| Conditions | 10 |
| Total Lines | 228 |
| Code Lines | 155 |
| Lines | 12 |
| Ratio | 5.26 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.power_plants.mastr.import_mastr() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """Import MaStR dataset and write to DB tables |
||
| 172 | def import_mastr() -> None: |
||
| 173 | """Import MaStR data into database""" |
||
| 174 | |||
| 175 | def infer_voltage_level( |
||
| 176 | units_gdf: gpd.GeoDataFrame, |
||
| 177 | ) -> gpd.GeoDataFrame: |
||
| 178 | """ |
||
| 179 | Infer nan values in voltage level derived from generator capacity to |
||
| 180 | the power plants. |
||
| 181 | |||
| 182 | Parameters |
||
| 183 | ----------- |
||
| 184 | units_gdf : geopandas.GeoDataFrame |
||
| 185 | GeoDataFrame containing units with voltage levels from MaStR |
||
| 186 | Returnsunits_gdf: gpd.GeoDataFrame |
||
| 187 | ------- |
||
| 188 | geopandas.GeoDataFrame |
||
| 189 | GeoDataFrame containing units all having assigned a voltage level. |
||
| 190 | """ |
||
| 191 | |||
| 192 | View Code Duplication | def voltage_levels(p: float) -> int: |
|
| 193 | if p <= 100: |
||
| 194 | return 7 |
||
| 195 | elif p <= 200: |
||
| 196 | return 6 |
||
| 197 | elif p <= 5500: |
||
| 198 | return 5 |
||
| 199 | elif p <= 20000: |
||
| 200 | return 4 |
||
| 201 | elif p <= 120000: |
||
| 202 | return 3 |
||
| 203 | return 1 |
||
| 204 | |||
| 205 | units_gdf["voltage_level_inferred"] = False |
||
| 206 | mask = units_gdf.voltage_level.isna() |
||
| 207 | units_gdf.loc[mask, "voltage_level_inferred"] = True |
||
| 208 | units_gdf.loc[mask, "voltage_level"] = units_gdf.loc[ |
||
| 209 | mask |
||
| 210 | ].Nettonennleistung.apply(voltage_levels) |
||
| 211 | |||
| 212 | return units_gdf |
||
| 213 | |||
| 214 | engine = db.engine() |
||
| 215 | cfg = egon.data.config.datasets()["power_plants"] |
||
| 216 | |||
| 217 | cols_mapping = { |
||
| 218 | "all": { |
||
| 219 | "EinheitMastrNummer": "gens_id", |
||
| 220 | "EinheitBetriebsstatus": "status", |
||
| 221 | "Inbetriebnahmedatum": "commissioning_date", |
||
| 222 | "Postleitzahl": "postcode", |
||
| 223 | "Ort": "city", |
||
| 224 | "Bundesland": "federal_state", |
||
| 225 | "Nettonennleistung": "capacity", |
||
| 226 | "Einspeisungsart": "feedin_type", |
||
| 227 | }, |
||
| 228 | "pv": { |
||
| 229 | "Lage": "site_type", |
||
| 230 | "Nutzungsbereich": "usage_sector", |
||
| 231 | "Hauptausrichtung": "orientation_primary", |
||
| 232 | "HauptausrichtungNeigungswinkel": "orientation_primary_angle", |
||
| 233 | "Nebenausrichtung": "orientation_secondary", |
||
| 234 | "NebenausrichtungNeigungswinkel": "orientation_secondary_angle", |
||
| 235 | "EinheitlicheAusrichtungUndNeigungswinkel": "orientation_uniform", |
||
| 236 | "AnzahlModule": "module_count", |
||
| 237 | "zugeordneteWirkleistungWechselrichter": "capacity_inverter", |
||
| 238 | }, |
||
| 239 | "wind": { |
||
| 240 | "Lage": "site_type", |
||
| 241 | "Hersteller": "manufacturer_name", |
||
| 242 | "Typenbezeichnung": "type_name", |
||
| 243 | "Nabenhoehe": "hub_height", |
||
| 244 | "Rotordurchmesser": "rotor_diameter", |
||
| 245 | }, |
||
| 246 | "biomass": { |
||
| 247 | "Technologie": "technology", |
||
| 248 | "Hauptbrennstoff": "fuel_name", |
||
| 249 | "Biomasseart": "fuel_type", |
||
| 250 | "ThermischeNutzleistung": "th_capacity", |
||
| 251 | }, |
||
| 252 | "hydro": { |
||
| 253 | "ArtDerWasserkraftanlage": "plant_type", |
||
| 254 | "ArtDesZuflusses": "water_origin", |
||
| 255 | }, |
||
| 256 | } |
||
| 257 | |||
| 258 | source_files = { |
||
| 259 | "pv": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_pv"], |
||
| 260 | "wind": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_wind"], |
||
| 261 | "biomass": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_biomass"], |
||
| 262 | "hydro": WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_hydro"], |
||
| 263 | } |
||
| 264 | target_tables = { |
||
| 265 | "pv": EgonPowerPlantsPv, |
||
| 266 | "wind": EgonPowerPlantsWind, |
||
| 267 | "biomass": EgonPowerPlantsBiomass, |
||
| 268 | "hydro": EgonPowerPlantsHydro, |
||
| 269 | } |
||
| 270 | vlevel_mapping = { |
||
| 271 | "Höchstspannung": 1, |
||
| 272 | "UmspannungZurHochspannung": 2, |
||
| 273 | "Hochspannung": 3, |
||
| 274 | "UmspannungZurMittelspannung": 4, |
||
| 275 | "Mittelspannung": 5, |
||
| 276 | "UmspannungZurNiederspannung": 6, |
||
| 277 | "Niederspannung": 7, |
||
| 278 | } |
||
| 279 | |||
| 280 | # import locations |
||
| 281 | locations = pd.read_csv( |
||
| 282 | WORKING_DIR_MASTR_NEW / cfg["sources"]["mastr_location"], |
||
| 283 | index_col=None, |
||
| 284 | ) |
||
| 285 | |||
| 286 | # import grid districts |
||
| 287 | mv_grid_districts = db.select_geodataframe( |
||
| 288 | f""" |
||
| 289 | SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
||
| 290 | """, |
||
| 291 | epsg=4326, |
||
| 292 | ) |
||
| 293 | |||
| 294 | # import units |
||
| 295 | technologies = ["pv", "wind", "biomass", "hydro"] |
||
| 296 | for tech in technologies: |
||
| 297 | # read units |
||
| 298 | print(f"===== Importing MaStR dataset: {tech} =====") |
||
| 299 | print(" Reading CSV and filtering data...") |
||
| 300 | units = pd.read_csv( |
||
| 301 | source_files[tech], |
||
| 302 | usecols=( |
||
| 303 | ["LokationMastrNummer", "Laengengrad", "Breitengrad", "Land"] |
||
| 304 | + list(cols_mapping["all"].keys()) |
||
| 305 | + list(cols_mapping[tech].keys()) |
||
| 306 | ), |
||
| 307 | index_col=None, |
||
| 308 | dtype={"Postleitzahl": str}, |
||
| 309 | ).rename(columns=cols_mapping) |
||
| 310 | |||
| 311 | # drop units outside of Germany |
||
| 312 | len_old = len(units) |
||
| 313 | units = units.loc[units.Land == "Deutschland"] |
||
| 314 | print(f" {len_old-len(units)} units outside of Germany dropped...") |
||
| 315 | |||
| 316 | # filter for SH units if in testmode |
||
| 317 | if not TESTMODE_OFF: |
||
| 318 | print( |
||
| 319 | """ TESTMODE: |
||
| 320 | Dropping all units outside of Schleswig-Holstein... |
||
| 321 | """ |
||
| 322 | ) |
||
| 323 | units = units.loc[units.Bundesland == "SchleswigHolstein"] |
||
| 324 | |||
| 325 | # merge and rename voltage level |
||
| 326 | print(" Merging with locations and allocate voltage level...") |
||
| 327 | units = units.merge( |
||
| 328 | locations[["MaStRNummer", "Spannungsebene"]], |
||
| 329 | left_on="LokationMastrNummer", |
||
| 330 | right_on="MaStRNummer", |
||
| 331 | how="left", |
||
| 332 | ) |
||
| 333 | # convert voltage levels to numbers |
||
| 334 | units["voltage_level"] = units.Spannungsebene.replace(vlevel_mapping) |
||
| 335 | # set voltage level for nan values |
||
| 336 | units = infer_voltage_level(units) |
||
| 337 | |||
| 338 | # add geometry |
||
| 339 | print(" Adding geometries...") |
||
| 340 | units = gpd.GeoDataFrame( |
||
| 341 | units, |
||
| 342 | geometry=gpd.points_from_xy( |
||
| 343 | units["Laengengrad"], units["Breitengrad"], crs=4326 |
||
| 344 | ), |
||
| 345 | crs=4326, |
||
| 346 | ) |
||
| 347 | units_wo_geom = len( |
||
| 348 | units.loc[(units.Laengengrad.isna() | units.Laengengrad.isna())] |
||
| 349 | ) |
||
| 350 | print( |
||
| 351 | f" {units_wo_geom}/{len(units)} units do not have a geometry!" |
||
| 352 | ) |
||
| 353 | |||
| 354 | # drop unnecessary and rename columns |
||
| 355 | print(" Reformatting...") |
||
| 356 | units.drop( |
||
| 357 | columns=[ |
||
| 358 | "LokationMastrNummer", |
||
| 359 | "MaStRNummer", |
||
| 360 | "Laengengrad", |
||
| 361 | "Breitengrad", |
||
| 362 | "Spannungsebene", |
||
| 363 | "Land", |
||
| 364 | ], |
||
| 365 | inplace=True, |
||
| 366 | ) |
||
| 367 | mapping = cols_mapping["all"].copy() |
||
| 368 | mapping.update(cols_mapping[tech]) |
||
| 369 | mapping.update({"geometry": "geom"}) |
||
| 370 | units.rename(columns=mapping, inplace=True) |
||
| 371 | units["voltage_level"] = units.voltage_level.fillna(-1).astype(int) |
||
| 372 | |||
| 373 | units.set_geometry("geom", inplace=True) |
||
| 374 | units["id"] = range(0, len(units)) |
||
| 375 | |||
| 376 | # change capacity unit: kW to MW |
||
| 377 | units["capacity"] = units["capacity"] / 1e3 |
||
| 378 | if "capacity_inverter" in units.columns: |
||
| 379 | units["capacity_inverter"] = units["capacity_inverter"] / 1e3 |
||
| 380 | if "th_capacity" in units.columns: |
||
| 381 | units["th_capacity"] = units["th_capacity"] / 1e3 |
||
| 382 | |||
| 383 | # assign bus ids |
||
| 384 | print(" Assigning bus ids...") |
||
| 385 | units = units.assign( |
||
| 386 | bus_id=units.loc[~units.geom.x.isna()] |
||
| 387 | .sjoin(mv_grid_districts[["bus_id", "geom"]], how="left") |
||
| 388 | .drop(columns=["index_right"]) |
||
| 389 | .bus_id |
||
| 390 | ) |
||
| 391 | units["bus_id"] = units.bus_id.fillna(-1).astype(int) |
||
| 392 | |||
| 393 | # write to DB |
||
| 394 | print(f" Writing {len(units)} units to DB...") |
||
| 395 | units.to_postgis( |
||
| 396 | name=target_tables[tech].__tablename__, |
||
| 397 | con=engine, |
||
| 398 | if_exists="append", |
||
| 399 | schema=target_tables[tech].__table_args__["schema"], |
||
| 400 | ) |
||
| 401 |