri_i, |
|
933
|
|
|
target_power, |
|
934
|
|
|
pow_per_area, |
|
935
|
|
|
con, |
|
936
|
|
|
) |
|
937
|
|
|
|
|
938
|
|
|
if len(distr_i) > 0: |
|
939
|
|
|
distr_i["nuts"] = target[target["nuts"] == i]["nuts"].iloc[0] |
|
940
|
|
|
|
|
941
|
|
|
# ### examination of built PV parks per state |
|
942
|
|
|
rora_i_mv = rora_i[rora_i["voltage_level"] == 5] |
|
943
|
|
|
rora_i_hv = rora_i[rora_i["voltage_level"] == 4] |
|
944
|
|
|
agri_i_mv = agri_i[agri_i["voltage_level"] == 5] |
|
945
|
|
|
agri_i_hv = agri_i[agri_i["voltage_level"] == 4] |
|
946
|
|
|
print("eGon2035: Examination of voltage level per federal state:") |
|
947
|
|
|
print("a) PVs on potential areas Road & Railway: ") |
|
948
|
|
|
print( |
|
949
|
|
|
"Total installed capacity: " |
|
950
|
|
|
+ str(rora_i["installed capacity in kW"].sum() / 1000) |
|
951
|
|
|
+ " MW" |
|
952
|
|
|
) |
|
953
|
|
|
print("Number of PV farms: " + str(len(rora_i))) |
|
954
|
|
|
print(" - thereof MV: " + str(len(rora_i_mv))) |
|
955
|
|
|
print(" - thereof HV: " + str(len(rora_i_hv))) |
|
956
|
|
|
print("b) PVs on potential areas Agriculture: ") |
|
957
|
|
|
print( |
|
958
|
|
|
"Total installed capacity: " |
|
959
|
|
|
+ str(agri_i["installed capacity in kW"].sum() / 1000) |
|
960
|
|
|
+ " MW" |
|
961
|
|
|
) |
|
962
|
|
|
print("Number of PV farms: " + str(len(agri_i))) |
|
963
|
|
|
print(" - thereof MV: " + str(len(agri_i_mv))) |
|
964
|
|
|
print(" - dthereof HV: " + str(len(agri_i_hv))) |
|
965
|
|
|
print("c) Existing PVs not in potential areas: ") |
|
966
|
|
|
print("Number of PV farms: " + str(len(exist_i))) |
|
967
|
|
|
print("d) PVs on additional potential areas per MV-District: ") |
|
968
|
|
|
if len(distr_i) > 0: |
|
969
|
|
|
distr_i_mv = distr_i[distr_i["voltage_level"] == 5] |
|
970
|
|
|
distr_i_hv = distr_i[distr_i["voltage_level"] == 4] |
|
971
|
|
|
print( |
|
972
|
|
|
"Total installed capacity: " |
|
973
|
|
|
+ str(distr_i["installed capacity in kW"].sum() / 1000) |
|
974
|
|
|
+ " MW" |
|
975
|
|
|
) |
|
976
|
|
|
print("Number of PV farms: " + str(len(distr_i))) |
|
977
|
|
|
print(" - thereof MV: " + str(len(distr_i_mv))) |
|
978
|
|
|
print(" - thereof HV: " + str(len(distr_i_hv))) |
|
979
|
|
|
else: |
|
980
|
|
|
print(" -> No additional expansion necessary") |
|
981
|
|
|
print(" ") |
|
982
|
|
|
|
|
983
|
|
|
pv_rora = pv_rora.append(rora_i) |
|
984
|
|
|
pv_agri = pv_agri.append(agri_i) |
|
985
|
|
|
pv_exist = pv_exist.append(exist_i) |
|
986
|
|
|
if len(distr_i) > 0: |
|
987
|
|
|
pv_per_distr = pv_per_distr.append(distr_i) |
|
988
|
|
|
|
|
989
|
|
|
# 2) scenario: eGon100RE |
|
990
|
|
|
|
|
991
|
|
|
# assumption for target value of installed capacity in Germany per |
|
992
|
|
|
# scenario |
|
993
|
|
|
sql = ( |
|
994
|
|
|
"SELECT capacity,scenario_name FROM " |
|
995
|
|
|
"supply.egon_scenario_capacities WHERE carrier='solar'" |
|
996
|
|
|
) |
|
997
|
|
|
target_power = pd.read_sql(sql, con) |
|
998
|
|
|
target_power = target_power[ |
|
999
|
|
|
target_power["scenario_name"] == "eGon100RE" |
|
1000
|
|
|
] |
|
1001
|
|
|
target_power = target_power["capacity"].sum() * 1000 |
|
1002
|
|
|
|
|
1003
|
|
|
### |
|
1004
|
|
|
print(" ") |
|
1005
|
|
|
print("scenario: eGon100RE") |
|
1006
|
|
|
print("target power: " + str(target_power) + " kW") |
|
1007
|
|
|
print(" ") |
|
1008
|
|
|
|
|
1009
|
|
|
# check target value and adapt installed capacity if necessary |
|
1010
|
|
|
( |
|
1011
|
|
|
pv_rora_100RE, |
|
1012
|
|
|
pv_agri_100RE, |
|
1013
|
|
|
pv_exist_100RE, |
|
1014
|
|
|
pv_per_distr_100RE, |
|
1015
|
|
|
) = check_target( |
|
1016
|
|
|
rora, |
|
1017
|
|
|
agri, |
|
1018
|
|
|
exist, |
|
1019
|
|
|
potentials_rora, |
|
1020
|
|
|
potentials_agri, |
|
1021
|
|
|
target_power, |
|
1022
|
|
|
pow_per_area, |
|
1023
|
|
|
con, |
|
1024
|
|
|
) |
|
1025
|
|
|
|
|
1026
|
|
|
# ### create map to show distribution of installed capacity |
|
1027
|
|
|
if show_map == True: |
|
1028
|
|
|
|
|
1029
|
|
|
# 1) eGon2035 |
|
1030
|
|
|
|
|
1031
|
|
|
# get MV grid districts |
|
1032
|
|
|
sql = "SELECT bus_id, geom FROM grid.egon_mv_grid_district" |
|
1033
|
|
|
distr = gpd.GeoDataFrame.from_postgis(sql, con) |
|
1034
|
|
|
distr = distr.set_index("bus_id") |
|
1035
|
|
|
|
|
1036
|
|
|
# assign pv_per_distr-power to districts |
|
1037
|
|
|
distr["capacity"] = pd.Series() |
|
1038
|
|
|
for index, row in distr.iterrows(): |
|
1039
|
|
|
if index in np.unique(pv_per_distr["grid_district"]): |
|
1040
|
|
|
pv = pv_per_distr[pv_per_distr["grid_district"] == index] |
|
1041
|
|
|
x = pv["installed capacity in kW"].iloc[0] |
|
1042
|
|
|
distr["capacity"].loc[index] = x |
|
1043
|
|
|
else: |
|
1044
|
|
|
distr["capacity"].loc[index] = 0 |
|
1045
|
|
|
distr["capacity"] = distr["capacity"] / 1000 |
|
1046
|
|
|
|
|
1047
|
|
|
# add pv_rora- and pv_agri-power to district |
|
1048
|
|
|
pv_rora = pv_rora.set_geometry("centroid") |
|
1049
|
|
|
pv_agri = pv_agri.set_geometry("centroid") |
|
1050
|
|
|
overlay_rora = gpd.sjoin(pv_rora, distr) |
|
1051
|
|
|
overlay_agri = gpd.sjoin(pv_agri, distr) |
|
1052
|
|
|
|
|
1053
|
|
|
for index, row in distr.iterrows(): |
|
1054
|
|
|
o_rora = overlay_rora[overlay_rora["index_right"] == index] |
|
1055
|
|
|
o_agri = overlay_agri[overlay_agri["index_right"] == index] |
|
1056
|
|
|
cap_rora = o_rora["installed capacity in kW"].sum() / 1000 |
|
1057
|
|
|
cap_agri = o_agri["installed capacity in kW"].sum() / 1000 |
|
1058
|
|
|
distr["capacity"].loc[index] = ( |
|
1059
|
|
|
distr["capacity"].loc[index] + cap_rora + cap_agri |
|
|
|
|
|
|
1060
|
|
|
) |
|
1061
|
|
|
|
|
1062
|
|
|
from matplotlib import pyplot as plt |
|
1063
|
|
|
|
|
1064
|
|
|
fig, ax = plt.subplots(1, 1) |
|
1065
|
|
|
distr.boundary.plot(linewidth=0.2, ax=ax, color="black") |
|
1066
|
|
|
distr.plot( |
|
1067
|
|
|
ax=ax, |
|
1068
|
|
|
column="capacity", |
|
1069
|
|
|
cmap="magma_r", |
|
1070
|
|
|
legend=True, |
|
1071
|
|
|
legend_kwds={ |
|
1072
|
|
|
"label": "Installed capacity in MW", |
|
1073
|
|
|
"orientation": "vertical", |
|
1074
|
|
|
}, |
|
1075
|
|
|
) |
|
1076
|
|
|
plt.savefig("pv_per_distr_map_eGon2035.png", dpi=300) |
|
1077
|
|
|
|
|
1078
|
|
|
# 2) eGon100RE |
|
1079
|
|
|
|
|
1080
|
|
|
# get MV grid districts |
|
1081
|
|
|
sql = "SELECT bus_id, geom FROM grid.egon_mv_grid_district" |
|
1082
|
|
|
distr = gpd.GeoDataFrame.from_postgis(sql, con) |
|
1083
|
|
|
distr = distr.set_index("bus_id") |
|
1084
|
|
|
|
|
1085
|
|
|
# assign pv_per_distr-power to districts |
|
1086
|
|
|
distr["capacity"] = pd.Series() |
|
1087
|
|
|
for index, row in distr.iterrows(): |
|
1088
|
|
|
if index in np.unique(pv_per_distr_100RE["grid_district"]): |
|
1089
|
|
|
pv = pv_per_distr_100RE[ |
|
1090
|
|
|
pv_per_distr_100RE["grid_district"] == index |
|
1091
|
|
|
] |
|
1092
|
|
|
x = pv["installed capacity in kW"].iloc[0] |
|
1093
|
|
|
distr["capacity"].loc[index] = x |
|
1094
|
|
|
else: |
|
1095
|
|
|
distr["capacity"].loc[index] = 0 |
|
1096
|
|
|
distr["capacity"] = distr["capacity"] / 1000 |
|
1097
|
|
|
|
|
1098
|
|
|
# add pv_rora- and pv_agri-power to district |
|
1099
|
|
|
pv_rora_100RE = pv_rora_100RE.set_geometry("centroid") |
|
1100
|
|
|
pv_agri_100RE = pv_agri_100RE.set_geometry("centroid") |
|
1101
|
|
|
overlay_rora = gpd.sjoin(pv_rora_100RE, distr) |
|
1102
|
|
|
overlay_agri = gpd.sjoin(pv_agri_100RE, distr) |
|
1103
|
|
|
|
|
1104
|
|
|
for index, row in distr.iterrows(): |
|
1105
|
|
|
o_rora = overlay_rora[overlay_rora["index_right"] == index] |
|
1106
|
|
|
o_agri = overlay_agri[overlay_agri["index_right"] == index] |
|
1107
|
|
|
cap_rora = o_rora["installed capacity in kW"].sum() / 1000 |
|
1108
|
|
|
cap_agri = o_agri["installed capacity in kW"].sum() / 1000 |
|
1109
|
|
|
distr["capacity"].loc[index] = ( |
|
1110
|
|
|
distr["capacity"].loc[index] + cap_rora + cap_agri |
|
1111
|
|
|
) |
|
1112
|
|
|
|
|
1113
|
|
|
from matplotlib import pyplot as plt |
|
1114
|
|
|
|
|
1115
|
|
|
fig, ax = plt.subplots(1, 1) |
|
1116
|
|
|
distr.boundary.plot(linewidth=0.2, ax=ax, color="black") |
|
1117
|
|
|
distr.plot( |
|
1118
|
|
|
ax=ax, |
|
1119
|
|
|
column="capacity", |
|
1120
|
|
|
cmap="magma_r", |
|
1121
|
|
|
legend=True, |
|
1122
|
|
|
legend_kwds={ |
|
1123
|
|
|
"label": "Installed capacity in MW", |
|
1124
|
|
|
"orientation": "vertical", |
|
1125
|
|
|
}, |
|
1126
|
|
|
) |
|
1127
|
|
|
plt.savefig("pv_per_distr_map_eGon100RE.png", dpi=300) |
|
1128
|
|
|
|
|
1129
|
|
|
pv_rora = pv_rora[pv_rora["installed capacity in kW"] > 0] |
|
1130
|
|
|
pv_agri = pv_agri[pv_agri["installed capacity in kW"] > 0] |
|
1131
|
|
|
pv_per_distr = pv_per_distr[ |
|
1132
|
|
|
pv_per_distr["installed capacity in kW"] > 0 |
|
1133
|
|
|
] |
|
1134
|
|
|
pv_rora_100RE = pv_rora_100RE[ |
|
1135
|
|
|
pv_rora_100RE["installed capacity in kW"] > 0 |
|
1136
|
|
|
] |
|
1137
|
|
|
pv_agri_100RE = pv_agri_100RE[ |
|
1138
|
|
|
pv_agri_100RE["installed capacity in kW"] > 0 |
|
1139
|
|
|
] |
|
1140
|
|
|
pv_per_distr_100RE = pv_per_distr_100RE[ |
|
1141
|
|
|
pv_per_distr_100RE["installed capacity in kW"] > 0 |
|
1142
|
|
|
] |
|
1143
|
|
|
|
|
1144
|
|
|
return ( |
|
1145
|
|
|
pv_rora, |
|
1146
|
|
|
pv_agri, |
|
1147
|
|
|
pv_exist, |
|
1148
|
|
|
pv_per_distr, |
|
1149
|
|
|
pv_rora_100RE, |
|
1150
|
|
|
pv_agri_100RE, |
|
1151
|
|
|
pv_exist_100RE, |
|
1152
|
|
|
pv_per_distr_100RE, |
|
1153
|
|
|
) |
|
1154
|
|
|
|
|
1155
|
|
|
def insert_pv_parks( |
|
1156
|
|
|
pv_rora, pv_agri, pv_exist, pv_per_distr, scenario_name |
|
1157
|
|
|
): |
|
1158
|
|
|
|
|
1159
|
|
|
"""Write to database. |
|
1160
|
|
|
|
|
1161
|
|
|
Parameters |
|
1162
|
|
|
---------- |
|
1163
|
|
|
pv_rora : gpd.GeoDataFrame() |
|
1164
|
|
|
Pv parks on selected potential areas of raod and railway |
|
1165
|
|
|
pv_agri : gpd.GeoDataFrame() |
|
1166
|
|
|
Pv parks on selected potential areas of raod and railway |
|
1167
|
|
|
pv_exist : gpd.GeoDataFrame() |
|
1168
|
|
|
Existing Pv parks on selected areas |
|
1169
|
|
|
pv_per_distr: gpd.GeoDataFrame() |
|
1170
|
|
|
Additionally built pv parks on potential areas per mv grid |
|
1171
|
|
|
district |
|
1172
|
|
|
scenario_name: |
|
1173
|
|
|
Scenario name of calculation |
|
1174
|
|
|
|
|
1175
|
|
|
""" |
|
1176
|
|
|
|
|
1177
|
|
|
# prepare dataframe for integration in supply.egon_power_plants |
|
1178
|
|
|
|
|
1179
|
|
|
pv_parks = pv_rora.append( |
|
1180
|
|
|
[pv_agri, pv_exist, pv_per_distr], ignore_index=True |
|
1181
|
|
|
) |
|
1182
|
|
|
pv_parks["el_capacity"] = pv_parks["installed capacity in kW"] / 1000 |
|
1183
|
|
|
pv_parks.rename(columns={"centroid": "geometry"}, inplace=True) |
|
1184
|
|
|
pv_parks = gpd.GeoDataFrame(pv_parks, geometry="geometry", crs=3035) |
|
1185
|
|
|
pv_parks = pv_parks[["el_capacity", "voltage_level", "geometry"]] |
|
1186
|
|
|
|
|
1187
|
|
|
# integration in supply.egon_power_plants |
|
1188
|
|
|
|
|
1189
|
|
|
con = db.engine() |
|
1190
|
|
|
|
|
1191
|
|
|
# maximum ID in egon_power_plants |
|
1192
|
|
|
sql = "SELECT MAX(id) FROM supply.egon_power_plants" |
|
1193
|
|
|
max_id = pd.read_sql(sql, con) |
|
1194
|
|
|
max_id = max_id["max"].iat[0] |
|
1195
|
|
|
if max_id is None: |
|
1196
|
|
|
max_id = 1 |
|
1197
|
|
|
|
|
1198
|
|
|
pv_park_id = max_id + 1 |
|
1199
|
|
|
|
|
1200
|
|
|
# copy relevant columns from pv_parks |
|
1201
|
|
|
insert_pv_parks = pv_parks[ |
|
1202
|
|
|
["el_capacity", "voltage_level", "geometry"] |
|
1203
|
|
|
] |
|
1204
|
|
|
insert_pv_parks = insert_pv_parks.set_geometry("geometry") |
|
1205
|
|
|
insert_pv_parks["voltage_level"] = insert_pv_parks[ |
|
1206
|
|
|
"voltage_level" |
|
1207
|
|
|
].apply(int) |
|
1208
|
|
|
|
|
1209
|
|
|
# set static column values |
|
1210
|
|
|
insert_pv_parks["carrier"] = "solar" |
|
1211
|
|
|
insert_pv_parks["scenario"] = scenario_name |
|
1212
|
|
|
|
|
1213
|
|
|
# change name and crs of geometry column |
|
1214
|
|
|
insert_pv_parks.set_crs(epsg=3035, allow_override=True, inplace=True) |
|
1215
|
|
|
insert_pv_parks = ( |
|
1216
|
|
|
insert_pv_parks.rename({"geometry": "geom"}, axis=1) |
|
1217
|
|
|
.set_geometry("geom") |
|
1218
|
|
|
.to_crs(4326) |
|
1219
|
|
|
) |
|
1220
|
|
|
|
|
1221
|
|
|
# reset index |
|
1222
|
|
|
insert_pv_parks.index = pd.RangeIndex( |
|
1223
|
|
|
start=pv_park_id, stop=pv_park_id + len(insert_pv_parks), name="id" |
|
1224
|
|
|
) |
|
1225
|
|
|
|
|
1226
|
|
|
# insert into database |
|
1227
|
|
|
insert_pv_parks.reset_index().to_postgis( |
|
1228
|
|
|
"egon_power_plants", |
|
1229
|
|
|
schema="supply", |
|
1230
|
|
|
con=db.engine(), |
|
1231
|
|
|
if_exists="append", |
|
1232
|
|
|
) |
|
1233
|
|
|
|
|
1234
|
|
|
return pv_parks |
|
1235
|
|
|
|
|
1236
|
|
|
# ######################################################################## |
|
1237
|
|
|
|
|
1238
|
|
|
# execute methodology |
|
1239
|
|
|
|
|
1240
|
|
|
( |
|
1241
|
|
|
pv_rora, |
|
1242
|
|
|
pv_agri, |
|
1243
|
|
|
pv_exist, |
|
1244
|
|
|
pv_per_distr, |
|
1245
|
|
|
pv_rora_100RE, |
|
1246
|
|
|
pv_agri_100RE, |
|
1247
|
|
|
pv_exist_100RE, |
|
1248
|
|
|
pv_per_distr_100RE, |
|
1249
|
|
|
) = run_methodology( |
|
1250
|
|
|
con=db.engine(), |
|
1251
|
|
|
pow_per_area=0.04, |
|
1252
|
|
|
join_buffer=10, |
|
1253
|
|
|
max_dist_hv=20000, |
|
1254
|
|
|
show_map=False, |
|
1255
|
|
|
) |
|
1256
|
|
|
|
|
1257
|
|
|
# ### examination of results |
|
1258
|
|
|
if len(pv_per_distr) > 0: |
|
1259
|
|
|
pv_per_distr_mv = pv_per_distr[pv_per_distr["voltage_level"] == 5] |
|
1260
|
|
|
pv_per_distr_hv = pv_per_distr[pv_per_distr["voltage_level"] == 4] |
|
1261
|
|
|
pv_rora_mv = pv_rora[pv_rora["voltage_level"] == 5] |
|
1262
|
|
|
pv_rora_hv = pv_rora[pv_rora["voltage_level"] == 4] |
|
1263
|
|
|
pv_agri_mv = pv_agri[pv_agri["voltage_level"] == 5] |
|
1264
|
|
|
pv_agri_hv = pv_agri[pv_agri["voltage_level"] == 4] |
|
1265
|
|
|
|
|
1266
|
|
|
print(" ") |
|
1267
|
|
|
print("eGon2035: Examination of overall voltage levels:") |
|
1268
|
|
|
print("a) PVs on potential areas Road & Railway: ") |
|
1269
|
|
|
print( |
|
1270
|
|
|
"Total installed capacity: " |
|
1271
|
|
|
+ str(pv_rora["installed capacity in kW"].sum() / 1000) |
|
1272
|
|
|
+ " MW" |
|
1273
|
|
|
) |
|
1274
|
|
|
print("Number of PV farms: " + str(len(pv_rora))) |
|
1275
|
|
|
print(" - thereof MV: " + str(len(pv_rora_mv))) |
|
1276
|
|
|
print(" - thereof HV: " + str(len(pv_rora_hv))) |
|
1277
|
|
|
print("b) PVs on potential areas Agriculture: ") |
|
1278
|
|
|
print( |
|
1279
|
|
|
"Total installed capacity: " |
|
1280
|
|
|
+ str(pv_agri["installed capacity in kW"].sum() / 1000) |
|
1281
|
|
|
+ " MW" |
|
1282
|
|
|
) |
|
1283
|
|
|
print("Number of PV farms: " + str(len(pv_agri))) |
|
1284
|
|
|
print(" - thereof MV: " + str(len(pv_agri_mv))) |
|
1285
|
|
|
print(" - thereof HV: " + str(len(pv_agri_hv))) |
|
1286
|
|
|
print("c) Existing PVs not in potential areas: ") |
|
1287
|
|
|
print("Number of PV farms: " + str(len(pv_exist))) |
|
1288
|
|
|
print("d) PVs on additional potential areas per MV-District: ") |
|
1289
|
|
|
if len(pv_per_distr) > 0: |
|
1290
|
|
|
print( |
|
1291
|
|
|
"Total installed capacity: " |
|
1292
|
|
|
+ str(pv_per_distr["installed capacity in kW"].sum() / 1000) |
|
1293
|
|
|
+ " MW" |
|
1294
|
|
|
) |
|
1295
|
|
|
print("Number of PV farms: " + str(len(pv_per_distr))) |
|
1296
|
|
|
print(" - thereof MV: " + str(len(pv_per_distr_mv))) |
|
|
|
|
|
|
1297
|
|
|
print(" - thereof HV: " + str(len(pv_per_distr_hv))) |
|
|
|
|
|
|
1298
|
|
|
else: |
|
1299
|
|
|
print(" -> No additional expansion needed") |
|
1300
|
|
|
print(" ") |
|
1301
|
|
|
### |
|
1302
|
|
|
|
|
1303
|
|
|
# save to DB |
|
1304
|
|
|
if ( |
|
1305
|
|
|
pv_rora["installed capacity in kW"].sum() > 0 |
|
1306
|
|
|
or pv_agri["installed capacity in kW"].sum() > 0 |
|
1307
|
|
|
or pv_per_distr["installed capacity in kW"].sum() > 0 |
|
1308
|
|
|
or pv_exist["installed capacity in kW"].sum() > 0 |
|
1309
|
|
|
): |
|
1310
|
|
|
|
|
1311
|
|
|
pv_parks = insert_pv_parks( |
|
1312
|
|
|
pv_rora, pv_agri, pv_exist, pv_per_distr, "eGon2035" |
|
1313
|
|
|
) |
|
1314
|
|
|
|
|
1315
|
|
|
else: |
|
1316
|
|
|
|
|
1317
|
|
|
pv_parks = gpd.GeoDataFrame() |
|
1318
|
|
|
|
|
1319
|
|
|
if ( |
|
1320
|
|
|
pv_rora_100RE["installed capacity in kW"].sum() > 0 |
|
1321
|
|
|
or pv_agri_100RE["installed capacity in kW"].sum() > 0 |
|
1322
|
|
|
or pv_per_distr_100RE["installed capacity in kW"].sum() > 0 |
|
1323
|
|
|
or pv_exist_100RE["installed capacity in kW"].sum() > 0 |
|
1324
|
|
|
): |
|
1325
|
|
|
|
|
1326
|
|
|
pv_parks_100RE = insert_pv_parks( |
|
1327
|
|
|
pv_rora_100RE, |
|
1328
|
|
|
pv_agri_100RE, |
|
1329
|
|
|
pv_exist_100RE, |
|
1330
|
|
|
pv_per_distr_100RE, |
|
1331
|
|
|
"eGon100RE", |
|
1332
|
|
|
) |
|
1333
|
|
|
|
|
1334
|
|
|
else: |
|
1335
|
|
|
|
|
1336
|
|
|
pv_parks_100RE = gpd.GeoDataFrame() |
|
1337
|
|
|
|
|
1338
|
|
|
return pv_parks, pv_parks_100RE |
|
1339
|
|
|
|