1
|
|
|
from io import StringIO |
2
|
|
|
import csv |
3
|
|
|
|
4
|
|
|
from shapely.geometry import Point |
5
|
|
|
import geopandas as gpd |
6
|
|
|
import numpy as np |
7
|
|
|
import pandas as pd |
8
|
|
|
|
9
|
|
|
from egon.data import db |
10
|
|
|
|
11
|
|
|
engine = db.engine() |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
def random_point_in_square(geom, tol): |
15
|
|
|
""" |
16
|
|
|
Generate a random point within a square |
17
|
|
|
|
18
|
|
|
Parameters |
19
|
|
|
---------- |
20
|
|
|
geom: gpd.Series |
21
|
|
|
Geometries of square |
22
|
|
|
tol: float |
23
|
|
|
tolerance to square bounds |
24
|
|
|
|
25
|
|
|
Returns |
26
|
|
|
------- |
27
|
|
|
points: gpd.Series |
28
|
|
|
Series of random points |
29
|
|
|
""" |
30
|
|
|
# cell bounds - half edge_length to not build buildings on the cell border |
31
|
|
|
xmin = geom.bounds["minx"] + tol / 2 |
32
|
|
|
xmax = geom.bounds["maxx"] - tol / 2 |
33
|
|
|
ymin = geom.bounds["miny"] + tol / 2 |
34
|
|
|
ymax = geom.bounds["maxy"] - tol / 2 |
35
|
|
|
|
36
|
|
|
# generate random coordinates within bounds - half edge_length |
37
|
|
|
x = (xmax - xmin) * np.random.rand(geom.shape[0]) + xmin |
38
|
|
|
y = (ymax - ymin) * np.random.rand(geom.shape[0]) + ymin |
39
|
|
|
|
40
|
|
|
points = pd.Series([Point(cords) for cords in zip(x, y)]) |
41
|
|
|
points = gpd.GeoSeries(points, crs="epsg:3035") |
42
|
|
|
|
43
|
|
|
return points |
44
|
|
|
|
45
|
|
|
|
46
|
|
|
# distribute amenities evenly |
47
|
|
|
def specific_int_until_sum(s_sum, i_int): |
48
|
|
|
""" |
49
|
|
|
Generate list `i_int` summing to `s_sum`. Last value will be <= `i_int` |
50
|
|
|
""" |
51
|
|
|
list_i = [] if [s_sum % i_int] == [0] else [s_sum % i_int] |
52
|
|
|
list_i += s_sum // i_int * [i_int] |
53
|
|
|
return list_i |
54
|
|
|
|
55
|
|
|
|
56
|
|
|
def random_ints_until_sum(s_sum, m_max): |
57
|
|
|
""" |
58
|
|
|
Generate non-negative random integers < `m_max` summing to `s_sum`. |
59
|
|
|
""" |
60
|
|
|
list_r = [] |
61
|
|
|
while s_sum > 0: |
62
|
|
|
r = np.random.randint(1, m_max + 1) |
63
|
|
|
r = r if r <= m_max and r < s_sum else s_sum |
64
|
|
|
list_r.append(r) |
65
|
|
|
s_sum -= r |
66
|
|
|
return list_r |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
def write_table_to_postgis(df, table, engine, drop=True): |
70
|
|
|
""" |
71
|
|
|
Append table |
72
|
|
|
""" |
73
|
|
|
|
74
|
|
|
# Only take in db table defined columns |
75
|
|
|
columns = [column.key for column in table.__table__.columns] |
76
|
|
|
df = df.loc[:, columns] |
77
|
|
|
|
78
|
|
|
if drop: |
79
|
|
|
table.__table__.drop(bind=engine, checkfirst=True) |
80
|
|
|
table.__table__.create(bind=engine) |
81
|
|
|
|
82
|
|
|
dtypes = { |
83
|
|
|
i: table.__table__.columns[i].type |
84
|
|
|
for i in table.__table__.columns.keys() |
85
|
|
|
} |
86
|
|
|
|
87
|
|
|
# Write new buildings incl coord into db |
88
|
|
|
df.to_postgis( |
89
|
|
|
name=table.__tablename__, |
90
|
|
|
con=engine, |
91
|
|
|
if_exists="append", |
92
|
|
|
schema=table.__table_args__["schema"], |
93
|
|
|
dtype=dtypes, |
94
|
|
|
) |
95
|
|
|
|
96
|
|
|
|
97
|
|
|
# def write_table_to_postgres(df, table, drop=True): |
98
|
|
|
# """""" |
99
|
|
|
# |
100
|
|
|
# # Only take in db table defined columns |
101
|
|
|
# columns = [column.key for column in table.__table__.columns] |
102
|
|
|
# df = df.loc[:, columns] |
103
|
|
|
# |
104
|
|
|
# if drop: |
105
|
|
|
# table.__table__.drop(bind=engine, checkfirst=True) |
106
|
|
|
# table.__table__.create(bind=engine) |
107
|
|
|
# |
108
|
|
|
# # Write peak loads into db |
109
|
|
|
# with db.session_scope() as session: |
110
|
|
|
# session.bulk_insert_mappings( |
111
|
|
|
# table, |
112
|
|
|
# df.to_dict(orient="records"), |
113
|
|
|
# ) |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
def psql_insert_copy(table, conn, keys, data_iter): |
117
|
|
|
""" |
118
|
|
|
Execute SQL statement inserting data |
119
|
|
|
|
120
|
|
|
Parameters |
121
|
|
|
---------- |
122
|
|
|
table : pandas.io.sql.SQLTable |
123
|
|
|
conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection |
124
|
|
|
keys : list of str |
125
|
|
|
Column names |
126
|
|
|
data_iter : Iterable that iterates the values to be inserted |
127
|
|
|
""" |
128
|
|
|
# gets a DBAPI connection that can provide a cursor |
129
|
|
|
dbapi_conn = conn.connection |
130
|
|
|
with dbapi_conn.cursor() as cur: |
131
|
|
|
s_buf = StringIO() |
132
|
|
|
writer = csv.writer(s_buf) |
133
|
|
|
writer.writerows(data_iter) |
134
|
|
|
s_buf.seek(0) |
135
|
|
|
|
136
|
|
|
columns = ", ".join('"{}"'.format(k) for k in keys) |
137
|
|
|
if table.schema: |
138
|
|
|
table_name = "{}.{}".format(table.schema, table.name) |
139
|
|
|
else: |
140
|
|
|
table_name = table.name |
141
|
|
|
|
142
|
|
|
sql = "COPY {} ({}) FROM STDIN WITH CSV".format(table_name, columns) |
143
|
|
|
cur.copy_expert(sql=sql, file=s_buf) |
144
|
|
|
|
145
|
|
|
|
146
|
|
|
def write_table_to_postgres( |
147
|
|
|
df, db_table, engine, drop=False, index=False, if_exists="append" |
148
|
|
|
): |
149
|
|
|
"""""" |
150
|
|
|
|
151
|
|
|
# Only take in db table defined columns and dtypes |
152
|
|
|
columns = { |
153
|
|
|
column.key: column.type for column in db_table.__table__.columns |
154
|
|
|
} |
155
|
|
|
df = df.loc[:, columns.keys()] |
156
|
|
|
|
157
|
|
|
if drop: |
158
|
|
|
db_table.__table__.drop(bind=engine, checkfirst=True) |
159
|
|
|
db_table.__table__.create(bind=engine) |
160
|
|
|
|
161
|
|
|
df.to_sql( |
162
|
|
|
name=db_table.__table__.name, |
163
|
|
|
schema=db_table.__table__.schema, |
164
|
|
|
con=engine, |
165
|
|
|
if_exists=if_exists, |
166
|
|
|
index=index, |
167
|
|
|
method=psql_insert_copy, |
168
|
|
|
dtype=columns, |
169
|
|
|
) |
170
|
|
|
|