| Conditions | 18 | 
| Total Lines | 232 | 
| Code Lines | 143 | 
| Lines | 0 | 
| Ratio | 0 % | 
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.power_plants.wind_farms.wind_power_states() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from matplotlib import pyplot as plt  | 
            ||
| 235 | def wind_power_states(  | 
            ||
| 236 | state_wf,  | 
            ||
| 237 | state_wf_ni,  | 
            ||
| 238 | state_mv_districts,  | 
            ||
| 239 | target_power,  | 
            ||
| 240 | scenario_year,  | 
            ||
| 241 | source,  | 
            ||
| 242 | fed_state,  | 
            ||
| 243 | ):  | 
            ||
| 244 | """Import OSM data from a Geofabrik `.pbf` file into a PostgreSQL database.  | 
            ||
| 245 | |||
| 246 | Parameters  | 
            ||
| 247 | ----------  | 
            ||
| 248 | state_wf: geodataframe, mandatory  | 
            ||
| 249 | gdf containing all the wf in the state created based on existing wf.  | 
            ||
| 250 | state_wf_ni: geodataframe, mandatory  | 
            ||
| 251 | potential areas in the the state wich don't intersect any existing wf  | 
            ||
| 252 | state_mv_districts: geodataframe, mandatory  | 
            ||
| 253 | gdf containing all the MV/HV substations in the state  | 
            ||
| 254 | target_power: int, mandatory  | 
            ||
| 255 | Objective power for a state given in MW  | 
            ||
| 256 | scenario_year: str, mandatory  | 
            ||
| 257 | name of the scenario  | 
            ||
| 258 | source: str, mandatory  | 
            ||
| 259 | Type of energy genetor. Always "Wind_onshore" for this script.  | 
            ||
| 260 | fed_state: str, mandatory  | 
            ||
| 261 | Name of the state where the wind farms will be allocated  | 
            ||
| 262 | |||
| 263 | """  | 
            ||
| 264 | |||
| 265 | def match_district_se(x):  | 
            ||
| 266 | for sub in hvmv_substation.index:  | 
            ||
| 267 | if x["geom"].contains(hvmv_substation.at[sub, "point"]):  | 
            ||
| 268 | return hvmv_substation.at[sub, "point"]  | 
            ||
| 269 | |||
| 270 | con = db.engine()  | 
            ||
| 271 | sql = "SELECT point, voltage FROM grid.egon_hvmv_substation"  | 
            ||
| 272 | # hvmv_substation has the information about HV transmission lines in Germany  | 
            ||
| 273 | hvmv_substation = gpd.GeoDataFrame.from_postgis(sql, con, geom_col="point")  | 
            ||
| 274 | |||
| 275 | # Set wind potential depending on geographical location  | 
            ||
| 276 | power_north = 21.05 # MW/km²  | 
            ||
| 277 | power_south = 16.81 # MW/km²  | 
            ||
| 278 | # Set a maximum installed capacity to limit the power of big potential areas  | 
            ||
| 279 | max_power_hv = 120 # in MW  | 
            ||
| 280 | max_power_mv = 20 # in MW  | 
            ||
| 281 | # Max distance between WF (connected to MV) and nearest HV substation that  | 
            ||
| 282 | # allows its connection to HV.  | 
            ||
| 283 | max_dist_hv = 20000 # in meters  | 
            ||
| 284 | |||
| 285 | summary = pd.DataFrame(  | 
            ||
| 286 | columns=["state", "target", "from existin WF", "MV districts"]  | 
            ||
| 287 | )  | 
            ||
| 288 | |||
| 289 | north = [  | 
            ||
| 290 | "Schleswig-Holstein",  | 
            ||
| 291 | "Mecklenburg-Vorpommern",  | 
            ||
| 292 | "Niedersachsen",  | 
            ||
| 293 | "Bremen",  | 
            ||
| 294 | "Hamburg",  | 
            ||
| 295 | ]  | 
            ||
| 296 | |||
| 297 | if fed_state in north:  | 
            ||
| 298 | state_wf["inst capacity [MW]"] = power_north * state_wf["area [km²]"]  | 
            ||
| 299 | else:  | 
            ||
| 300 | state_wf["inst capacity [MW]"] = power_south * state_wf["area [km²]"]  | 
            ||
| 301 | |||
| 302 | # Divide selected areas based on voltage of connection points  | 
            ||
| 303 | wf_mv = state_wf[  | 
            ||
| 304 | (state_wf["voltage"] != "Hochspannung")  | 
            ||
| 305 | & (state_wf["voltage"] != "Hoechstspannung")  | 
            ||
| 306 | & (state_wf["voltage"] != "UmspannungZurHochspannung")  | 
            ||
| 307 | ]  | 
            ||
| 308 | |||
| 309 | wf_hv = state_wf[  | 
            ||
| 310 | (state_wf["voltage"] == "Hochspannung")  | 
            ||
| 311 | | (state_wf["voltage"] == "Hoechstspannung")  | 
            ||
| 312 | | (state_wf["voltage"] == "UmspannungZurHochspannung")  | 
            ||
| 313 | ]  | 
            ||
| 314 | |||
| 315 | # Wind farms connected to MV network will be connected to HV network if the distance  | 
            ||
| 316 | # to the closest HV substation is =< max_dist_hv, and the installed capacity  | 
            ||
| 317 | # is bigger than max_power_mv  | 
            ||
| 318 | hvmv_substation = hvmv_substation.to_crs(3035)  | 
            ||
| 319 | hvmv_substation["voltage"] = hvmv_substation["voltage"].apply(  | 
            ||
| 320 |         lambda x: int(x.split(";")[0]) | 
            ||
| 321 | )  | 
            ||
| 322 | hv_substations = hvmv_substation[hvmv_substation["voltage"] >= 110000]  | 
            ||
| 323 | hv_substations = hv_substations.unary_union # join all the hv_substations  | 
            ||
| 324 | wf_mv["dist_to_HV"] = (  | 
            ||
| 325 | state_wf["geom"].to_crs(3035).distance(hv_substations)  | 
            ||
| 326 | )  | 
            ||
| 327 | wf_mv_to_hv = wf_mv[  | 
            ||
| 328 | (wf_mv["dist_to_HV"] <= max_dist_hv)  | 
            ||
| 329 | & (wf_mv["inst capacity [MW]"] >= max_power_mv)  | 
            ||
| 330 | ]  | 
            ||
| 331 | wf_mv_to_hv = wf_mv_to_hv.drop(columns=["dist_to_HV"])  | 
            ||
| 332 | wf_mv_to_hv["voltage"] = "Hochspannung"  | 
            ||
| 333 | |||
| 334 | wf_hv = wf_hv.append(wf_mv_to_hv)  | 
            ||
| 335 | wf_mv = wf_mv[  | 
            ||
| 336 | (wf_mv["dist_to_HV"] > max_dist_hv)  | 
            ||
| 337 | | (wf_mv["inst capacity [MW]"] < max_power_mv)  | 
            ||
| 338 | ]  | 
            ||
| 339 | wf_mv = wf_mv.drop(columns=["dist_to_HV"])  | 
            ||
| 340 | |||
| 341 | wf_hv["inst capacity [MW]"] = wf_hv["inst capacity [MW]"].apply(  | 
            ||
| 342 | lambda x: x if x < max_power_hv else max_power_hv  | 
            ||
| 343 | )  | 
            ||
| 344 | |||
| 345 | wf_mv["inst capacity [MW]"] = wf_mv["inst capacity [MW]"].apply(  | 
            ||
| 346 | lambda x: x if x < max_power_mv else max_power_mv  | 
            ||
| 347 | )  | 
            ||
| 348 | |||
| 349 | wind_farms = wf_hv.append(wf_mv)  | 
            ||
| 350 | |||
| 351 | # Adjust the total installed capacity to the scenario  | 
            ||
| 352 | total_wind_power = (  | 
            ||
| 353 | wf_hv["inst capacity [MW]"].sum() + wf_mv["inst capacity [MW]"].sum()  | 
            ||
| 354 | )  | 
            ||
| 355 | if total_wind_power > target_power:  | 
            ||
| 356 | scale_factor = target_power / total_wind_power  | 
            ||
| 357 | wf_mv["inst capacity [MW]"] = (  | 
            ||
| 358 | wf_mv["inst capacity [MW]"] * scale_factor  | 
            ||
| 359 | )  | 
            ||
| 360 | wf_hv["inst capacity [MW]"] = (  | 
            ||
| 361 | wf_hv["inst capacity [MW]"] * scale_factor  | 
            ||
| 362 | )  | 
            ||
| 363 | wind_farms = wf_hv.append(wf_mv)  | 
            ||
| 364 | summary = summary.append(  | 
            ||
| 365 |             { | 
            ||
| 366 | "state": fed_state,  | 
            ||
| 367 | "target": target_power,  | 
            ||
| 368 | "from existin WF": wind_farms["inst capacity [MW]"].sum(),  | 
            ||
| 369 | "MV districts": 0,  | 
            ||
| 370 | },  | 
            ||
| 371 | ignore_index=True,  | 
            ||
| 372 | )  | 
            ||
| 373 | else:  | 
            ||
| 374 | extra_wf = state_mv_districts.copy()  | 
            ||
| 375 | extra_wf = extra_wf.drop(columns=["centroid"])  | 
            ||
| 376 | # the column centroid has the coordinates of the substation corresponting  | 
            ||
| 377 | # to each mv_grid_district  | 
            ||
| 378 | extra_wf["centroid"] = extra_wf.apply(match_district_se, axis=1)  | 
            ||
| 379 |         extra_wf = extra_wf.set_geometry("centroid") | 
            ||
| 380 | extra_wf["area [km²]"] = 0.0  | 
            ||
| 381 | for district in extra_wf.index:  | 
            ||
| 382 | try:  | 
            ||
| 383 | pot_area_district = gpd.clip(  | 
            ||
| 384 | state_wf_ni, extra_wf.at[district, "geom"]  | 
            ||
| 385 | )  | 
            ||
| 386 | extra_wf.at[district, "area [km²]"] = pot_area_district[  | 
            ||
| 387 | "area [km²]"  | 
            ||
| 388 | ].sum()  | 
            ||
| 389 | except:  | 
            ||
| 390 | print(district)  | 
            ||
| 391 | extra_wf = extra_wf[extra_wf["area [km²]"] != 0]  | 
            ||
| 392 | total_new_area = extra_wf["area [km²]"].sum()  | 
            ||
| 393 | scale_factor = (target_power - total_wind_power) / total_new_area  | 
            ||
| 394 | extra_wf["inst capacity [MW]"] = extra_wf["area [km²]"] * scale_factor  | 
            ||
| 395 | extra_wf["voltage"] = "Hochspannung"  | 
            ||
| 396 | summary = summary.append(  | 
            ||
| 397 |             { | 
            ||
| 398 | "state": fed_state,  | 
            ||
| 399 | "target": target_power,  | 
            ||
| 400 | "from existin WF": wind_farms["inst capacity [MW]"].sum(),  | 
            ||
| 401 | "MV districts": extra_wf["inst capacity [MW]"].sum(),  | 
            ||
| 402 | },  | 
            ||
| 403 | ignore_index=True,  | 
            ||
| 404 | )  | 
            ||
| 405 | wind_farms = wind_farms.append(extra_wf, ignore_index=True)  | 
            ||
| 406 | |||
| 407 | # Use Definition of thresholds for voltage level assignment  | 
            ||
| 408 | wind_farms["voltage_level"] = 0  | 
            ||
| 409 | for i in wind_farms.index:  | 
            ||
| 410 | try:  | 
            ||
| 411 | if wind_farms.at[i, "inst capacity [MW]"] < 5.5:  | 
            ||
| 412 | wind_farms.at[i, "voltage_level"] = 5  | 
            ||
| 413 | continue  | 
            ||
| 414 | if wind_farms.at[i, "inst capacity [MW]"] < 20:  | 
            ||
| 415 | wind_farms.at[i, "voltage_level"] = 4  | 
            ||
| 416 | continue  | 
            ||
| 417 | if wind_farms.at[i, "inst capacity [MW]"] >= 20:  | 
            ||
| 418 | wind_farms.at[i, "voltage_level"] = 3  | 
            ||
| 419 | continue  | 
            ||
| 420 | except:  | 
            ||
| 421 | print(i)  | 
            ||
| 422 | |||
| 423 | # Look for the maximum id in the table egon_power_plants  | 
            ||
| 424 | sql = "SELECT MAX(id) FROM supply.egon_power_plants"  | 
            ||
| 425 | max_id = pd.read_sql(sql, con)  | 
            ||
| 426 | max_id = max_id["max"].iat[0]  | 
            ||
| 427 | if max_id == None:  | 
            ||
| 428 | wind_farm_id = 1  | 
            ||
| 429 | else:  | 
            ||
| 430 | wind_farm_id = int(max_id + 1)  | 
            ||
| 431 | |||
| 432 | # write_table in egon-data database:  | 
            ||
| 433 | |||
| 434 | # Copy relevant columns from wind_farms  | 
            ||
| 435 | insert_wind_farms = wind_farms[  | 
            ||
| 436 | ["inst capacity [MW]", "voltage_level", "centroid"]  | 
            ||
| 437 | ]  | 
            ||
| 438 | |||
| 439 | # Set static column values  | 
            ||
| 440 | insert_wind_farms["carrier"] = source  | 
            ||
| 441 | insert_wind_farms["scenario"] = scenario_year  | 
            ||
| 442 | |||
| 443 | # Change name and crs of geometry column  | 
            ||
| 444 | insert_wind_farms = (  | 
            ||
| 445 | insert_wind_farms.rename(  | 
            ||
| 446 |             {"centroid": "geom", "inst capacity [MW]": "el_capacity"}, axis=1 | 
            ||
| 447 | )  | 
            ||
| 448 |         .set_geometry("geom") | 
            ||
| 449 | .to_crs(4326)  | 
            ||
| 450 | )  | 
            ||
| 451 | |||
| 452 | # Reset index  | 
            ||
| 453 | insert_wind_farms.index = pd.RangeIndex(  | 
            ||
| 454 | start=wind_farm_id,  | 
            ||
| 455 | stop=wind_farm_id + len(insert_wind_farms),  | 
            ||
| 456 | name="id",  | 
            ||
| 457 | )  | 
            ||
| 458 | |||
| 459 | # Insert into database  | 
            ||
| 460 | insert_wind_farms.reset_index().to_postgis(  | 
            ||
| 461 | "egon_power_plants",  | 
            ||
| 462 | schema="supply",  | 
            ||
| 463 | con=db.engine(),  | 
            ||
| 464 | if_exists="append",  | 
            ||
| 465 | )  | 
            ||
| 466 | return wind_farms, summary  | 
            ||
| 467 | |||
| 517 |