|
1
|
|
|
"""The central module containing all code dealing with importing and |
|
2
|
|
|
adjusting data from demandRegio |
|
3
|
|
|
|
|
4
|
|
|
""" |
|
5
|
|
|
import pandas as pd |
|
6
|
|
|
import numpy as np |
|
7
|
|
|
import egon.data.config |
|
8
|
|
|
import egon.data.datasets.scenario_parameters.parameters as scenario_parameters |
|
9
|
|
|
from egon.data import db |
|
10
|
|
|
from egon.data.datasets.scenario_parameters import ( |
|
11
|
|
|
get_sector_parameters, |
|
12
|
|
|
EgonScenario, |
|
13
|
|
|
) |
|
14
|
|
|
from sqlalchemy import Column, String, Float, Integer, ForeignKey, ARRAY |
|
15
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
|
16
|
|
|
from egon.data.datasets.demandregio.install_disaggregator import ( |
|
17
|
|
|
clone_and_install, |
|
18
|
|
|
) |
|
19
|
|
|
from egon.data.datasets import Dataset |
|
20
|
|
|
from pathlib import Path |
|
21
|
|
|
|
|
22
|
|
|
try: |
|
23
|
|
|
from disaggregator import data, spatial, config |
|
24
|
|
|
|
|
25
|
|
|
except ImportError as e: |
|
26
|
|
|
pass |
|
27
|
|
|
|
|
28
|
|
|
# will be later imported from another file ### |
|
29
|
|
|
Base = declarative_base() |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class DemandRegio(Dataset): |
|
33
|
|
|
def __init__(self, dependencies): |
|
34
|
|
|
super().__init__( |
|
35
|
|
|
name="DemandRegio", |
|
36
|
|
|
version="0.0.4", |
|
37
|
|
|
dependencies=dependencies, |
|
38
|
|
|
tasks=( |
|
39
|
|
|
clone_and_install, |
|
40
|
|
|
create_tables, |
|
41
|
|
|
{ |
|
42
|
|
|
insert_household_demand, |
|
43
|
|
|
insert_society_data, |
|
44
|
|
|
insert_cts_ind_demands, |
|
45
|
|
|
}, |
|
46
|
|
|
), |
|
47
|
|
|
) |
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
|
|
class EgonDemandRegioHH(Base): |
|
51
|
|
|
__tablename__ = "egon_demandregio_hh" |
|
52
|
|
|
__table_args__ = {"schema": "demand"} |
|
53
|
|
|
nuts3 = Column(String(5), primary_key=True) |
|
54
|
|
|
hh_size = Column(Integer, primary_key=True) |
|
55
|
|
|
scenario = Column(String, ForeignKey(EgonScenario.name), primary_key=True) |
|
56
|
|
|
year = Column(Integer) |
|
57
|
|
|
demand = Column(Float) |
|
58
|
|
|
|
|
59
|
|
|
|
|
60
|
|
|
class EgonDemandRegioCtsInd(Base): |
|
61
|
|
|
__tablename__ = "egon_demandregio_cts_ind" |
|
62
|
|
|
__table_args__ = {"schema": "demand"} |
|
63
|
|
|
nuts3 = Column(String(5), primary_key=True) |
|
64
|
|
|
wz = Column(Integer, primary_key=True) |
|
65
|
|
|
scenario = Column(String, ForeignKey(EgonScenario.name), primary_key=True) |
|
66
|
|
|
year = Column(Integer) |
|
67
|
|
|
demand = Column(Float) |
|
68
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
class EgonDemandRegioPopulation(Base): |
|
71
|
|
|
__tablename__ = "egon_demandregio_population" |
|
72
|
|
|
__table_args__ = {"schema": "society"} |
|
73
|
|
|
nuts3 = Column(String(5), primary_key=True) |
|
74
|
|
|
year = Column(Integer, primary_key=True) |
|
75
|
|
|
population = Column(Float) |
|
76
|
|
|
|
|
77
|
|
|
|
|
78
|
|
|
class EgonDemandRegioHouseholds(Base): |
|
79
|
|
|
__tablename__ = "egon_demandregio_household" |
|
80
|
|
|
__table_args__ = {"schema": "society"} |
|
81
|
|
|
nuts3 = Column(String(5), primary_key=True) |
|
82
|
|
|
hh_size = Column(Integer, primary_key=True) |
|
83
|
|
|
year = Column(Integer, primary_key=True) |
|
84
|
|
|
households = Column(Integer) |
|
85
|
|
|
|
|
86
|
|
|
|
|
87
|
|
|
class EgonDemandRegioWz(Base): |
|
88
|
|
|
__tablename__ = "egon_demandregio_wz" |
|
89
|
|
|
__table_args__ = {"schema": "demand"} |
|
90
|
|
|
wz = Column(Integer, primary_key=True) |
|
91
|
|
|
sector = Column(String(50)) |
|
92
|
|
|
definition = Column(String(150)) |
|
93
|
|
|
|
|
94
|
|
|
|
|
95
|
|
|
class EgonDemandRegioTimeseriesCtsInd(Base): |
|
96
|
|
|
__tablename__ = "egon_demandregio_timeseries_cts_ind" |
|
97
|
|
|
__table_args__ = {"schema": "demand"} |
|
98
|
|
|
wz = Column(Integer, primary_key=True) |
|
99
|
|
|
year = Column(Integer, primary_key=True) |
|
100
|
|
|
slp = Column(String(50)) |
|
101
|
|
|
load_curve = Column(ARRAY(Float())) |
|
102
|
|
|
|
|
103
|
|
|
|
|
104
|
|
|
def create_tables(): |
|
105
|
|
|
"""Create tables for demandregio data |
|
106
|
|
|
Returns |
|
107
|
|
|
------- |
|
108
|
|
|
None. |
|
109
|
|
|
""" |
|
110
|
|
|
db.execute_sql("CREATE SCHEMA IF NOT EXISTS demand;") |
|
111
|
|
|
db.execute_sql("CREATE SCHEMA IF NOT EXISTS society;") |
|
112
|
|
|
engine = db.engine() |
|
113
|
|
|
EgonDemandRegioHH.__table__.create(bind=engine, checkfirst=True) |
|
114
|
|
|
EgonDemandRegioCtsInd.__table__.create(bind=engine, checkfirst=True) |
|
115
|
|
|
EgonDemandRegioPopulation.__table__.create(bind=engine, checkfirst=True) |
|
116
|
|
|
EgonDemandRegioHouseholds.__table__.create(bind=engine, checkfirst=True) |
|
117
|
|
|
EgonDemandRegioWz.__table__.create(bind=engine, checkfirst=True) |
|
118
|
|
|
EgonDemandRegioTimeseriesCtsInd.__table__.drop( |
|
119
|
|
|
bind=engine, checkfirst=True |
|
120
|
|
|
) |
|
121
|
|
|
EgonDemandRegioTimeseriesCtsInd.__table__.create( |
|
122
|
|
|
bind=engine, checkfirst=True |
|
123
|
|
|
) |
|
124
|
|
|
|
|
125
|
|
|
|
|
126
|
|
|
def data_in_boundaries(df): |
|
127
|
|
|
"""Select rows with nuts3 code within boundaries, used for testmode |
|
128
|
|
|
|
|
129
|
|
|
Parameters |
|
130
|
|
|
---------- |
|
131
|
|
|
df : pandas.DataFrame |
|
132
|
|
|
Data for all nuts3 regions |
|
133
|
|
|
|
|
134
|
|
|
Returns |
|
135
|
|
|
------- |
|
136
|
|
|
pandas.DataFrame |
|
137
|
|
|
Data for nuts3 regions within boundaries |
|
138
|
|
|
|
|
139
|
|
|
""" |
|
140
|
|
|
engine = db.engine() |
|
141
|
|
|
|
|
142
|
|
|
df = df.reset_index() |
|
143
|
|
|
|
|
144
|
|
|
# Change nuts3 region names to 2016 version |
|
145
|
|
|
nuts_names = {"DEB16": "DEB1C", "DEB19": "DEB1D"} |
|
146
|
|
|
df.loc[df.nuts3.isin(nuts_names), "nuts3"] = df.loc[ |
|
147
|
|
|
df.nuts3.isin(nuts_names), "nuts3" |
|
148
|
|
|
].map(nuts_names) |
|
149
|
|
|
|
|
150
|
|
|
df = df.set_index("nuts3") |
|
151
|
|
|
|
|
152
|
|
|
return df[ |
|
153
|
|
|
df.index.isin( |
|
154
|
|
|
pd.read_sql( |
|
155
|
|
|
"SELECT DISTINCT ON (nuts) nuts FROM boundaries.vg250_krs", |
|
156
|
|
|
engine, |
|
157
|
|
|
).nuts |
|
158
|
|
|
) |
|
159
|
|
|
] |
|
160
|
|
|
|
|
161
|
|
|
|
|
162
|
|
|
def insert_cts_ind_wz_definitions(): |
|
163
|
|
|
"""Insert demandregio's definitions of CTS and industrial branches |
|
164
|
|
|
|
|
165
|
|
|
Returns |
|
166
|
|
|
------- |
|
167
|
|
|
None. |
|
168
|
|
|
|
|
169
|
|
|
""" |
|
170
|
|
|
|
|
171
|
|
|
source = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
|
172
|
|
|
"sources" |
|
173
|
|
|
] |
|
174
|
|
|
|
|
175
|
|
|
target = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
|
176
|
|
|
"targets" |
|
177
|
|
|
]["wz_definitions"] |
|
178
|
|
|
|
|
179
|
|
|
engine = db.engine() |
|
180
|
|
|
|
|
181
|
|
|
for sector in source["wz_definitions"]: |
|
182
|
|
|
|
|
183
|
|
|
file_path = ( |
|
184
|
|
|
Path(".") |
|
185
|
|
|
/ "data_bundle_egon_data" |
|
186
|
|
|
/ "WZ_definition" |
|
187
|
|
|
/ source["wz_definitions"][sector] |
|
188
|
|
|
) |
|
189
|
|
|
|
|
190
|
|
|
if sector == "CTS": |
|
191
|
|
|
delimiter = ";" |
|
192
|
|
|
else: |
|
193
|
|
|
delimiter = "," |
|
194
|
|
|
df = ( |
|
195
|
|
|
pd.read_csv(file_path, delimiter=delimiter, header=None) |
|
196
|
|
|
.rename({0: "wz", 1: "definition"}, axis="columns") |
|
197
|
|
|
.set_index("wz") |
|
198
|
|
|
) |
|
199
|
|
|
df["sector"] = sector |
|
200
|
|
|
df.to_sql( |
|
201
|
|
|
target["table"], |
|
202
|
|
|
engine, |
|
203
|
|
|
schema=target["schema"], |
|
204
|
|
|
if_exists="append", |
|
205
|
|
|
) |
|
206
|
|
|
|
|
207
|
|
|
|
|
208
|
|
|
def match_nuts3_bl(): |
|
209
|
|
|
"""Function that maps the federal state to each nuts3 region |
|
210
|
|
|
|
|
211
|
|
|
Returns |
|
212
|
|
|
------- |
|
213
|
|
|
df : pandas.DataFrame |
|
214
|
|
|
List of nuts3 regions and the federal state of Germany. |
|
215
|
|
|
|
|
216
|
|
|
""" |
|
217
|
|
|
|
|
218
|
|
|
engine = db.engine() |
|
219
|
|
|
|
|
220
|
|
|
df = pd.read_sql( |
|
221
|
|
|
"SELECT DISTINCT ON (boundaries.vg250_krs.nuts) " |
|
222
|
|
|
"boundaries.vg250_krs.nuts, boundaries.vg250_lan.gen " |
|
223
|
|
|
"FROM boundaries.vg250_lan, boundaries.vg250_krs " |
|
224
|
|
|
" WHERE ST_CONTAINS(" |
|
225
|
|
|
"boundaries.vg250_lan.geometry, " |
|
226
|
|
|
"boundaries.vg250_krs.geometry)", |
|
227
|
|
|
con=engine, |
|
228
|
|
|
) |
|
229
|
|
|
|
|
230
|
|
|
df.gen[df.gen == "Baden-Württemberg (Bodensee)"] = "Baden-Württemberg" |
|
231
|
|
|
df.gen[df.gen == "Bayern (Bodensee)"] = "Bayern" |
|
232
|
|
|
|
|
233
|
|
|
return df.set_index("nuts") |
|
234
|
|
|
|
|
235
|
|
|
|
|
236
|
|
|
def adjust_ind_pes(ec_cts_ind): |
|
237
|
|
|
""" |
|
238
|
|
|
Adjust electricity demand of industrial consumers due to electrification |
|
239
|
|
|
of process heat based on assumptions of pypsa-eur-sec. |
|
240
|
|
|
|
|
241
|
|
|
Parameters |
|
242
|
|
|
---------- |
|
243
|
|
|
ec_cts_ind : pandas.DataFrame |
|
244
|
|
|
Industrial demand without additional electrification |
|
245
|
|
|
|
|
246
|
|
|
Returns |
|
247
|
|
|
------- |
|
248
|
|
|
ec_cts_ind : pandas.DataFrame |
|
249
|
|
|
Industrial demand with additional electrification |
|
250
|
|
|
|
|
251
|
|
|
""" |
|
252
|
|
|
|
|
253
|
|
|
pes_path = ( |
|
254
|
|
|
Path(".") / "data_bundle_egon_data" / "pypsa_eur_sec" / "resources" |
|
255
|
|
|
) |
|
256
|
|
|
|
|
257
|
|
|
sources = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
|
258
|
|
|
"sources" |
|
259
|
|
|
]["new_consumers_2050"] |
|
260
|
|
|
|
|
261
|
|
|
# Extract today's industrial demand from pypsa-eur-sec |
|
262
|
|
|
demand_today = pd.read_csv( |
|
263
|
|
|
pes_path / sources["pes-demand-today"], |
|
264
|
|
|
header=None, |
|
265
|
|
|
).transpose() |
|
266
|
|
|
|
|
267
|
|
|
# Filter data |
|
268
|
|
|
demand_today[1].fillna("carrier", inplace=True) |
|
269
|
|
|
demand_today = demand_today[ |
|
270
|
|
|
(demand_today[0] == "DE") | (demand_today[1] == "carrier") |
|
271
|
|
|
].drop([0, 2], axis="columns") |
|
272
|
|
|
|
|
273
|
|
|
demand_today = ( |
|
274
|
|
|
demand_today.transpose() |
|
275
|
|
|
.set_index(0) |
|
276
|
|
|
.transpose() |
|
277
|
|
|
.set_index("carrier") |
|
278
|
|
|
.transpose() |
|
279
|
|
|
.loc["electricity"] |
|
280
|
|
|
.astype(float) |
|
281
|
|
|
) |
|
282
|
|
|
|
|
283
|
|
|
# Calculate future industrial demand from pypsa-eur-sec |
|
284
|
|
|
# based on production and energy demands per carrier ('sector ratios') |
|
285
|
|
|
prod_tomorrow = pd.read_csv(pes_path / sources["pes-production-tomorrow"]) |
|
286
|
|
|
|
|
287
|
|
|
prod_tomorrow = prod_tomorrow[prod_tomorrow["kton/a"] == "DE"].set_index( |
|
288
|
|
|
"kton/a" |
|
289
|
|
|
) |
|
290
|
|
|
|
|
291
|
|
|
sector_ratio = ( |
|
292
|
|
|
pd.read_csv(pes_path / sources["pes-sector-ratios"]) |
|
293
|
|
|
.set_index("MWh/tMaterial") |
|
294
|
|
|
.loc["elec"] |
|
295
|
|
|
) |
|
296
|
|
|
|
|
297
|
|
|
demand_tomorrow = prod_tomorrow.multiply( |
|
298
|
|
|
sector_ratio.div(1000) |
|
299
|
|
|
).transpose()["DE"] |
|
300
|
|
|
|
|
301
|
|
|
# Calculate changes of electrical demand per sector in pypsa-eur-sec |
|
302
|
|
|
change = pd.DataFrame( |
|
303
|
|
|
(demand_tomorrow / demand_today) |
|
304
|
|
|
/ (demand_tomorrow / demand_today).sum() |
|
305
|
|
|
) |
|
306
|
|
|
|
|
307
|
|
|
# Drop rows without changes |
|
308
|
|
|
change = change[~change[0].isnull()] |
|
309
|
|
|
|
|
310
|
|
|
# Map industrial branches of pypsa-eur-sec to WZ2008 used in demandregio |
|
311
|
|
|
change["wz"] = change.index.map( |
|
312
|
|
|
{ |
|
313
|
|
|
"Alumina production": 24, |
|
314
|
|
|
"Aluminium - primary production": 24, |
|
315
|
|
|
"Aluminium - secondary production": 24, |
|
316
|
|
|
"Ammonia": 20, |
|
317
|
|
|
"Basic chemicals (without ammonia)": 20, |
|
318
|
|
|
"Cement": 23, |
|
319
|
|
|
"Ceramics & other NMM": 23, |
|
320
|
|
|
"Electric arc": 24, |
|
321
|
|
|
"Food, beverages and tobacco": 10, |
|
322
|
|
|
"Glass production": 23, |
|
323
|
|
|
"Integrated steelworks": 24, |
|
324
|
|
|
"Machinery Equipment": 28, |
|
325
|
|
|
"Other Industrial Sectors": 32, |
|
326
|
|
|
"Other chemicals": 20, |
|
327
|
|
|
"Other non-ferrous metals": 24, |
|
328
|
|
|
"Paper production": 17, |
|
329
|
|
|
"Pharmaceutical products etc.": 21, |
|
330
|
|
|
"Printing and media reproduction": 18, |
|
331
|
|
|
"Pulp production": 17, |
|
332
|
|
|
"Textiles and leather": 13, |
|
333
|
|
|
"Transport Equipment": 29, |
|
334
|
|
|
"Wood and wood products": 16, |
|
335
|
|
|
} |
|
336
|
|
|
) |
|
337
|
|
|
|
|
338
|
|
|
# Group by WZ2008 |
|
339
|
|
|
shares_per_wz = change.groupby("wz")[0].sum() |
|
340
|
|
|
|
|
341
|
|
|
# Calculate addtional demands needed to meet future demand of pypsa-eur-sec |
|
342
|
|
|
addtional_mwh = shares_per_wz.multiply( |
|
343
|
|
|
demand_tomorrow.sum() * 1000000 - ec_cts_ind.sum().sum() |
|
344
|
|
|
) |
|
345
|
|
|
|
|
346
|
|
|
# Calulate overall industrial demand for eGon100RE |
|
347
|
|
|
final_mwh = addtional_mwh + ec_cts_ind[addtional_mwh.index].sum() |
|
348
|
|
|
|
|
349
|
|
|
# Linear scale the industrial demands per nuts3 and wz to meet final demand |
|
350
|
|
|
ec_cts_ind[addtional_mwh.index] *= ( |
|
351
|
|
|
final_mwh / ec_cts_ind[addtional_mwh.index].sum() |
|
352
|
|
|
) |
|
353
|
|
|
|
|
354
|
|
|
return ec_cts_ind |
|
355
|
|
|
|
|
356
|
|
|
|
|
357
|
|
|
def adjust_cts_ind_nep(ec_cts_ind, sector): |
|
358
|
|
|
"""Add electrical demand of new largescale CTS und industrial consumers |
|
359
|
|
|
according to NEP 2021, scneario C 2035. Values per federal state are |
|
360
|
|
|
linear distributed over all CTS branches and nuts3 regions. |
|
361
|
|
|
|
|
362
|
|
|
Parameters |
|
363
|
|
|
---------- |
|
364
|
|
|
ec_cts_ind : pandas.DataFrame |
|
365
|
|
|
CTS or industry demand without new largescale consumers. |
|
366
|
|
|
|
|
367
|
|
|
Returns |
|
368
|
|
|
------- |
|
369
|
|
|
ec_cts_ind : pandas.DataFrame |
|
370
|
|
|
CTS or industry demand including new largescale consumers. |
|
371
|
|
|
|
|
372
|
|
|
""" |
|
373
|
|
|
sources = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
|
374
|
|
|
"sources" |
|
375
|
|
|
] |
|
376
|
|
|
|
|
377
|
|
|
file_path = ( |
|
378
|
|
|
Path(".") |
|
379
|
|
|
/ "data_bundle_egon_data" |
|
380
|
|
|
/ "nep2035_version2021" |
|
381
|
|
|
/ sources["new_consumers_2035"] |
|
382
|
|
|
) |
|
383
|
|
|
|
|
384
|
|
|
# get data from NEP per federal state |
|
385
|
|
|
new_con = pd.read_csv(file_path, delimiter=";", decimal=",", index_col=0) |
|
386
|
|
|
|
|
387
|
|
|
# match nuts3 regions to federal states |
|
388
|
|
|
groups = ec_cts_ind.groupby(match_nuts3_bl().gen) |
|
389
|
|
|
|
|
390
|
|
|
# update demands per federal state |
|
391
|
|
|
for group in groups.indices.keys(): |
|
392
|
|
|
g = groups.get_group(group) |
|
393
|
|
|
data_new = g.mul(1 + new_con[sector][group] * 1e6 / g.sum().sum()) |
|
394
|
|
|
ec_cts_ind[ec_cts_ind.index.isin(g.index)] = data_new |
|
395
|
|
|
|
|
396
|
|
|
return ec_cts_ind |
|
397
|
|
|
|
|
398
|
|
|
|
|
399
|
|
|
def disagg_households_power( |
|
400
|
|
|
scenario, year, weight_by_income=False, original=False, **kwargs |
|
401
|
|
|
): |
|
402
|
|
|
""" |
|
403
|
|
|
Perform spatial disaggregation of electric power in [GWh/a] by key and |
|
404
|
|
|
possibly weight by income. |
|
405
|
|
|
Similar to disaggregator.spatial.disagg_households_power |
|
406
|
|
|
|
|
407
|
|
|
|
|
408
|
|
|
Parameters |
|
409
|
|
|
---------- |
|
410
|
|
|
by : str |
|
411
|
|
|
must be one of ['households', 'population'] |
|
412
|
|
|
weight_by_income : bool, optional |
|
413
|
|
|
Flag if to weight the results by the regional income (default False) |
|
414
|
|
|
orignal : bool, optional |
|
415
|
|
|
Throughput to function households_per_size, |
|
416
|
|
|
A flag if the results should be left untouched and returned in |
|
417
|
|
|
original form for the year 2011 (True) or if they should be scaled to |
|
418
|
|
|
the given `year` by the population in that year (False). |
|
419
|
|
|
|
|
420
|
|
|
Returns |
|
421
|
|
|
------- |
|
422
|
|
|
pd.DataFrame or pd.Series |
|
423
|
|
|
""" |
|
424
|
|
|
# source: survey of energieAgenturNRW |
|
425
|
|
|
demand_per_hh_size = pd.DataFrame( |
|
426
|
|
|
index=range(1, 7), |
|
427
|
|
|
data={ |
|
428
|
|
|
"weighted DWH": [2290, 3202, 4193, 4955, 5928, 5928], |
|
429
|
|
|
"without DHW": [1714, 2812, 3704, 4432, 5317, 5317], |
|
430
|
|
|
}, |
|
431
|
|
|
) |
|
432
|
|
|
|
|
433
|
|
|
# Bottom-Up: Power demand by household sizes in [MWh/a] for each scenario |
|
434
|
|
|
if scenario == "eGon2035": |
|
435
|
|
|
# chose demand per household size from survey including weighted DHW |
|
436
|
|
|
power_per_HH = demand_per_hh_size["weighted DWH"] / 1e3 |
|
437
|
|
|
|
|
438
|
|
|
# calculate demand per nuts3 |
|
439
|
|
|
df = ( |
|
440
|
|
|
data.households_per_size(original=original, year=year) |
|
441
|
|
|
* power_per_HH |
|
442
|
|
|
) |
|
443
|
|
|
|
|
444
|
|
|
# scale to fit demand of NEP 2021 scebario C 2035 (119TWh) |
|
445
|
|
|
df *= 119000000 / df.sum().sum() |
|
446
|
|
|
|
|
447
|
|
|
elif scenario == "eGon100RE": |
|
448
|
|
|
|
|
449
|
|
|
# chose demand per household size from survey without DHW |
|
450
|
|
|
power_per_HH = demand_per_hh_size["without DHW"] / 1e3 |
|
451
|
|
|
|
|
452
|
|
|
# calculate demand per nuts3 in 2011 |
|
453
|
|
|
df_2011 = data.households_per_size(year=2011) * power_per_HH |
|
454
|
|
|
|
|
455
|
|
|
# scale demand per hh-size to meet demand without heat |
|
456
|
|
|
# according to JRC in 2011 (136.6-(20.14+9.41) TWh) |
|
457
|
|
|
power_per_HH *= (136.6 - (20.14 + 9.41)) * 1e6 / df_2011.sum().sum() |
|
458
|
|
|
|
|
459
|
|
|
# calculate demand per nuts3 in 2050 |
|
460
|
|
|
df = data.households_per_size(year=year) * power_per_HH |
|
461
|
|
|
|
|
462
|
|
|
else: |
|
463
|
|
|
print( |
|
464
|
|
|
f"Electric demand per household size for scenario {scenario} " |
|
465
|
|
|
"is not specified." |
|
466
|
|
|
) |
|
467
|
|
|
|
|
468
|
|
|
if weight_by_income: |
|
469
|
|
|
df = spatial.adjust_by_income(df=df) |
|
|
|
|
|
|
470
|
|
|
|
|
471
|
|
|
return df |
|
472
|
|
|
|
|
473
|
|
|
|
|
474
|
|
|
def insert_hh_demand(scenario, year, engine): |
|
475
|
|
|
"""Calculates electrical demands of private households using demandregio's |
|
476
|
|
|
disaggregator and insert results into the database. |
|
477
|
|
|
|
|
478
|
|
|
Parameters |
|
479
|
|
|
---------- |
|
480
|
|
|
scenario : str |
|
481
|
|
|
Name of the corresponing scenario. |
|
482
|
|
|
year : int |
|
483
|
|
|
The number of households per region is taken from this year. |
|
484
|
|
|
|
|
485
|
|
|
Returns |
|
486
|
|
|
------- |
|
487
|
|
|
None. |
|
488
|
|
|
|
|
489
|
|
|
""" |
|
490
|
|
|
targets = egon.data.config.datasets()["demandregio_household_demand"][ |
|
491
|
|
|
"targets" |
|
492
|
|
|
]["household_demand"] |
|
493
|
|
|
# get demands of private households per nuts and size from demandregio |
|
494
|
|
|
ec_hh = disagg_households_power(scenario, year) |
|
495
|
|
|
|
|
496
|
|
|
# Select demands for nuts3-regions in boundaries (needed for testmode) |
|
497
|
|
|
ec_hh = data_in_boundaries(ec_hh) |
|
498
|
|
|
|
|
499
|
|
|
# insert into database |
|
500
|
|
|
for hh_size in ec_hh.columns: |
|
501
|
|
|
df = pd.DataFrame(ec_hh[hh_size]) |
|
502
|
|
|
df["year"] = year |
|
503
|
|
|
df["scenario"] = scenario |
|
504
|
|
|
df["hh_size"] = hh_size |
|
505
|
|
|
df = df.rename({hh_size: "demand"}, axis="columns") |
|
506
|
|
|
df.to_sql( |
|
507
|
|
|
targets["table"], |
|
508
|
|
|
engine, |
|
509
|
|
|
schema=targets["schema"], |
|
510
|
|
|
if_exists="append", |
|
511
|
|
|
) |
|
512
|
|
|
|
|
513
|
|
|
|
|
514
|
|
|
def insert_cts_ind(scenario, year, engine, target_values): |
|
515
|
|
|
"""Calculates electrical demands of CTS and industry using demandregio's |
|
516
|
|
|
disaggregator, adjusts them according to resulting values of NEP 2021 or |
|
517
|
|
|
JRC IDEES and insert results into the database. |
|
518
|
|
|
|
|
519
|
|
|
Parameters |
|
520
|
|
|
---------- |
|
521
|
|
|
scenario : str |
|
522
|
|
|
Name of the corresponing scenario. |
|
523
|
|
|
year : int |
|
524
|
|
|
The number of households per region is taken from this year. |
|
525
|
|
|
target_values : dict |
|
526
|
|
|
List of target values for each scenario and sector. |
|
527
|
|
|
|
|
528
|
|
|
Returns |
|
529
|
|
|
------- |
|
530
|
|
|
None. |
|
531
|
|
|
|
|
532
|
|
|
""" |
|
533
|
|
|
|
|
534
|
|
|
targets = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
|
535
|
|
|
"targets" |
|
536
|
|
|
] |
|
537
|
|
|
|
|
538
|
|
|
for sector in ["CTS", "industry"]: |
|
539
|
|
|
# get demands per nuts3 and wz of demandregio |
|
540
|
|
|
ec_cts_ind = spatial.disagg_CTS_industry( |
|
541
|
|
|
use_nuts3code=True, source="power", sector=sector, year=year |
|
542
|
|
|
).transpose() |
|
543
|
|
|
|
|
544
|
|
|
ec_cts_ind.index = ec_cts_ind.index.rename("nuts3") |
|
545
|
|
|
|
|
546
|
|
|
# exclude mobility sector from GHD |
|
547
|
|
|
ec_cts_ind = ec_cts_ind.drop(columns=49, errors="ignore") |
|
548
|
|
|
|
|
549
|
|
|
# scale values according to target_values |
|
550
|
|
|
if sector in target_values[scenario].keys(): |
|
551
|
|
|
ec_cts_ind *= ( |
|
552
|
|
|
target_values[scenario][sector] * 1e3 / ec_cts_ind.sum().sum() |
|
553
|
|
|
) |
|
554
|
|
|
|
|
555
|
|
|
# include new largescale consumers according to NEP 2021 |
|
556
|
|
|
if scenario == "eGon2035": |
|
557
|
|
|
ec_cts_ind = adjust_cts_ind_nep(ec_cts_ind, sector) |
|
558
|
|
|
# include new industrial demands due to sector coupling |
|
559
|
|
|
if (scenario == "eGon100RE") & (sector == "industry"): |
|
560
|
|
|
ec_cts_ind = adjust_ind_pes(ec_cts_ind) |
|
561
|
|
|
|
|
562
|
|
|
# Select demands for nuts3-regions in boundaries (needed for testmode) |
|
563
|
|
|
ec_cts_ind = data_in_boundaries(ec_cts_ind) |
|
564
|
|
|
|
|
565
|
|
|
# insert into database |
|
566
|
|
|
for wz in ec_cts_ind.columns: |
|
567
|
|
|
df = pd.DataFrame(ec_cts_ind[wz]) |
|
568
|
|
|
df["year"] = year |
|
569
|
|
|
df["wz"] = wz |
|
570
|
|
|
df["scenario"] = scenario |
|
571
|
|
|
df = df.rename({wz: "demand"}, axis="columns") |
|
572
|
|
|
df.index = df.index.rename("nuts3") |
|
573
|
|
|
df.to_sql( |
|
574
|
|
|
targets["cts_ind_demand"]["table"], |
|
575
|
|
|
engine, |
|
576
|
|
|
targets["cts_ind_demand"]["schema"], |
|
577
|
|
|
if_exists="append", |
|
578
|
|
|
) |
|
579
|
|
|
|
|
580
|
|
|
|
|
581
|
|
|
def insert_household_demand(): |
|
582
|
|
|
"""Insert electrical demands for households according to |
|
583
|
|
|
demandregio using its disaggregator-tool in MWh |
|
584
|
|
|
|
|
585
|
|
|
Returns |
|
586
|
|
|
------- |
|
587
|
|
|
None. |
|
588
|
|
|
|
|
589
|
|
|
""" |
|
590
|
|
|
targets = egon.data.config.datasets()["demandregio_household_demand"][ |
|
591
|
|
|
"targets" |
|
592
|
|
|
] |
|
593
|
|
|
engine = db.engine() |
|
594
|
|
|
|
|
595
|
|
|
for t in targets: |
|
596
|
|
|
db.execute_sql( |
|
597
|
|
|
f"DELETE FROM {targets[t]['schema']}.{targets[t]['table']};" |
|
598
|
|
|
) |
|
599
|
|
|
|
|
600
|
|
|
for scn in ["eGon2035", "eGon100RE"]: |
|
601
|
|
|
|
|
602
|
|
|
year = scenario_parameters.global_settings(scn)["population_year"] |
|
603
|
|
|
|
|
604
|
|
|
# Insert demands of private households |
|
605
|
|
|
insert_hh_demand(scn, year, engine) |
|
606
|
|
|
|
|
607
|
|
|
|
|
608
|
|
|
def insert_cts_ind_demands(): |
|
609
|
|
|
"""Insert electricity demands per nuts3-region in Germany according to |
|
610
|
|
|
demandregio using its disaggregator-tool in MWh |
|
611
|
|
|
|
|
612
|
|
|
Returns |
|
613
|
|
|
------- |
|
614
|
|
|
None. |
|
615
|
|
|
|
|
616
|
|
|
""" |
|
617
|
|
|
targets = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
|
618
|
|
|
"targets" |
|
619
|
|
|
] |
|
620
|
|
|
engine = db.engine() |
|
621
|
|
|
|
|
622
|
|
|
for t in targets: |
|
623
|
|
|
db.execute_sql( |
|
624
|
|
|
f"DELETE FROM {targets[t]['schema']}.{targets[t]['table']};" |
|
625
|
|
|
) |
|
626
|
|
|
|
|
627
|
|
|
insert_cts_ind_wz_definitions() |
|
628
|
|
|
|
|
629
|
|
|
for scn in ["eGon2035", "eGon100RE"]: |
|
630
|
|
|
|
|
631
|
|
|
year = scenario_parameters.global_settings(scn)["population_year"] |
|
632
|
|
|
|
|
633
|
|
|
if year > 2035: |
|
634
|
|
|
year = 2035 |
|
635
|
|
|
|
|
636
|
|
|
# target values per scenario in MWh |
|
637
|
|
|
target_values = { |
|
638
|
|
|
# according to NEP 2021 |
|
639
|
|
|
# new consumers will be added seperatly |
|
640
|
|
|
"eGon2035": {"CTS": 135300, "industry": 225400}, |
|
641
|
|
|
# CTS: reduce overall demand from demandregio (without traffic) |
|
642
|
|
|
# by share of heat according to JRC IDEES, data from 2011 |
|
643
|
|
|
# industry: no specific heat demand, use data from demandregio |
|
644
|
|
|
"eGon100RE": {"CTS": (1 - (5.96 + 6.13) / 154.64) * 125183.403}, |
|
645
|
|
|
} |
|
646
|
|
|
|
|
647
|
|
|
insert_cts_ind(scn, year, engine, target_values) |
|
648
|
|
|
|
|
649
|
|
|
# Insert load curves per wz |
|
650
|
|
|
timeseries_per_wz() |
|
651
|
|
|
|
|
652
|
|
|
|
|
653
|
|
|
def insert_society_data(): |
|
654
|
|
|
"""Insert population and number of households per nuts3-region in Germany |
|
655
|
|
|
according to demandregio using its disaggregator-tool |
|
656
|
|
|
|
|
657
|
|
|
Returns |
|
658
|
|
|
------- |
|
659
|
|
|
None. |
|
660
|
|
|
|
|
661
|
|
|
""" |
|
662
|
|
|
targets = egon.data.config.datasets()["demandregio_society"]["targets"] |
|
663
|
|
|
engine = db.engine() |
|
664
|
|
|
|
|
665
|
|
|
for t in targets: |
|
666
|
|
|
db.execute_sql( |
|
667
|
|
|
f"DELETE FROM {targets[t]['schema']}.{targets[t]['table']};" |
|
668
|
|
|
) |
|
669
|
|
|
|
|
670
|
|
|
target_years = np.append( |
|
671
|
|
|
get_sector_parameters("global").population_year.values, 2018 |
|
672
|
|
|
) |
|
673
|
|
|
|
|
674
|
|
|
for year in target_years: |
|
675
|
|
|
df_pop = pd.DataFrame(data.population(year=year)) |
|
676
|
|
|
df_pop["year"] = year |
|
677
|
|
|
df_pop = df_pop.rename({"value": "population"}, axis="columns") |
|
678
|
|
|
# Select data for nuts3-regions in boundaries (needed for testmode) |
|
679
|
|
|
df_pop = data_in_boundaries(df_pop) |
|
680
|
|
|
df_pop.to_sql( |
|
681
|
|
|
targets["population"]["table"], |
|
682
|
|
|
engine, |
|
683
|
|
|
schema=targets["population"]["schema"], |
|
684
|
|
|
if_exists="append", |
|
685
|
|
|
) |
|
686
|
|
|
|
|
687
|
|
|
for year in target_years: |
|
688
|
|
|
df_hh = pd.DataFrame(data.households_per_size(year=year)) |
|
689
|
|
|
# Select data for nuts3-regions in boundaries (needed for testmode) |
|
690
|
|
|
df_hh = data_in_boundaries(df_hh) |
|
691
|
|
|
for hh_size in df_hh.columns: |
|
692
|
|
|
df = pd.DataFrame(df_hh[hh_size]) |
|
693
|
|
|
df["year"] = year |
|
694
|
|
|
df["hh_size"] = hh_size |
|
695
|
|
|
df = df.rename({hh_size: "households"}, axis="columns") |
|
696
|
|
|
df.to_sql( |
|
697
|
|
|
targets["household"]["table"], |
|
698
|
|
|
engine, |
|
699
|
|
|
schema=targets["household"]["schema"], |
|
700
|
|
|
if_exists="append", |
|
701
|
|
|
) |
|
702
|
|
|
|
|
703
|
|
|
|
|
704
|
|
|
def insert_timeseries_per_wz(sector, year): |
|
705
|
|
|
"""Insert normalized electrical load time series for the selected sector |
|
706
|
|
|
|
|
707
|
|
|
Parameters |
|
708
|
|
|
---------- |
|
709
|
|
|
sector : str |
|
710
|
|
|
Name of the sector. ['CTS', 'industry'] |
|
711
|
|
|
year : int |
|
712
|
|
|
Selected weather year |
|
713
|
|
|
|
|
714
|
|
|
Returns |
|
715
|
|
|
------- |
|
716
|
|
|
None. |
|
717
|
|
|
|
|
718
|
|
|
""" |
|
719
|
|
|
targets = egon.data.config.datasets()["demandregio_cts_ind_demand"][ |
|
720
|
|
|
"targets" |
|
721
|
|
|
] |
|
722
|
|
|
|
|
723
|
|
|
if sector == "CTS": |
|
724
|
|
|
profiles = ( |
|
725
|
|
|
data.CTS_power_slp_generator("SH", year=year).resample("H").sum() |
|
726
|
|
|
) |
|
727
|
|
|
wz_slp = config.slp_branch_cts_power() |
|
728
|
|
|
elif sector == "industry": |
|
729
|
|
|
profiles = ( |
|
730
|
|
|
data.shift_load_profile_generator(state="SH", year=year) |
|
731
|
|
|
.resample("H") |
|
732
|
|
|
.sum() |
|
733
|
|
|
) |
|
734
|
|
|
wz_slp = config.shift_profile_industry() |
|
735
|
|
|
|
|
736
|
|
|
else: |
|
737
|
|
|
print(f"Sector {sector} is not valid.") |
|
738
|
|
|
|
|
739
|
|
|
df = pd.DataFrame( |
|
740
|
|
|
index=wz_slp.keys(), columns=["slp", "load_curve", "year"] |
|
|
|
|
|
|
741
|
|
|
) |
|
742
|
|
|
|
|
743
|
|
|
df.index.rename("wz", inplace=True) |
|
744
|
|
|
|
|
745
|
|
|
df.slp = wz_slp.values() |
|
746
|
|
|
|
|
747
|
|
|
df.year = year |
|
748
|
|
|
|
|
749
|
|
|
df.load_curve = profiles[df.slp].transpose().values.tolist() |
|
|
|
|
|
|
750
|
|
|
|
|
751
|
|
|
db.execute_sql( |
|
752
|
|
|
f""" |
|
753
|
|
|
DELETE FROM {targets['timeseries_cts_ind']['schema']}. |
|
754
|
|
|
{targets['timeseries_cts_ind']['table']} |
|
755
|
|
|
WHERE wz IN ( |
|
756
|
|
|
SELECT wz FROM {targets['wz_definitions']['schema']}. |
|
757
|
|
|
{targets['wz_definitions']['table']} |
|
758
|
|
|
WHERE sector = '{sector}') |
|
759
|
|
|
""" |
|
760
|
|
|
) |
|
761
|
|
|
|
|
762
|
|
|
df.to_sql( |
|
763
|
|
|
targets["timeseries_cts_ind"]["table"], |
|
764
|
|
|
schema=targets["timeseries_cts_ind"]["schema"], |
|
765
|
|
|
con=db.engine(), |
|
766
|
|
|
if_exists="append", |
|
767
|
|
|
) |
|
768
|
|
|
|
|
769
|
|
|
|
|
770
|
|
|
def timeseries_per_wz(): |
|
771
|
|
|
"""Calcultae and insert normalized timeseries per wz for cts and industry |
|
772
|
|
|
|
|
773
|
|
|
Returns |
|
774
|
|
|
------- |
|
775
|
|
|
None. |
|
776
|
|
|
|
|
777
|
|
|
""" |
|
778
|
|
|
|
|
779
|
|
|
years = get_sector_parameters("global").weather_year.unique() |
|
780
|
|
|
|
|
781
|
|
|
for year in years: |
|
782
|
|
|
|
|
783
|
|
|
for sector in ["CTS", "industry"]: |
|
784
|
|
|
|
|
785
|
|
|
insert_timeseries_per_wz(sector, int(year)) |
|
786
|
|
|
|