Total Complexity | 69 |
Total Lines | 1711 |
Duplicated Lines | 1.4 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with |
||
2 | individual heat supply. |
||
3 | |||
4 | """ |
||
5 | from pathlib import Path |
||
6 | import os |
||
7 | import random |
||
8 | import time |
||
9 | |||
10 | from loguru import logger |
||
11 | from psycopg2.extensions import AsIs, register_adapter |
||
12 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
13 | from sqlalchemy.ext.declarative import declarative_base |
||
14 | import geopandas as gpd |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import saio |
||
18 | |||
19 | from egon.data import config, db |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.district_heating_areas import ( |
||
22 | MapZensusDistrictHeatingAreas, |
||
23 | ) |
||
24 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
25 | CtsBuildings, |
||
26 | calc_cts_building_profiles, |
||
27 | ) |
||
28 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
29 | EgonMapZensusMvgdBuildings, |
||
30 | ) |
||
31 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
32 | write_table_to_postgres, |
||
33 | ) |
||
34 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
35 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
36 | EgonDailyHeatDemandPerClimateZone, |
||
37 | EgonMapZensusClimateZones, |
||
38 | ) |
||
39 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
40 | EgonHeatTimeseries, |
||
41 | ) |
||
42 | |||
43 | # get zensus cells with district heating |
||
44 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
45 | |||
46 | engine = db.engine() |
||
47 | Base = declarative_base() |
||
48 | |||
49 | # TODO check column names> |
||
50 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
51 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
52 | __table_args__ = {"schema": "demand"} |
||
53 | bus_id = Column(Integer, primary_key=True) |
||
54 | scenario = Column(String, primary_key=True) |
||
55 | carrier = Column(String, primary_key=True) |
||
56 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
57 | |||
58 | |||
59 | class EgonHpCapacityBuildings(Base): |
||
60 | __tablename__ = "egon_hp_capacity_buildings" |
||
61 | __table_args__ = {"schema": "demand"} |
||
62 | building_id = Column(Integer, primary_key=True) |
||
63 | scenario = Column(String, primary_key=True) |
||
64 | hp_capacity = Column(REAL) |
||
65 | |||
66 | |||
67 | class HeatPumpsPypsaEurSecAnd2035(Dataset): |
||
68 | def __init__(self, dependencies): |
||
69 | def dyn_parallel_tasks(): |
||
70 | """Dynamically generate tasks |
||
71 | |||
72 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
73 | |||
74 | The number of parallel tasks is defined via parameter |
||
75 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
76 | |||
77 | Returns |
||
78 | ------- |
||
79 | set of airflow.PythonOperators |
||
80 | The tasks. Each element is of |
||
81 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
82 | determine_hp_capacity_eGon2035_pypsa_eur_sec` |
||
83 | """ |
||
84 | parallel_tasks = egon.data.config.datasets()[ |
||
|
|||
85 | "demand_timeseries_mvgd" |
||
86 | ].get("parallel_tasks", 1) |
||
87 | # ========== Register np datatypes with SQLA ========== |
||
88 | register_adapter(np.float64, adapt_numpy_float64) |
||
89 | register_adapter(np.int64, adapt_numpy_int64) |
||
90 | # ===================================================== |
||
91 | |||
92 | with db.session_scope() as session: |
||
93 | query = ( |
||
94 | session.query( |
||
95 | MapZensusGridDistricts.bus_id, |
||
96 | ) |
||
97 | .filter( |
||
98 | MapZensusGridDistricts.zensus_population_id |
||
99 | == EgonPetaHeat.zensus_population_id |
||
100 | ) |
||
101 | .distinct(MapZensusGridDistricts.bus_id) |
||
102 | ) |
||
103 | mvgd_ids = pd.read_sql( |
||
104 | query.statement, query.session.bind, index_col=None |
||
105 | ) |
||
106 | |||
107 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
108 | |||
109 | mvgd_ids = np.array_split( |
||
110 | mvgd_ids["bus_id"].values, parallel_tasks |
||
111 | ) |
||
112 | |||
113 | # mvgd_bunch_size = divmod(MVGD_MIN_COUNT, parallel_tasks)[0] |
||
114 | tasks = set() |
||
115 | for i, bulk in enumerate(mvgd_ids): |
||
116 | tasks.add( |
||
117 | PythonOperator( |
||
118 | task_id=( |
||
119 | f"determine-hp-capacity-eGon2035-pypsa-eur-sec_" |
||
120 | f"mvgd_{min(bulk)}-{max(bulk)}" |
||
121 | ), |
||
122 | python_callable=determine_hp_cap_peak_load_mvgd_ts, |
||
123 | op_kwargs={ |
||
124 | "mvgd_ids": bulk, |
||
125 | }, |
||
126 | ) |
||
127 | ) |
||
128 | return tasks |
||
129 | |||
130 | super().__init__( |
||
131 | name="HeatPumpsPypsaEurSecAnd2035", |
||
132 | version="0.0.0", |
||
133 | dependencies=dependencies, |
||
134 | tasks=( |
||
135 | create_peak_load_table, |
||
136 | create_hp_capacity_table, |
||
137 | # delete_peak_loads_if_existing, |
||
138 | {*dyn_parallel_tasks()}, |
||
139 | ), |
||
140 | ) |
||
141 | |||
142 | |||
143 | class HeatPumps2050(Dataset): |
||
144 | def __init__(self, dependencies): |
||
145 | super().__init__( |
||
146 | name="HeatPumps2050", |
||
147 | version="0.0.0", |
||
148 | dependencies=dependencies, |
||
149 | tasks=(determine_hp_cap_buildings_eGon100RE,), |
||
150 | ) |
||
151 | |||
152 | |||
153 | class BuildingHeatPeakLoads(Base): |
||
154 | __tablename__ = "egon_building_heat_peak_loads" |
||
155 | __table_args__ = {"schema": "demand"} |
||
156 | |||
157 | building_id = Column(Integer, primary_key=True) |
||
158 | scenario = Column(String, primary_key=True) |
||
159 | sector = Column(String, primary_key=True) |
||
160 | peak_load_in_w = Column(REAL) |
||
161 | |||
162 | |||
163 | def adapt_numpy_float64(numpy_float64): |
||
164 | return AsIs(numpy_float64) |
||
165 | |||
166 | |||
167 | def adapt_numpy_int64(numpy_int64): |
||
168 | return AsIs(numpy_int64) |
||
169 | |||
170 | |||
171 | def log_to_file(name): |
||
172 | """Simple only file logger""" |
||
173 | file = os.path.basename(__file__).rstrip(".py") |
||
174 | file_path = Path(f"./{file}_logs") |
||
175 | os.makedirs(file_path, exist_ok=True) |
||
176 | logger.remove() |
||
177 | logger.add( |
||
178 | file_path / Path(f"{name}.log"), |
||
179 | format="{time} {level} {message}", |
||
180 | # filter="my_module", |
||
181 | level="DEBUG", |
||
182 | ) |
||
183 | logger.trace(f"Start logging of: {name}") |
||
184 | return logger |
||
185 | |||
186 | |||
187 | def timeit(func): |
||
188 | """ |
||
189 | Decorator for measuring function's running time. |
||
190 | """ |
||
191 | |||
192 | def measure_time(*args, **kw): |
||
193 | start_time = time.time() |
||
194 | result = func(*args, **kw) |
||
195 | print( |
||
196 | "Processing time of %s(): %.2f seconds." |
||
197 | % (func.__qualname__, time.time() - start_time) |
||
198 | ) |
||
199 | return result |
||
200 | |||
201 | return measure_time |
||
202 | |||
203 | |||
204 | def timeitlog(func): |
||
205 | """ |
||
206 | Decorator for measuring running time of residential heat peak load and |
||
207 | logging it. |
||
208 | """ |
||
209 | |||
210 | def measure_time(*args, **kw): |
||
211 | start_time = time.time() |
||
212 | result = func(*args, **kw) |
||
213 | process_time = time.time() - start_time |
||
214 | try: |
||
215 | mvgd = kw["mvgd"] |
||
216 | except KeyError: |
||
217 | mvgd = "bulk" |
||
218 | statement = ( |
||
219 | f"MVGD={mvgd} | Processing time of {func.__qualname__} | " |
||
220 | f"{time.strftime('%H h, %M min, %S s', time.gmtime(process_time))}" |
||
221 | ) |
||
222 | logger.debug(statement) |
||
223 | print(statement) |
||
224 | return result |
||
225 | |||
226 | return measure_time |
||
227 | |||
228 | |||
229 | def cascade_per_technology( |
||
230 | heat_per_mv, |
||
231 | technologies, |
||
232 | scenario, |
||
233 | distribution_level, |
||
234 | max_size_individual_chp=0.05, |
||
235 | ): |
||
236 | |||
237 | """Add plants for individual heat. |
||
238 | Currently only on mv grid district level. |
||
239 | |||
240 | Parameters |
||
241 | ---------- |
||
242 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
243 | MV grid districts including the heat demand |
||
244 | technologies : pandas.DataFrame |
||
245 | List of supply technologies and their parameters |
||
246 | scenario : str |
||
247 | Name of the scenario |
||
248 | max_size_individual_chp : float |
||
249 | Maximum capacity of an individual chp in MW |
||
250 | Returns |
||
251 | ------- |
||
252 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
253 | MV grid district which need additional individual heat supply |
||
254 | technologies : pandas.DataFrame |
||
255 | List of supply technologies and their parameters |
||
256 | append_df : pandas.DataFrame |
||
257 | List of plants per mv grid for the selected technology |
||
258 | |||
259 | """ |
||
260 | sources = config.datasets()["heat_supply"]["sources"] |
||
261 | |||
262 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
263 | |||
264 | # Distribute heat pumps linear to remaining demand. |
||
265 | if tech.index == "heat_pump": |
||
266 | |||
267 | if distribution_level == "federal_state": |
||
268 | # Select target values per federal state |
||
269 | target = db.select_dataframe( |
||
270 | f""" |
||
271 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
272 | FROM {sources['scenario_capacities']['schema']}. |
||
273 | {sources['scenario_capacities']['table']} a |
||
274 | JOIN {sources['federal_states']['schema']}. |
||
275 | {sources['federal_states']['table']} b |
||
276 | ON a.nuts = b.nuts |
||
277 | WHERE scenario_name = '{scenario}' |
||
278 | AND carrier = 'residential_rural_heat_pump' |
||
279 | """, |
||
280 | index_col="state", |
||
281 | ) |
||
282 | |||
283 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
284 | "state" |
||
285 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
286 | |||
287 | append_df = ( |
||
288 | heat_per_mv["share"] |
||
289 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
290 | .reset_index() |
||
291 | ) |
||
292 | else: |
||
293 | # Select target value for Germany |
||
294 | target = db.select_dataframe( |
||
295 | f""" |
||
296 | SELECT SUM(capacity) AS capacity |
||
297 | FROM {sources['scenario_capacities']['schema']}. |
||
298 | {sources['scenario_capacities']['table']} a |
||
299 | WHERE scenario_name = '{scenario}' |
||
300 | AND carrier = 'residential_rural_heat_pump' |
||
301 | """ |
||
302 | ) |
||
303 | |||
304 | heat_per_mv["share"] = ( |
||
305 | heat_per_mv.remaining_demand |
||
306 | / heat_per_mv.remaining_demand.sum() |
||
307 | ) |
||
308 | |||
309 | append_df = ( |
||
310 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
311 | ) |
||
312 | |||
313 | append_df.rename( |
||
314 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
315 | ) |
||
316 | |||
317 | elif tech.index == "gas_boiler": |
||
318 | |||
319 | append_df = pd.DataFrame( |
||
320 | data={ |
||
321 | "capacity": heat_per_mv.remaining_demand.div( |
||
322 | tech.estimated_flh.values[0] |
||
323 | ), |
||
324 | "carrier": "residential_rural_gas_boiler", |
||
325 | "mv_grid_id": heat_per_mv.index, |
||
326 | "scenario": scenario, |
||
327 | } |
||
328 | ) |
||
329 | |||
330 | if append_df.size > 0: |
||
331 | append_df["carrier"] = tech.index[0] |
||
332 | heat_per_mv.loc[ |
||
333 | append_df.mv_grid_id, "remaining_demand" |
||
334 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
335 | tech.estimated_flh.values[0] |
||
336 | ) |
||
337 | |||
338 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
339 | |||
340 | technologies = technologies.drop(tech.index) |
||
341 | |||
342 | return heat_per_mv, technologies, append_df |
||
343 | |||
344 | |||
345 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
346 | """Assigns supply strategy for individual heating in four steps. |
||
347 | |||
348 | 1.) all small scale CHP are connected. |
||
349 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
350 | are attached. This is not implemented yet, since individual |
||
351 | solar thermal plants are not considered in eGon2035 scenario. |
||
352 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
353 | 4.) The last option are individual gas boilers. |
||
354 | |||
355 | Parameters |
||
356 | ---------- |
||
357 | scenario : str |
||
358 | Name of scenario |
||
359 | plotting : bool, optional |
||
360 | Choose if individual heating supply is plotted. The default is True. |
||
361 | |||
362 | Returns |
||
363 | ------- |
||
364 | resulting_capacities : pandas.DataFrame |
||
365 | List of plants per mv grid |
||
366 | |||
367 | """ |
||
368 | |||
369 | sources = config.datasets()["heat_supply"]["sources"] |
||
370 | |||
371 | # Select residential heat demand per mv grid district and federal state |
||
372 | heat_per_mv = db.select_geodataframe( |
||
373 | f""" |
||
374 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
375 | c.vg250_lan as state, d.geom |
||
376 | FROM {sources['heat_demand']['schema']}. |
||
377 | {sources['heat_demand']['table']} a |
||
378 | JOIN {sources['map_zensus_grid']['schema']}. |
||
379 | {sources['map_zensus_grid']['table']} b |
||
380 | ON a.zensus_population_id = b.zensus_population_id |
||
381 | JOIN {sources['map_vg250_grid']['schema']}. |
||
382 | {sources['map_vg250_grid']['table']} c |
||
383 | ON b.bus_id = c.bus_id |
||
384 | JOIN {sources['mv_grids']['schema']}. |
||
385 | {sources['mv_grids']['table']} d |
||
386 | ON d.bus_id = c.bus_id |
||
387 | WHERE scenario = '{scenario}' |
||
388 | AND a.zensus_population_id NOT IN ( |
||
389 | SELECT zensus_population_id |
||
390 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
391 | WHERE scenario = '{scenario}') |
||
392 | GROUP BY d.bus_id, vg250_lan, geom |
||
393 | """, |
||
394 | index_col="bus_id", |
||
395 | ) |
||
396 | |||
397 | # Store geometry of mv grid |
||
398 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
399 | |||
400 | # Initalize Dataframe for results |
||
401 | resulting_capacities = pd.DataFrame( |
||
402 | columns=["mv_grid_id", "carrier", "capacity"] |
||
403 | ) |
||
404 | |||
405 | # Set technology data according to |
||
406 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
407 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
408 | technologies = pd.DataFrame( |
||
409 | index=["heat_pump", "gas_boiler"], |
||
410 | columns=["estimated_flh", "priority"], |
||
411 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
412 | ) |
||
413 | |||
414 | # In the beginning, the remaining demand equals demand |
||
415 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
416 | |||
417 | # Connect new technologies, if there is still heat demand left |
||
418 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
419 | # Attach new supply technology |
||
420 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
421 | heat_per_mv, technologies, scenario, distribution_level |
||
422 | ) |
||
423 | # Collect resulting capacities |
||
424 | resulting_capacities = resulting_capacities.append( |
||
425 | append_df, ignore_index=True |
||
426 | ) |
||
427 | |||
428 | if plotting: |
||
429 | plot_heat_supply(resulting_capacities) |
||
430 | |||
431 | return gpd.GeoDataFrame( |
||
432 | resulting_capacities, |
||
433 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
434 | ) |
||
435 | |||
436 | |||
437 | # @timeitlog |
||
438 | def get_peta_demand(mvgd): |
||
439 | """ |
||
440 | Retrieve annual peta heat demand for residential buildings and both |
||
441 | scenarios. |
||
442 | |||
443 | Parameters |
||
444 | ---------- |
||
445 | mvgd : int |
||
446 | ID of MVGD |
||
447 | |||
448 | Returns |
||
449 | ------- |
||
450 | df_peta_demand : pd.DataFrame |
||
451 | Annual residential heat demand per building and scenario |
||
452 | """ |
||
453 | |||
454 | with db.session_scope() as session: |
||
455 | query = ( |
||
456 | session.query( |
||
457 | MapZensusGridDistricts.zensus_population_id, |
||
458 | EgonPetaHeat.scenario, |
||
459 | EgonPetaHeat.demand, |
||
460 | ) |
||
461 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
462 | .filter( |
||
463 | MapZensusGridDistricts.zensus_population_id |
||
464 | == EgonPetaHeat.zensus_population_id |
||
465 | ) |
||
466 | .filter(EgonPetaHeat.sector == "residential") |
||
467 | ) |
||
468 | |||
469 | df_peta_demand = pd.read_sql( |
||
470 | query.statement, query.session.bind, index_col=None |
||
471 | ) |
||
472 | df_peta_demand = df_peta_demand.pivot( |
||
473 | index="zensus_population_id", columns="scenario", values="demand" |
||
474 | ).reset_index() |
||
475 | |||
476 | return df_peta_demand |
||
477 | |||
478 | |||
479 | # @timeitlog |
||
480 | def get_residential_heat_profile_ids(mvgd): |
||
481 | """ |
||
482 | Retrieve 365 daily heat profiles ids per residential building and selected |
||
483 | mvgd. |
||
484 | |||
485 | Parameters |
||
486 | ---------- |
||
487 | mvgd : int |
||
488 | ID of MVGD |
||
489 | |||
490 | Returns |
||
491 | ------- |
||
492 | df_profiles_ids : pd.DataFrame |
||
493 | Residential daily heat profile ID's per building |
||
494 | """ |
||
495 | with db.session_scope() as session: |
||
496 | query = ( |
||
497 | session.query( |
||
498 | MapZensusGridDistricts.zensus_population_id, |
||
499 | EgonHeatTimeseries.building_id, |
||
500 | EgonHeatTimeseries.selected_idp_profiles, |
||
501 | ) |
||
502 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
503 | .filter( |
||
504 | MapZensusGridDistricts.zensus_population_id |
||
505 | == EgonHeatTimeseries.zensus_population_id |
||
506 | ) |
||
507 | ) |
||
508 | |||
509 | df_profiles_ids = pd.read_sql( |
||
510 | query.statement, query.session.bind, index_col=None |
||
511 | ) |
||
512 | # Add building count per cell |
||
513 | df_profiles_ids = pd.merge( |
||
514 | left=df_profiles_ids, |
||
515 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
516 | .count() |
||
517 | .rename("buildings"), |
||
518 | left_on="zensus_population_id", |
||
519 | right_index=True, |
||
520 | ) |
||
521 | |||
522 | # unnest array of ids per building |
||
523 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
524 | # add day of year column by order of list |
||
525 | df_profiles_ids["day_of_year"] = ( |
||
526 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
527 | ) |
||
528 | return df_profiles_ids |
||
529 | |||
530 | |||
531 | # @timeitlog |
||
532 | def get_daily_profiles(profile_ids): |
||
533 | """ |
||
534 | Parameters |
||
535 | ---------- |
||
536 | profile_ids : list(int) |
||
537 | daily heat profile ID's |
||
538 | |||
539 | Returns |
||
540 | ------- |
||
541 | df_profiles : pd.DataFrame |
||
542 | Residential daily heat profiles |
||
543 | """ |
||
544 | saio.register_schema("demand", db.engine()) |
||
545 | from saio.demand import egon_heat_idp_pool |
||
546 | |||
547 | with db.session_scope() as session: |
||
548 | query = session.query(egon_heat_idp_pool).filter( |
||
549 | egon_heat_idp_pool.index.in_(profile_ids) |
||
550 | ) |
||
551 | |||
552 | df_profiles = pd.read_sql( |
||
553 | query.statement, query.session.bind, index_col="index" |
||
554 | ) |
||
555 | |||
556 | # unnest array of profile values per id |
||
557 | df_profiles = df_profiles.explode("idp") |
||
558 | # Add column for hour of day |
||
559 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
560 | |||
561 | return df_profiles |
||
562 | |||
563 | |||
564 | # @timeitlog |
||
565 | def get_daily_demand_share(mvgd): |
||
566 | """per census cell |
||
567 | Parameters |
||
568 | ---------- |
||
569 | mvgd : int |
||
570 | MVGD id |
||
571 | |||
572 | Returns |
||
573 | ------- |
||
574 | df_daily_demand_share : pd.DataFrame |
||
575 | Daily annual demand share per cencus cell |
||
576 | """ |
||
577 | |||
578 | with db.session_scope() as session: |
||
579 | query = session.query( |
||
580 | MapZensusGridDistricts.zensus_population_id, |
||
581 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
582 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
583 | ).filter( |
||
584 | EgonMapZensusClimateZones.climate_zone |
||
585 | == EgonDailyHeatDemandPerClimateZone.climate_zone, |
||
586 | MapZensusGridDistricts.zensus_population_id |
||
587 | == EgonMapZensusClimateZones.zensus_population_id, |
||
588 | MapZensusGridDistricts.bus_id == mvgd, |
||
589 | ) |
||
590 | |||
591 | df_daily_demand_share = pd.read_sql( |
||
592 | query.statement, query.session.bind, index_col=None |
||
593 | ) |
||
594 | return df_daily_demand_share |
||
595 | |||
596 | |||
597 | @timeitlog |
||
598 | def calc_residential_heat_profiles_per_mvgd(mvgd): |
||
599 | """ |
||
600 | Gets residential heat profiles per building in MV grid for both eGon2035 |
||
601 | and eGon100RE scenario. |
||
602 | |||
603 | Parameters |
||
604 | ---------- |
||
605 | mvgd : int |
||
606 | MV grid ID. |
||
607 | |||
608 | Returns |
||
609 | -------- |
||
610 | pd.DataFrame |
||
611 | Heat demand profiles of buildings. Columns are: |
||
612 | * zensus_population_id : int |
||
613 | Zensus cell ID building is in. |
||
614 | * building_id : int |
||
615 | ID of building. |
||
616 | * day_of_year : int |
||
617 | Day of the year (1 - 365). |
||
618 | * hour : int |
||
619 | Hour of the day (1 - 24). |
||
620 | * eGon2035 : float |
||
621 | Building's residential heat demand in MW, for specified hour |
||
622 | of the year (specified through columns `day_of_year` and |
||
623 | `hour`). |
||
624 | * eGon100RE : float |
||
625 | Building's residential heat demand in MW, for specified hour |
||
626 | of the year (specified through columns `day_of_year` and |
||
627 | `hour`). |
||
628 | """ |
||
629 | df_peta_demand = get_peta_demand(mvgd) |
||
630 | |||
631 | # TODO maybe return empty dataframe |
||
632 | if df_peta_demand.empty: |
||
633 | logger.info(f"No demand for MVGD: {mvgd}") |
||
634 | return None |
||
635 | |||
636 | df_profiles_ids = get_residential_heat_profile_ids(mvgd) |
||
637 | |||
638 | if df_profiles_ids.empty: |
||
639 | logger.info(f"No profiles for MVGD: {mvgd}") |
||
640 | return None |
||
641 | |||
642 | df_profiles = get_daily_profiles( |
||
643 | df_profiles_ids["selected_idp_profiles"].unique() |
||
644 | ) |
||
645 | |||
646 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
647 | |||
648 | # Merge profile ids to peta demand by zensus_population_id |
||
649 | df_profile_merge = pd.merge( |
||
650 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
651 | ) |
||
652 | |||
653 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
654 | df_profile_merge = pd.merge( |
||
655 | left=df_profile_merge, |
||
656 | right=df_daily_demand_share, |
||
657 | on=["zensus_population_id", "day_of_year"], |
||
658 | ) |
||
659 | |||
660 | # Merge daily profiles by profile id |
||
661 | df_profile_merge = pd.merge( |
||
662 | left=df_profile_merge, |
||
663 | right=df_profiles[["idp", "hour"]], |
||
664 | left_on="selected_idp_profiles", |
||
665 | right_index=True, |
||
666 | ) |
||
667 | |||
668 | # Scale profiles |
||
669 | df_profile_merge["eGon2035"] = ( |
||
670 | df_profile_merge["idp"] |
||
671 | .mul(df_profile_merge["daily_demand_share"]) |
||
672 | .mul(df_profile_merge["eGon2035"]) |
||
673 | .div(df_profile_merge["buildings"]) |
||
674 | ) |
||
675 | |||
676 | df_profile_merge["eGon100RE"] = ( |
||
677 | df_profile_merge["idp"] |
||
678 | .mul(df_profile_merge["daily_demand_share"]) |
||
679 | .mul(df_profile_merge["eGon100RE"]) |
||
680 | .div(df_profile_merge["buildings"]) |
||
681 | ) |
||
682 | |||
683 | columns = [ |
||
684 | "zensus_population_id", |
||
685 | "building_id", |
||
686 | "day_of_year", |
||
687 | "hour", |
||
688 | "eGon2035", |
||
689 | "eGon100RE", |
||
690 | ] |
||
691 | |||
692 | return df_profile_merge.loc[:, columns] |
||
693 | |||
694 | |||
695 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
696 | |||
697 | from matplotlib import pyplot as plt |
||
698 | |||
699 | mv_grids = db.select_geodataframe( |
||
700 | """ |
||
701 | SELECT * FROM grid.egon_mv_grid_district |
||
702 | """, |
||
703 | index_col="bus_id", |
||
704 | ) |
||
705 | |||
706 | for c in ["CHP", "heat_pump"]: |
||
707 | mv_grids[c] = ( |
||
708 | resulting_capacities[resulting_capacities.carrier == c] |
||
709 | .set_index("mv_grid_id") |
||
710 | .capacity |
||
711 | ) |
||
712 | |||
713 | fig, ax = plt.subplots(1, 1) |
||
714 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
715 | mv_grids.plot( |
||
716 | ax=ax, |
||
717 | column=c, |
||
718 | cmap="magma_r", |
||
719 | legend=True, |
||
720 | legend_kwds={ |
||
721 | "label": f"Installed {c} in MW", |
||
722 | "orientation": "vertical", |
||
723 | }, |
||
724 | ) |
||
725 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
726 | |||
727 | |||
728 | @timeitlog |
||
729 | def get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
730 | scenario, mv_grid_id |
||
731 | ): |
||
732 | """ |
||
733 | Returns zensus cell IDs with decentral heating systems in given MV grid. |
||
734 | |||
735 | As cells with district heating differ between scenarios, this is also |
||
736 | depending on the scenario. |
||
737 | |||
738 | Parameters |
||
739 | ----------- |
||
740 | scenario : str |
||
741 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
742 | mv_grid_id : int |
||
743 | ID of MV grid. |
||
744 | |||
745 | Returns |
||
746 | -------- |
||
747 | pd.Index(int) |
||
748 | Zensus cell IDs (as int) of buildings with decentral heating systems in |
||
749 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
750 | used in a query. |
||
751 | |||
752 | """ |
||
753 | |||
754 | # get zensus cells in grid |
||
755 | zensus_population_ids = db.select_dataframe( |
||
756 | f""" |
||
757 | SELECT zensus_population_id |
||
758 | FROM boundaries.egon_map_zensus_grid_districts |
||
759 | WHERE bus_id = {mv_grid_id} |
||
760 | """, |
||
761 | index_col=None, |
||
762 | ).zensus_population_id.values |
||
763 | |||
764 | # maybe use adapter |
||
765 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
766 | # reason throw an error when used in a query) |
||
767 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
768 | |||
769 | # get zensus cells with district heating |
||
770 | with db.session_scope() as session: |
||
771 | query = session.query( |
||
772 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
773 | ).filter( |
||
774 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
775 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
776 | zensus_population_ids |
||
777 | ), |
||
778 | ) |
||
779 | |||
780 | cells_with_dh = pd.read_sql( |
||
781 | query.statement, query.session.bind, index_col=None |
||
782 | ).zensus_population_id.values |
||
783 | |||
784 | # remove zensus cells with district heating |
||
785 | zensus_population_ids = zensus_population_ids.drop( |
||
786 | cells_with_dh, errors="ignore" |
||
787 | ) |
||
788 | return pd.Index(zensus_population_ids) |
||
789 | |||
790 | |||
791 | @timeitlog |
||
792 | def get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
793 | scenario, mv_grid_id |
||
794 | ): |
||
795 | """ |
||
796 | Returns building IDs of buildings with decentral residential heat demand in |
||
797 | given MV grid. |
||
798 | |||
799 | As cells with district heating differ between scenarios, this is also |
||
800 | depending on the scenario. |
||
801 | |||
802 | Parameters |
||
803 | ----------- |
||
804 | scenario : str |
||
805 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
806 | mv_grid_id : int |
||
807 | ID of MV grid. |
||
808 | |||
809 | Returns |
||
810 | -------- |
||
811 | pd.Index(int) |
||
812 | Building IDs (as int) of buildings with decentral heating system in given |
||
813 | MV grid. Type is pandas Index to avoid errors later on when it is |
||
814 | used in a query. |
||
815 | |||
816 | """ |
||
817 | # get zensus cells with decentral heating |
||
818 | zensus_population_ids = ( |
||
819 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
820 | scenario, mv_grid_id |
||
821 | ) |
||
822 | ) |
||
823 | |||
824 | # get buildings with decentral heat demand |
||
825 | saio.register_schema("demand", engine) |
||
826 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
827 | |||
828 | with db.session_scope() as session: |
||
829 | query = session.query( |
||
830 | egon_heat_timeseries_selected_profiles.building_id, |
||
831 | ).filter( |
||
832 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
833 | zensus_population_ids |
||
834 | ) |
||
835 | ) |
||
836 | |||
837 | buildings_with_heat_demand = pd.read_sql( |
||
838 | query.statement, query.session.bind, index_col=None |
||
839 | ).building_id.values |
||
840 | |||
841 | return pd.Index(buildings_with_heat_demand) |
||
842 | |||
843 | |||
844 | @timeitlog |
||
845 | def get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
846 | scenario, mv_grid_id |
||
847 | ): |
||
848 | """ |
||
849 | Returns building IDs of buildings with decentral CTS heat demand in |
||
850 | given MV grid. |
||
851 | |||
852 | As cells with district heating differ between scenarios, this is also |
||
853 | depending on the scenario. |
||
854 | |||
855 | Parameters |
||
856 | ----------- |
||
857 | scenario : str |
||
858 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
859 | mv_grid_id : int |
||
860 | ID of MV grid. |
||
861 | |||
862 | Returns |
||
863 | -------- |
||
864 | pd.Index(int) |
||
865 | Building IDs (as int) of buildings with decentral heating system in given |
||
866 | MV grid. Type is pandas Index to avoid errors later on when it is |
||
867 | used in a query. |
||
868 | |||
869 | """ |
||
870 | |||
871 | # get zensus cells with decentral heating |
||
872 | zensus_population_ids = ( |
||
873 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
874 | scenario, mv_grid_id |
||
875 | ) |
||
876 | ) |
||
877 | |||
878 | # get buildings with decentral heat demand |
||
879 | # ToDo @Julian, sind das alle CTS buildings in der Tabelle? |
||
880 | # ja aber die zensus_population_id stimmt nicht |
||
881 | # boundaries.egon_map_zensus_mvgd_buildings_used benutzen |
||
882 | # |
||
883 | with db.session_scope() as session: |
||
884 | query = session.query(EgonMapZensusMvgdBuildings.building_id).filter( |
||
885 | EgonMapZensusMvgdBuildings.sector == "cts", |
||
886 | EgonMapZensusMvgdBuildings.zensus_population_id.in_( |
||
887 | zensus_population_ids |
||
888 | ) |
||
889 | # ).unique(EgonMapZensusMvgdBuildings.building_id) |
||
890 | ) |
||
891 | |||
892 | buildings_with_heat_demand = pd.read_sql( |
||
893 | query.statement, query.session.bind, index_col=None |
||
894 | ).building_id.values |
||
895 | |||
896 | return pd.Index(buildings_with_heat_demand) |
||
897 | |||
898 | |||
899 | def get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd): |
||
900 | """""" |
||
901 | # get residential buildings with decentral heating systems in both scenarios |
||
902 | buildings_decentral_heating_2035_res = ( |
||
903 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
904 | "eGon2035", mvgd |
||
905 | ) |
||
906 | ) |
||
907 | buildings_decentral_heating_100RE_res = ( |
||
908 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
909 | "eGon100RE", mvgd |
||
910 | ) |
||
911 | ) |
||
912 | |||
913 | # get CTS buildings with decentral heating systems in both scenarios |
||
914 | buildings_decentral_heating_2035_cts = ( |
||
915 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
916 | "eGon2035", mvgd |
||
917 | ) |
||
918 | ) |
||
919 | buildings_decentral_heating_100RE_cts = ( |
||
920 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
921 | "eGon100RE", mvgd |
||
922 | ) |
||
923 | ) |
||
924 | |||
925 | # merge residential and CTS buildings |
||
926 | buildings_decentral_heating_2035 = ( |
||
927 | buildings_decentral_heating_2035_res.append( |
||
928 | buildings_decentral_heating_2035_cts |
||
929 | ).unique() |
||
930 | ) |
||
931 | buildings_decentral_heating_100RE = ( |
||
932 | buildings_decentral_heating_100RE_res.append( |
||
933 | buildings_decentral_heating_100RE_cts |
||
934 | ).unique() |
||
935 | ) |
||
936 | |||
937 | buildings_decentral_heating = { |
||
938 | "eGon2035": buildings_decentral_heating_2035, |
||
939 | "eGon100RE": buildings_decentral_heating_100RE, |
||
940 | } |
||
941 | |||
942 | return buildings_decentral_heating |
||
943 | |||
944 | |||
945 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
946 | """ |
||
947 | Returns total heat pump capacity per grid that was previously defined |
||
948 | (by NEP or pypsa-eur-sec). |
||
949 | |||
950 | Parameters |
||
951 | ----------- |
||
952 | scenario : str |
||
953 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
954 | mv_grid_id : int |
||
955 | ID of MV grid. |
||
956 | |||
957 | Returns |
||
958 | -------- |
||
959 | float |
||
960 | Total heat pump capacity in MW in given MV grid. |
||
961 | |||
962 | """ |
||
963 | # TODO temporary commented until table exists |
||
964 | # from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
965 | # |
||
966 | # with db.session_scope() as session: |
||
967 | # query = ( |
||
968 | # session.query( |
||
969 | # EgonIndividualHeatingSupply.mv_grid_id, |
||
970 | # EgonIndividualHeatingSupply.capacity, |
||
971 | # ) |
||
972 | # .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
973 | # .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
974 | # .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
975 | # ) |
||
976 | # |
||
977 | # hp_cap_mv_grid = pd.read_sql( |
||
978 | # query.statement, query.session.bind, index_col="mv_grid_id" |
||
979 | # ).capacity.values[0] |
||
980 | |||
981 | # with db.session_scope() as session: |
||
982 | # hp_cap_mv_grid = session.execute( |
||
983 | # EgonIndividualHeatingSupply.capacity |
||
984 | # ).filter( |
||
985 | # EgonIndividualHeatingSupply.scenario == scenario, |
||
986 | # EgonIndividualHeatingSupply.carrier == "heat_pump", |
||
987 | # EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id |
||
988 | # ).scalar() |
||
989 | |||
990 | # workaround |
||
991 | hp_cap_mv_grid = 50 |
||
992 | return hp_cap_mv_grid |
||
993 | |||
994 | |||
995 | def get_heat_peak_demand_per_building(scenario, building_ids): |
||
996 | """""" |
||
997 | |||
998 | with db.session_scope() as session: |
||
999 | query = ( |
||
1000 | session.query( |
||
1001 | BuildingHeatPeakLoads.building_id, |
||
1002 | BuildingHeatPeakLoads.peak_load_in_w, |
||
1003 | ).filter(BuildingHeatPeakLoads.scenario == scenario) |
||
1004 | # .filter(BuildingHeatPeakLoads.sector == "both") |
||
1005 | .filter(BuildingHeatPeakLoads.building_id.in_(building_ids)) |
||
1006 | ) |
||
1007 | |||
1008 | df_heat_peak_demand = pd.read_sql( |
||
1009 | query.statement, query.session.bind, index_col=None |
||
1010 | ) |
||
1011 | |||
1012 | # TODO remove check |
||
1013 | if df_heat_peak_demand.duplicated("building_id").any(): |
||
1014 | raise ValueError("Duplicate building_id") |
||
1015 | return df_heat_peak_demand |
||
1016 | |||
1017 | |||
1018 | def determine_minimum_hp_capacity_per_building( |
||
1019 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
1020 | ): |
||
1021 | """ |
||
1022 | Determines minimum required heat pump capacity. |
||
1023 | |||
1024 | Parameters |
||
1025 | ---------- |
||
1026 | peak_heat_demand : pd.Series |
||
1027 | Series with peak heat demand per building in MW. Index contains the |
||
1028 | building ID. |
||
1029 | flexibility_factor : float |
||
1030 | Factor to overdimension the heat pump to allow for some flexible |
||
1031 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
1032 | is used, to take into account |
||
1033 | |||
1034 | Returns |
||
1035 | ------- |
||
1036 | pd.Series |
||
1037 | Pandas series with minimum required heat pump capacity per building in |
||
1038 | MW. |
||
1039 | |||
1040 | """ |
||
1041 | return peak_heat_demand * flexibility_factor / cop |
||
1042 | |||
1043 | |||
1044 | def determine_buildings_with_hp_in_mv_grid( |
||
1045 | hp_cap_mv_grid, min_hp_cap_per_building |
||
1046 | ): |
||
1047 | """ |
||
1048 | Distributes given total heat pump capacity to buildings based on their peak |
||
1049 | heat demand. |
||
1050 | |||
1051 | Parameters |
||
1052 | ----------- |
||
1053 | hp_cap_mv_grid : float |
||
1054 | Total heat pump capacity in MW in given MV grid. |
||
1055 | min_hp_cap_per_building : pd.Series |
||
1056 | Pandas series with minimum required heat pump capacity per building |
||
1057 | in MW. |
||
1058 | |||
1059 | Returns |
||
1060 | ------- |
||
1061 | pd.Index(int) |
||
1062 | Building IDs (as int) of buildings to get heat demand time series for. |
||
1063 | |||
1064 | """ |
||
1065 | building_ids = min_hp_cap_per_building.index |
||
1066 | |||
1067 | # get buildings with PV to give them a higher priority when selecting |
||
1068 | # buildings a heat pump will be allocated to |
||
1069 | saio.register_schema("supply", engine) |
||
1070 | # TODO Adhoc Pv rooftop fix |
||
1071 | # from saio.supply import egon_power_plants_pv_roof_building |
||
1072 | # |
||
1073 | # with db.session_scope() as session: |
||
1074 | # query = session.query( |
||
1075 | # egon_power_plants_pv_roof_building.building_id |
||
1076 | # ).filter( |
||
1077 | # egon_power_plants_pv_roof_building.building_id.in_(building_ids) |
||
1078 | # ) |
||
1079 | # |
||
1080 | # buildings_with_pv = pd.read_sql( |
||
1081 | # query.statement, query.session.bind, index_col=None |
||
1082 | # ).building_id.values |
||
1083 | buildings_with_pv = [] |
||
1084 | # set different weights for buildings with PV and without PV |
||
1085 | weight_with_pv = 1.5 |
||
1086 | weight_without_pv = 1.0 |
||
1087 | weights = pd.concat( |
||
1088 | [ |
||
1089 | pd.DataFrame( |
||
1090 | {"weight": weight_without_pv}, |
||
1091 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
1092 | ), |
||
1093 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
1094 | ] |
||
1095 | ) |
||
1096 | # normalise weights (probability needs to add up to 1) |
||
1097 | weights.weight = weights.weight / weights.weight.sum() |
||
1098 | |||
1099 | # get random order at which buildings are chosen |
||
1100 | np.random.seed(db.credentials()["--random-seed"]) |
||
1101 | buildings_with_hp_order = np.random.choice( |
||
1102 | weights.index, |
||
1103 | size=len(weights), |
||
1104 | replace=False, |
||
1105 | p=weights.weight.values, |
||
1106 | ) |
||
1107 | |||
1108 | # select buildings until HP capacity in MV grid is reached (some rest |
||
1109 | # capacity will remain) |
||
1110 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
1111 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
1112 | |||
1113 | # choose random heat pumps until remaining heat pumps are larger than remaining |
||
1114 | # heat pump capacity |
||
1115 | remaining_hp_cap = ( |
||
1116 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1117 | ) |
||
1118 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1119 | building_ids.drop(buildings_with_hp) |
||
1120 | ] |
||
1121 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1122 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1123 | ].index |
||
1124 | while len(possible_buildings) > 0: |
||
1125 | random.seed(db.credentials()["--random-seed"]) |
||
1126 | new_hp_building = random.choice(possible_buildings) |
||
1127 | # add new building to building with HP |
||
1128 | buildings_with_hp = buildings_with_hp.append( |
||
1129 | pd.Index([new_hp_building]) |
||
1130 | ) |
||
1131 | # determine if there are still possible buildings |
||
1132 | remaining_hp_cap = ( |
||
1133 | hp_cap_mv_grid |
||
1134 | - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1135 | ) |
||
1136 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1137 | building_ids.drop(buildings_with_hp) |
||
1138 | ] |
||
1139 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1140 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1141 | ].index |
||
1142 | |||
1143 | return buildings_with_hp |
||
1144 | |||
1145 | |||
1146 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
1147 | """ |
||
1148 | Desaggregates the required total heat pump capacity to buildings. |
||
1149 | |||
1150 | All buildings are previously assigned a minimum required heat pump |
||
1151 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
1152 | are assigned. |
||
1153 | |||
1154 | Parameters |
||
1155 | ------------ |
||
1156 | min_hp_cap_per_building : pd.Series |
||
1157 | Pandas series with minimum required heat pump capacity per building |
||
1158 | in MW. |
||
1159 | hp_cap_mv_grid : float |
||
1160 | Total heat pump capacity in MW in given MV grid. |
||
1161 | |||
1162 | Returns |
||
1163 | -------- |
||
1164 | pd.Series |
||
1165 | Pandas series with heat pump capacity per building in MW. |
||
1166 | |||
1167 | """ |
||
1168 | # distribute remaining capacity to all buildings with HP depending on |
||
1169 | # installed HP capacity |
||
1170 | |||
1171 | allocated_cap = min_hp_cap_per_building.sum() |
||
1172 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
1173 | |||
1174 | fac = remaining_cap / allocated_cap |
||
1175 | hp_cap_per_building = ( |
||
1176 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
1177 | ) |
||
1178 | return hp_cap_per_building |
||
1179 | |||
1180 | |||
1181 | def determine_min_hp_cap_pypsa_eur_sec(peak_heat_demand, building_ids): |
||
1182 | """ |
||
1183 | Determines minimum required HP capacity in MV grid in MW as input for |
||
1184 | pypsa-eur-sec. |
||
1185 | |||
1186 | Parameters |
||
1187 | ---------- |
||
1188 | peak_heat_demand : pd.Series |
||
1189 | Series with peak heat demand per building in MW. Index contains the |
||
1190 | building ID. |
||
1191 | building_ids : pd.Index(int) |
||
1192 | Building IDs (as int) of buildings with decentral heating system in given |
||
1193 | MV grid. |
||
1194 | |||
1195 | Returns |
||
1196 | -------- |
||
1197 | float |
||
1198 | Minimum required HP capacity in MV grid in MW. |
||
1199 | |||
1200 | """ |
||
1201 | if len(building_ids) > 0: |
||
1202 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1203 | # determine minimum required heat pump capacity per building |
||
1204 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1205 | peak_heat_demand |
||
1206 | ) |
||
1207 | return min_hp_cap_buildings.sum() |
||
1208 | else: |
||
1209 | return 0.0 |
||
1210 | |||
1211 | |||
1212 | def determine_hp_cap_buildings_eGon2035( |
||
1213 | mv_grid_id, peak_heat_demand, building_ids |
||
1214 | ): |
||
1215 | """ |
||
1216 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
1217 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well as |
||
1218 | their respective HP capacity in MW. |
||
1219 | |||
1220 | Parameters |
||
1221 | ----------- |
||
1222 | mv_grid_id : int |
||
1223 | ID of MV grid. |
||
1224 | peak_heat_demand : pd.Series |
||
1225 | Series with peak heat demand per building in MW. Index contains the |
||
1226 | building ID. |
||
1227 | building_ids : pd.Index(int) |
||
1228 | Building IDs (as int) of buildings with decentral heating system in |
||
1229 | given MV grid. |
||
1230 | |||
1231 | """ |
||
1232 | |||
1233 | if len(building_ids) > 0: |
||
1234 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1235 | |||
1236 | # determine minimum required heat pump capacity per building |
||
1237 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1238 | peak_heat_demand |
||
1239 | ) |
||
1240 | |||
1241 | # select buildings that will have a heat pump |
||
1242 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1243 | "eGon2035", mv_grid_id |
||
1244 | ) |
||
1245 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
1246 | hp_cap_grid, min_hp_cap_buildings |
||
1247 | ) |
||
1248 | |||
1249 | # distribute total heat pump capacity to all buildings with HP |
||
1250 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1251 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
1252 | ) |
||
1253 | |||
1254 | return hp_cap_per_building |
||
1255 | |||
1256 | else: |
||
1257 | return pd.Series() |
||
1258 | |||
1259 | |||
1260 | def determine_hp_cap_buildings_eGon100RE(mv_grid_id): |
||
1261 | """ |
||
1262 | Main function to determine HP capacity per building in eGon100RE scenario. |
||
1263 | |||
1264 | In eGon100RE scenario all buildings without district heating get a heat pump. |
||
1265 | |||
1266 | """ |
||
1267 | |||
1268 | # determine minimum required heat pump capacity per building |
||
1269 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1270 | "eGon100RE", mv_grid_id |
||
1271 | ) |
||
1272 | |||
1273 | # TODO get peak demand from db |
||
1274 | df_peak_heat_demand = get_heat_peak_demand_per_building( |
||
1275 | "eGon100RE", building_ids |
||
1276 | ) |
||
1277 | |||
1278 | # determine minimum required heat pump capacity per building |
||
1279 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1280 | df_peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
1281 | ) |
||
1282 | |||
1283 | # distribute total heat pump capacity to all buildings with HP |
||
1284 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1285 | "eGon100RE", mv_grid_id |
||
1286 | ) |
||
1287 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1288 | min_hp_cap_buildings, hp_cap_grid |
||
1289 | ) |
||
1290 | |||
1291 | # ToDo Julian Write desaggregated HP capacity to table (same as for 2035 scenario) |
||
1292 | # check columns |
||
1293 | write_table_to_postgres( |
||
1294 | hp_cap_per_building, |
||
1295 | EgonHpCapacityBuildings, |
||
1296 | engine=engine, |
||
1297 | drop=False, |
||
1298 | ) |
||
1299 | |||
1300 | |||
1301 | def aggregate_residential_and_cts_profiles(mvgd): |
||
1302 | """ """ |
||
1303 | # ############### get residential heat demand profiles ############### |
||
1304 | df_heat_ts = calc_residential_heat_profiles_per_mvgd(mvgd=mvgd) |
||
1305 | |||
1306 | # pivot to allow aggregation with CTS profiles |
||
1307 | df_heat_ts_2035 = df_heat_ts.loc[ |
||
1308 | :, ["building_id", "day_of_year", "hour", "eGon2035"] |
||
1309 | ] |
||
1310 | df_heat_ts_2035 = df_heat_ts_2035.pivot( |
||
1311 | index=["day_of_year", "hour"], |
||
1312 | columns="building_id", |
||
1313 | values="eGon2035", |
||
1314 | ) |
||
1315 | df_heat_ts_2035 = df_heat_ts_2035.sort_index().reset_index(drop=True) |
||
1316 | |||
1317 | df_heat_ts_100RE = df_heat_ts.loc[ |
||
1318 | :, ["building_id", "day_of_year", "hour", "eGon100RE"] |
||
1319 | ] |
||
1320 | df_heat_ts_100RE = df_heat_ts_100RE.pivot( |
||
1321 | index=["day_of_year", "hour"], |
||
1322 | columns="building_id", |
||
1323 | values="eGon100RE", |
||
1324 | ) |
||
1325 | df_heat_ts_100RE = df_heat_ts_100RE.sort_index().reset_index(drop=True) |
||
1326 | |||
1327 | del df_heat_ts |
||
1328 | |||
1329 | # ############### get CTS heat demand profiles ############### |
||
1330 | heat_demand_cts_ts_2035 = calc_cts_building_profiles( |
||
1331 | bus_ids=[mvgd], |
||
1332 | scenario="eGon2035", |
||
1333 | sector="heat", |
||
1334 | ) |
||
1335 | heat_demand_cts_ts_100RE = calc_cts_building_profiles( |
||
1336 | bus_ids=[mvgd], |
||
1337 | scenario="eGon100RE", |
||
1338 | sector="heat", |
||
1339 | ) |
||
1340 | |||
1341 | # ############# aggregate residential and CTS demand profiles ############# |
||
1342 | df_heat_ts_2035 = pd.concat( |
||
1343 | [df_heat_ts_2035, heat_demand_cts_ts_2035], axis=1 |
||
1344 | ) |
||
1345 | |||
1346 | # TODO maybe differentiate between residential, cts and res+cts |
||
1347 | # df_heat_ts_2035_agg = df_heat_ts_2035.loc[:, |
||
1348 | # df_heat_ts_2035.columns.duplicated(keep=False)] |
||
1349 | # df_heat_ts_2035 = df_heat_ts_2035.loc[:, |
||
1350 | # ~df_heat_ts_2035.columns.duplicated(keep=False)] |
||
1351 | |||
1352 | df_heat_ts_2035 = df_heat_ts_2035.groupby(axis=1, level=0).sum() |
||
1353 | |||
1354 | df_heat_ts_100RE = pd.concat( |
||
1355 | [df_heat_ts_100RE, heat_demand_cts_ts_100RE], axis=1 |
||
1356 | ) |
||
1357 | df_heat_ts_100RE = df_heat_ts_100RE.groupby(axis=1, level=0).sum() |
||
1358 | |||
1359 | # del heat_demand_cts_ts_2035, heat_demand_cts_ts_100RE |
||
1360 | |||
1361 | return df_heat_ts_2035, df_heat_ts_100RE |
||
1362 | |||
1363 | |||
1364 | def determine_peak_loads(df_heat_ts_2035, df_heat_ts_100RE, to_db=False): |
||
1365 | """""" |
||
1366 | df_peak_loads = pd.concat( |
||
1367 | [ |
||
1368 | df_heat_ts_2035.max().rename("eGon2035"), |
||
1369 | df_heat_ts_100RE.max().rename("eGon100RE"), |
||
1370 | ], |
||
1371 | axis=1, |
||
1372 | ) |
||
1373 | |||
1374 | if to_db: |
||
1375 | |||
1376 | df_peak_loads_db = df_peak_loads.reset_index().melt( |
||
1377 | id_vars="building_id", |
||
1378 | var_name="scenario", |
||
1379 | value_name="peak_load_in_w", |
||
1380 | ) |
||
1381 | |||
1382 | df_peak_loads_db["sector"] = "residential+cts" |
||
1383 | # From MW to W |
||
1384 | df_peak_loads_db["peak_load_in_w"] = ( |
||
1385 | df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
1386 | ) |
||
1387 | |||
1388 | write_table_to_postgres( |
||
1389 | df_peak_loads_db, BuildingHeatPeakLoads, engine=engine |
||
1390 | ) |
||
1391 | |||
1392 | return df_peak_loads |
||
1393 | |||
1394 | |||
1395 | def determine_hp_capacity( |
||
1396 | mvgd, df_peak_loads, buildings_decentral_heating, to_db=False, to_csv=False |
||
1397 | ): |
||
1398 | """""" |
||
1399 | |||
1400 | # determine HP capacity per building for NEP2035 scenario |
||
1401 | hp_cap_per_building_2035 = determine_hp_cap_buildings_eGon2035( |
||
1402 | mvgd, |
||
1403 | df_peak_loads["eGon2035"], |
||
1404 | buildings_decentral_heating["eGon2035"], |
||
1405 | ) |
||
1406 | |||
1407 | # TODO buildings_gas_2035 empty? |
||
1408 | # determine buildings with gas heating for NEP2035 scenario |
||
1409 | buildings_gas_2035 = pd.Index( |
||
1410 | buildings_decentral_heating["eGon2035"] |
||
1411 | ).drop(hp_cap_per_building_2035.index) |
||
1412 | |||
1413 | # determine minimum HP capacity per building for pypsa-eur-sec |
||
1414 | hp_min_cap_mv_grid_pypsa_eur_sec = determine_min_hp_cap_pypsa_eur_sec( |
||
1415 | df_peak_loads["eGon100RE"], |
||
1416 | buildings_decentral_heating["eGon100RE"] |
||
1417 | # TODO 100RE? |
||
1418 | ) |
||
1419 | # ######################## write HP capacities to DB ###################### |
||
1420 | if to_db: |
||
1421 | logger.debug(f"MVGD={mvgd} | Write HP capacities to DB.") |
||
1422 | |||
1423 | df_hp_cap_per_building_2035 = pd.DataFrame() |
||
1424 | df_hp_cap_per_building_2035["hp_capacity"] = hp_cap_per_building_2035 |
||
1425 | df_hp_cap_per_building_2035["scenario"] = "eGon2035" |
||
1426 | df_hp_cap_per_building_2035 = ( |
||
1427 | df_hp_cap_per_building_2035.reset_index().rename( |
||
1428 | columns={"index": "building_id"} |
||
1429 | ) |
||
1430 | ) |
||
1431 | |||
1432 | write_table_to_postgres( |
||
1433 | df_hp_cap_per_building_2035, |
||
1434 | EgonHpCapacityBuildings, |
||
1435 | engine=engine, |
||
1436 | drop=False, |
||
1437 | ) |
||
1438 | |||
1439 | if to_csv: |
||
1440 | logger.debug( |
||
1441 | f"MVGD={mvgd} | Write pypsa-eur-sec min HP capacities to " f"csv." |
||
1442 | ) |
||
1443 | folder = Path(".") / "input-pypsa-eur-sec" |
||
1444 | file = folder / "minimum_hp_capacity_mv_grid_2035.csv" |
||
1445 | # Create the folder, if it does not exists already |
||
1446 | if not os.path.exists(folder): |
||
1447 | os.mkdir(folder) |
||
1448 | # TODO check append |
||
1449 | if not file.is_file(): |
||
1450 | df_hp_cap_per_building_2035.to_csv(file) |
||
1451 | # TODO outsource into separate task incl delete file if clearing |
||
1452 | else: |
||
1453 | df_hp_cap_per_building_2035.to_csv(file, mode="a", header=False) |
||
1454 | |||
1455 | return hp_cap_per_building_2035 # , hp_min_cap_mv_grid_pypsa_eur_sec |
||
1456 | |||
1457 | |||
1458 | def determine_mvgd_ts( |
||
1459 | mvgd, |
||
1460 | df_heat_ts_2035, |
||
1461 | df_heat_ts_100RE, |
||
1462 | buildings_decentral_heating, |
||
1463 | hp_cap_per_building_2035, |
||
1464 | to_db=False, |
||
1465 | ): |
||
1466 | """""" |
||
1467 | |||
1468 | # heat demand time series for buildings with heat pumps |
||
1469 | # ToDo Julian Write aggregated heat demand time series of buildings with HP to |
||
1470 | # table to be used in eTraGo - egon_etrago_timeseries_individual_heating |
||
1471 | # TODO Clara uses this table already |
||
1472 | # but will not need it anymore for eTraGo |
||
1473 | # EgonEtragoTimeseriesIndividualHeating |
||
1474 | df_mvgd_ts_2035_hp = df_heat_ts_2035.loc[ |
||
1475 | :, |
||
1476 | # buildings_decentral_heating["eGon2035"]].sum( |
||
1477 | hp_cap_per_building_2035.index, |
||
1478 | ].sum( |
||
1479 | axis=1 |
||
1480 | ) # TODO davor? buildings_hp_2035 = hp_cap_per_building_2035.index |
||
1481 | # TODO nur hp oder auch gas? |
||
1482 | df_mvgd_ts_100RE_hp = df_heat_ts_100RE.loc[ |
||
1483 | :, buildings_decentral_heating["eGon100RE"] |
||
1484 | ].sum(axis=1) |
||
1485 | |||
1486 | df_mvgd_ts_2035_gas = df_heat_ts_2035.drop( |
||
1487 | columns=hp_cap_per_building_2035.index |
||
1488 | ).sum(axis=1) |
||
1489 | # heat demand time series for buildings with gas boilers (only 2035 scenario) |
||
1490 | # df_heat_ts_100RE_gas = df_heat_ts_2035.loc[:, buildings_gas_2035].sum( |
||
1491 | # axis=1 |
||
1492 | # ) |
||
1493 | |||
1494 | df_mvgd_ts_hp = pd.DataFrame( |
||
1495 | data={ |
||
1496 | "carrier": ["heat_pump", "heat_pump", "CH4"], |
||
1497 | "bus_id": mvgd, |
||
1498 | "scenario": ["eGon2035", "eGon100RE", "eGon2035"], |
||
1499 | "dist_aggregated_mw": [ |
||
1500 | df_mvgd_ts_2035_hp.to_list(), |
||
1501 | df_mvgd_ts_100RE_hp.to_list(), |
||
1502 | df_mvgd_ts_2035_gas.to_list(), |
||
1503 | ], |
||
1504 | } |
||
1505 | ) |
||
1506 | if to_db: |
||
1507 | # write_table_to_postgres( |
||
1508 | # df_mvgd_ts_hp, |
||
1509 | # EgonEtragoTimeseriesIndividualHeating, |
||
1510 | # engine=engine, |
||
1511 | # drop=False, |
||
1512 | # ) |
||
1513 | |||
1514 | columns = { |
||
1515 | column.key: column.type |
||
1516 | for column in EgonEtragoTimeseriesIndividualHeating.__table__.columns |
||
1517 | } |
||
1518 | df_mvgd_ts_hp = df_mvgd_ts_hp.loc[:, columns.keys()] |
||
1519 | |||
1520 | df_mvgd_ts_hp.to_sql( |
||
1521 | name=EgonEtragoTimeseriesIndividualHeating.__table__.name, |
||
1522 | schema=EgonEtragoTimeseriesIndividualHeating.__table__.schema, |
||
1523 | con=engine, |
||
1524 | if_exists="append", |
||
1525 | method="multi", |
||
1526 | index=False, |
||
1527 | dtype=columns, |
||
1528 | ) |
||
1529 | |||
1530 | # # Change format |
||
1531 | # # ToDo Julian check columns! especially value column |
||
1532 | # df_etrago_ts_individual_heating_hp = pd.DataFrame( |
||
1533 | # index=[0, 1], |
||
1534 | # columns=["bus_id", "scenario", "dist_aggregated_mw"], |
||
1535 | # ) |
||
1536 | # df_etrago_ts_individual_heating_hp.loc[ |
||
1537 | # 0, "dist_aggregated_mw" |
||
1538 | # ] = df_mvgd_ts_2035_hp.values.tolist() |
||
1539 | # df_etrago_ts_individual_heating_hp.loc[0, "scenario"] = "eGon2035" |
||
1540 | # df_etrago_ts_individual_heating_hp["carrier"] = "heat_pump" |
||
1541 | # df_etrago_ts_individual_heating_hp["bus_id"] = mvgd |
||
1542 | # # df_etrago_2035_ts_individual_heating_hp.reset_index(inplace=True) |
||
1543 | # |
||
1544 | # write_table_to_postgres( |
||
1545 | # df_etrago_2035_ts_individual_heating_hp, |
||
1546 | # EgonEtragoTimeseriesIndividualHeating, |
||
1547 | # engine=engine, |
||
1548 | # drop=False, |
||
1549 | # ) |
||
1550 | # |
||
1551 | # df_etrago_100RE_ts_individual_heating_hp = pd.DataFrame( |
||
1552 | # index=df_heat_ts_100RE_hp.index, |
||
1553 | # columns=["scenario", "dist_aggregated_mw"], |
||
1554 | # ) |
||
1555 | # df_etrago_100RE_ts_individual_heating_hp[ |
||
1556 | # "dist_aggregated_mw" |
||
1557 | # ] = df_mvgd_ts_100RE_hp.values.tolist() |
||
1558 | # df_etrago_100RE_ts_individual_heating_hp["carrier"] = "heat_pump" |
||
1559 | # df_etrago_100RE_ts_individual_heating_hp["scenario"] = "eGon100RE" |
||
1560 | # df_etrago_100RE_ts_individual_heating_hp.reset_index(inplace=True) |
||
1561 | # |
||
1562 | # write_table_to_postgres( |
||
1563 | # df_etrago_100RE_ts_individual_heating_hp, |
||
1564 | # EgonEtragoTimeseriesIndividualHeating, |
||
1565 | # engine=engine, |
||
1566 | # drop=False, |
||
1567 | # ) |
||
1568 | # |
||
1569 | # # # Drop and recreate Table if exists |
||
1570 | # # EgonEtragoTimeseriesIndividualHeating.__table__.drop(bind=db.engine(), |
||
1571 | # # checkfirst=True) |
||
1572 | # # EgonEtragoTimeseriesIndividualHeating.__table__.create(bind=db.engine(), |
||
1573 | # # checkfirst=True) |
||
1574 | # # |
||
1575 | # # # Write heat ts into db |
||
1576 | # # with db.session_scope() as session: |
||
1577 | # # session.bulk_insert_mappings( |
||
1578 | # # EgonEtragoTimeseriesIndividualHeating, |
||
1579 | # # df_etrago_cts_heat_profiles.to_dict(orient="records"), |
||
1580 | # # ) |
||
1581 | # |
||
1582 | # # heat demand time series for buildings with gas boilers (only 2035 scenario) |
||
1583 | # df_heat_ts_100RE_gas = df_heat_ts_2035.loc[:, buildings_gas_2035].sum( |
||
1584 | # axis=1 |
||
1585 | # ) |
||
1586 | # # ToDo Julian Write heat demand time series for buildings with gas boiler to |
||
1587 | # # database - in gleiche Tabelle wie Zeitreihen für WP Gebäude, falls Clara |
||
1588 | # # nichts anderes sagt; wird später weiter aggregiert nach gas voronoi |
||
1589 | # # (grid.egon_gas_voronoi mit carrier CH4) von Clara oder Amélia |
||
1590 | # |
||
1591 | # df_etrago_2035_ts_individual_heating_gas = pd.DataFrame( |
||
1592 | # index=df_heat_ts_100RE_gas.index, |
||
1593 | # columns=["scenario", "dist_aggregated_mw"], |
||
1594 | # ) |
||
1595 | # df_etrago_2035_ts_individual_heating_gas[ |
||
1596 | # "dist_aggregated_mw" |
||
1597 | # ] = df_heat_ts_100RE_gas[""].values.tolist() |
||
1598 | # df_etrago_2035_ts_individual_heating_gas["carrier"] = "CH4" |
||
1599 | # df_etrago_2035_ts_individual_heating_gas["scenario"] = "eGon2035" |
||
1600 | # df_etrago_2035_ts_individual_heating_gas.reset_index(inplace=True) |
||
1601 | # |
||
1602 | # write_table_to_postgres( |
||
1603 | # df_etrago_100RE_ts_individual_heating, |
||
1604 | # EgonEtragoTimeseriesIndividualHeating, |
||
1605 | # engine=engine, |
||
1606 | # drop=False, |
||
1607 | # ) |
||
1608 | |||
1609 | |||
1610 | @timeitlog |
||
1611 | def determine_hp_cap_peak_load_mvgd_ts(mvgd_ids): |
||
1612 | """ |
||
1613 | Main function to determine HP capacity per building in eGon2035 scenario |
||
1614 | and minimum required HP capacity in MV for pypsa-eur-sec. |
||
1615 | Further, creates heat demand time series for all buildings with heat pumps |
||
1616 | (in eGon2035 and eGon100RE scenario) in MV grid, as well as for all buildings |
||
1617 | with gas boilers (only in eGon2035scenario), used in eTraGo. |
||
1618 | |||
1619 | Parameters |
||
1620 | ----------- |
||
1621 | bulk: list(int) |
||
1622 | List of numbers of mvgds |
||
1623 | |||
1624 | """ |
||
1625 | |||
1626 | # ========== Register np datatypes with SQLA ========== |
||
1627 | register_adapter(np.float64, adapt_numpy_float64) |
||
1628 | register_adapter(np.int64, adapt_numpy_int64) |
||
1629 | # ===================================================== |
||
1630 | |||
1631 | log_to_file( |
||
1632 | determine_hp_cap_peak_load_mvgd_ts.__qualname__ |
||
1633 | + f"_{min(mvgd_ids)}-{max(mvgd_ids)}" |
||
1634 | ) |
||
1635 | |||
1636 | # TODO mvgd_ids = [kleines mvgd] |
||
1637 | for mvgd in mvgd_ids: # [1556]: #mvgd_ids[n - 1]: |
||
1638 | |||
1639 | logger.trace(f"MVGD={mvgd} | Start") |
||
1640 | |||
1641 | # ############# aggregate residential and CTS demand profiles ############# |
||
1642 | |||
1643 | ( |
||
1644 | df_heat_ts_2035, |
||
1645 | df_heat_ts_100RE, |
||
1646 | ) = aggregate_residential_and_cts_profiles(mvgd) |
||
1647 | |||
1648 | # ##################### export peak loads to DB ################### |
||
1649 | logger.debug(f"MVGD={mvgd} | Determine peak loads.") |
||
1650 | df_peak_loads = determine_peak_loads( |
||
1651 | df_heat_ts_2035, df_heat_ts_100RE, to_db=True |
||
1652 | ) |
||
1653 | |||
1654 | # ######## determine HP capacity for NEP scenario and pypsa-eur-sec ########## |
||
1655 | logger.debug(f"MVGD={mvgd} | Determine HP capacities.") |
||
1656 | |||
1657 | buildings_decentral_heating = ( |
||
1658 | get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd) |
||
1659 | ) |
||
1660 | |||
1661 | # ( |
||
1662 | # hp_cap_per_building_2035, |
||
1663 | # hp_min_cap_mv_grid_pypsa_eur_sec |
||
1664 | # ) = \ |
||
1665 | hp_cap_per_building_2035 = determine_hp_capacity( |
||
1666 | mvgd, |
||
1667 | df_peak_loads, |
||
1668 | buildings_decentral_heating, |
||
1669 | to_db=True, |
||
1670 | to_csv=True, |
||
1671 | ) |
||
1672 | |||
1673 | # ################ write aggregated heat profiles to DB ################### |
||
1674 | |||
1675 | determine_mvgd_ts( |
||
1676 | mvgd, |
||
1677 | df_heat_ts_2035, |
||
1678 | df_heat_ts_100RE, |
||
1679 | buildings_decentral_heating, |
||
1680 | hp_cap_per_building_2035, |
||
1681 | to_db=True, |
||
1682 | ) |
||
1683 | |||
1684 | print("done") |
||
1685 | |||
1686 | |||
1687 | def create_peak_load_table(): |
||
1688 | |||
1689 | BuildingHeatPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
||
1690 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1691 | |||
1692 | |||
1693 | def create_hp_capacity_table(): |
||
1694 | |||
1695 | EgonHpCapacityBuildings.__table__.drop(bind=engine, checkfirst=True) |
||
1696 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1697 | |||
1698 | |||
1699 | # def create_ |
||
1700 | |||
1701 | |||
1702 | def delete_peak_loads_if_existing(): |
||
1703 | """Remove all entries""" |
||
1704 | |||
1705 | # TODO check synchronize_session? |
||
1706 | with db.session_scope() as session: |
||
1707 | # Buses |
||
1708 | session.query(BuildingHeatPeakLoads).filter( |
||
1709 | BuildingHeatPeakLoads.sector == "residential+cts" |
||
1710 | ).delete(synchronize_session=False) |
||
1711 |