1
|
|
|
from datetime import datetime |
2
|
|
|
import os |
3
|
|
|
|
4
|
|
|
from sqlalchemy import ARRAY, Column, Float, Integer, String, Text |
5
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
6
|
|
|
import geopandas as gpd |
7
|
|
|
import numpy as np |
8
|
|
|
import pandas as pd |
9
|
|
|
|
10
|
|
|
from egon.data import db |
11
|
|
|
import egon.data.datasets.era5 as era |
12
|
|
|
|
13
|
|
|
try: |
14
|
|
|
from disaggregator import temporal |
15
|
|
|
except ImportError as e: |
16
|
|
|
pass |
17
|
|
|
|
18
|
|
|
from math import ceil |
19
|
|
|
|
20
|
|
|
from egon.data.datasets import Dataset |
21
|
|
|
import egon |
22
|
|
|
|
23
|
|
|
from egon.data.datasets.heat_demand_timeseries.idp_pool import create, select |
24
|
|
|
from egon.data.datasets.heat_demand_timeseries.service_sector import ( |
25
|
|
|
CTS_demand_scale, |
26
|
|
|
) |
27
|
|
|
from egon.data.datasets.heat_demand_timeseries.daily import ( |
28
|
|
|
map_climate_zones_to_zensus, |
29
|
|
|
daily_demand_shares_per_climate_zone, |
30
|
|
|
) |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
Base = declarative_base() |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
class EgonTimeseriesDistrictHeating(Base): |
37
|
|
|
__tablename__ = "egon_timeseries_district_heating" |
38
|
|
|
__table_args__ = {"schema": "demand"} |
39
|
|
|
area_id = Column(Integer, primary_key=True) |
40
|
|
|
scenario = Column(Text, primary_key=True) |
41
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
class EgonEtragoTimeseriesIndividualHeating(Base): |
45
|
|
|
__tablename__ = "egon_etrago_timeseries_individual_heating" |
46
|
|
|
__table_args__ = {"schema": "demand"} |
47
|
|
|
bus_id = Column(Integer, primary_key=True) |
48
|
|
|
scenario = Column(Text, primary_key=True) |
49
|
|
|
dist_aggregated_mw = Column(ARRAY(Float(53))) |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
class EgonIndividualHeatingPeakLoads(Base): |
53
|
|
|
__tablename__ = "egon_individual_heating_peak_loads" |
54
|
|
|
__table_args__ = {"schema": "demand"} |
55
|
|
|
building_id = Column(Integer, primary_key=True) |
56
|
|
|
scenario = Column(Text, primary_key=True) |
57
|
|
|
w_th = Column(Float(53)) |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
def create_timeseries_for_building(building_id, scenario): |
61
|
|
|
"""Generates final heat demand timeseries for a specific building |
62
|
|
|
|
63
|
|
|
Parameters |
64
|
|
|
---------- |
65
|
|
|
building_id : int |
66
|
|
|
Index of the selected building |
67
|
|
|
scenario : str |
68
|
|
|
Name of the selected scenario. |
69
|
|
|
|
70
|
|
|
Returns |
71
|
|
|
------- |
72
|
|
|
pandas.DataFrame |
73
|
|
|
Hourly heat demand timeseries in MW for the selected building |
74
|
|
|
|
75
|
|
|
""" |
76
|
|
|
|
77
|
|
|
return db.select_dataframe( |
78
|
|
|
f""" |
79
|
|
|
SELECT building_demand * UNNEST(idp) as demand |
80
|
|
|
FROM |
81
|
|
|
( |
82
|
|
|
SELECT demand.demand / building.count * daily_demand.daily_demand_share as building_demand, daily_demand.day_of_year |
83
|
|
|
FROM |
84
|
|
|
|
85
|
|
|
(SELECT demand FROM |
86
|
|
|
demand.egon_peta_heat |
87
|
|
|
WHERE scenario = '{scenario}' |
88
|
|
|
AND sector = 'residential' |
89
|
|
|
AND zensus_population_id IN( |
90
|
|
|
SELECT zensus_population_id FROM |
91
|
|
|
demand.heat_timeseries_selected_profiles |
92
|
|
|
WHERE building_id = {building_id})) as demand, |
93
|
|
|
|
94
|
|
|
(SELECT COUNT(building_id) |
95
|
|
|
FROM demand.heat_timeseries_selected_profiles |
96
|
|
|
WHERE zensus_population_id IN( |
97
|
|
|
SELECT zensus_population_id FROM |
98
|
|
|
demand.heat_timeseries_selected_profiles |
99
|
|
|
WHERE building_id = {building_id})) as building, |
100
|
|
|
|
101
|
|
|
(SELECT daily_demand_share, day_of_year FROM |
102
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
103
|
|
|
WHERE climate_zone = ( |
104
|
|
|
SELECT climate_zone FROM boundaries.egon_map_zensus_climate_zones |
105
|
|
|
WHERE zensus_population_id = |
106
|
|
|
(SELECT zensus_population_id FROM demand.heat_timeseries_selected_profiles |
107
|
|
|
WHERE building_id = {building_id}))) as daily_demand) as daily_demand |
108
|
|
|
|
109
|
|
|
JOIN (SELECT b.idp, ordinality as day |
110
|
|
|
FROM demand.heat_timeseries_selected_profiles a, |
111
|
|
|
UNNEST (a.selected_idp_profiles) WITH ORDINALITY as selected_idp |
112
|
|
|
JOIN demand.heat_idp_pool b |
113
|
|
|
ON selected_idp = b.index |
114
|
|
|
WHERE a.building_id = {building_id}) as demand_profile |
115
|
|
|
ON demand_profile.day = daily_demand.day_of_year |
116
|
|
|
""" |
117
|
|
|
) |
118
|
|
|
|
119
|
|
|
|
120
|
|
|
def create_district_heating_profile(scenario, area_id): |
121
|
|
|
"""Create heat demand profile for district heating grid including demands of |
122
|
|
|
households and service sector. |
123
|
|
|
|
124
|
|
|
Parameters |
125
|
|
|
---------- |
126
|
|
|
scenario : str |
127
|
|
|
Name of the selected scenario. |
128
|
|
|
area_id : int |
129
|
|
|
Index of the selected district heating grid |
130
|
|
|
|
131
|
|
|
Returns |
132
|
|
|
------- |
133
|
|
|
df : pandas,DataFrame |
134
|
|
|
Hourly heat demand timeseries in MW for the selected district heating grid |
135
|
|
|
|
136
|
|
|
""" |
137
|
|
|
|
138
|
|
|
start_time = datetime.now() |
139
|
|
|
|
140
|
|
|
df = db.select_dataframe( |
141
|
|
|
f""" |
142
|
|
|
|
143
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
144
|
|
|
FROM |
145
|
|
|
|
146
|
|
|
( |
147
|
|
|
SELECT demand.demand * |
148
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
149
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
150
|
|
|
demand_profile.building_id, |
151
|
|
|
c.day_of_year, |
152
|
|
|
ordinality |
153
|
|
|
|
154
|
|
|
FROM |
155
|
|
|
|
156
|
|
|
(SELECT zensus_population_id, demand FROM |
157
|
|
|
demand.egon_peta_heat |
158
|
|
|
WHERE scenario = '{scenario}' |
159
|
|
|
AND sector = 'residential' |
160
|
|
|
AND zensus_population_id IN( |
161
|
|
|
SELECT zensus_population_id FROM |
162
|
|
|
demand.egon_map_zensus_district_heating_areas |
163
|
|
|
WHERE scenario = '{scenario}' |
164
|
|
|
AND area_id = {area_id} |
165
|
|
|
)) as demand |
166
|
|
|
|
167
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
168
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
169
|
|
|
|
170
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
171
|
|
|
ON c.climate_zone = b.climate_zone |
172
|
|
|
|
173
|
|
|
JOIN (SELECT e.idp, ordinality as day, zensus_population_id, building_id |
174
|
|
|
FROM demand.heat_timeseries_selected_profiles d, |
175
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
176
|
|
|
JOIN demand.heat_idp_pool e |
177
|
|
|
ON selected_idp = e.index |
178
|
|
|
WHERE zensus_population_id IN ( |
179
|
|
|
SELECT zensus_population_id FROM |
180
|
|
|
demand.egon_map_zensus_district_heating_areas |
181
|
|
|
WHERE scenario = '{scenario}' |
182
|
|
|
AND area_id = {area_id} |
183
|
|
|
)) demand_profile |
184
|
|
|
ON (demand_profile.day = c.day_of_year AND |
185
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
186
|
|
|
|
187
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
188
|
|
|
FROM demand.heat_timeseries_selected_profiles |
189
|
|
|
WHERE zensus_population_id IN( |
190
|
|
|
SELECT zensus_population_id FROM |
191
|
|
|
demand.heat_timeseries_selected_profiles |
192
|
|
|
WHERE zensus_population_id IN ( |
193
|
|
|
SELECT zensus_population_id FROM |
194
|
|
|
demand.egon_map_zensus_district_heating_areas |
195
|
|
|
WHERE scenario = '{scenario}' |
196
|
|
|
AND area_id = {area_id} |
197
|
|
|
)) |
198
|
|
|
GROUP BY zensus_population_id) building |
199
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
200
|
|
|
|
201
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
202
|
|
|
) result |
203
|
|
|
|
204
|
|
|
|
205
|
|
|
GROUP BY hour_of_year |
206
|
|
|
|
207
|
|
|
""" |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
print( |
211
|
|
|
f"Time to create time series for district heating grid {scenario} {area_id}:" |
212
|
|
|
) |
213
|
|
|
print(datetime.now() - start_time) |
214
|
|
|
|
215
|
|
|
return df |
216
|
|
|
|
217
|
|
|
|
218
|
|
|
def create_district_heating_profile_python_like(scenario="eGon2035"): |
219
|
|
|
"""Creates profiles for all district heating grids in one scenario. |
220
|
|
|
Similar to create_district_heating_profile but faster and needs more RAM. |
221
|
|
|
The results are directly written into the database. |
222
|
|
|
|
223
|
|
|
Parameters |
224
|
|
|
---------- |
225
|
|
|
scenario : str |
226
|
|
|
Name of the selected scenario. |
227
|
|
|
|
228
|
|
|
Returns |
229
|
|
|
------- |
230
|
|
|
None. |
231
|
|
|
|
232
|
|
|
""" |
233
|
|
|
|
234
|
|
|
start_time = datetime.now() |
235
|
|
|
|
236
|
|
|
idp_df = db.select_dataframe( |
237
|
|
|
""" |
238
|
|
|
SELECT index, idp FROM demand.heat_idp_pool |
239
|
|
|
""", |
240
|
|
|
index_col="index", |
241
|
|
|
) |
242
|
|
|
|
243
|
|
|
district_heating_grids = db.select_dataframe( |
244
|
|
|
f""" |
245
|
|
|
SELECT area_id |
246
|
|
|
FROM demand.egon_district_heating_areas |
247
|
|
|
WHERE scenario = '{scenario}' |
248
|
|
|
""" |
249
|
|
|
) |
250
|
|
|
|
251
|
|
|
annual_demand = db.select_dataframe( |
252
|
|
|
f""" |
253
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building , area_id FROM |
254
|
|
|
demand.egon_peta_heat a |
255
|
|
|
INNER JOIN ( |
256
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
257
|
|
|
WHERE scenario = '{scenario}' |
258
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id |
259
|
|
|
|
260
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
261
|
|
|
FROM demand.heat_timeseries_selected_profiles |
262
|
|
|
WHERE zensus_population_id IN( |
263
|
|
|
SELECT zensus_population_id FROM |
264
|
|
|
demand.heat_timeseries_selected_profiles |
265
|
|
|
WHERE zensus_population_id IN ( |
266
|
|
|
SELECT zensus_population_id FROM |
267
|
|
|
boundaries.egon_map_zensus_grid_districts |
268
|
|
|
)) |
269
|
|
|
GROUP BY zensus_population_id)c |
270
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
271
|
|
|
|
272
|
|
|
WHERE a.scenario = '{scenario}' |
273
|
|
|
AND a.sector = 'residential' |
274
|
|
|
|
275
|
|
|
""", |
276
|
|
|
index_col="zensus_population_id", |
277
|
|
|
) |
278
|
|
|
|
279
|
|
|
daily_demand_shares = db.select_dataframe( |
280
|
|
|
""" |
281
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
282
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
283
|
|
|
""" |
284
|
|
|
) |
285
|
|
|
|
286
|
|
|
selected_profiles = db.select_dataframe( |
287
|
|
|
f""" |
288
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
289
|
|
|
selected_idp, ordinality as day, b.area_id |
290
|
|
|
FROM demand.heat_timeseries_selected_profiles a |
291
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
292
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
293
|
|
|
INNER JOIN ( |
294
|
|
|
SELECT * FROM demand.egon_map_zensus_district_heating_areas |
295
|
|
|
WHERE scenario = '{scenario}' |
296
|
|
|
) b ON a.zensus_population_id = b.zensus_population_id , |
297
|
|
|
|
298
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
299
|
|
|
|
300
|
|
|
""" |
301
|
|
|
) |
302
|
|
|
|
303
|
|
|
df = pd.merge( |
304
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
305
|
|
|
) |
306
|
|
|
|
307
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
308
|
|
|
aggregation_level="district" |
309
|
|
|
) |
310
|
|
|
|
311
|
|
|
# TODO: use session_scope! |
312
|
|
|
from sqlalchemy.orm import sessionmaker |
313
|
|
|
|
314
|
|
|
session = sessionmaker(bind=db.engine())() |
315
|
|
|
engine = db.engine() |
316
|
|
|
EgonTimeseriesDistrictHeating.__table__.drop(bind=engine, checkfirst=True) |
317
|
|
|
EgonTimeseriesDistrictHeating.__table__.create( |
318
|
|
|
bind=engine, checkfirst=True |
319
|
|
|
) |
320
|
|
|
print( |
321
|
|
|
f"Time to create overhead for time series for district heating scenario {scenario}" |
322
|
|
|
) |
323
|
|
|
print(datetime.now() - start_time) |
324
|
|
|
|
325
|
|
|
start_time = datetime.now() |
326
|
|
|
for area in district_heating_grids.area_id.unique(): |
327
|
|
|
|
328
|
|
|
if area in df.area_id.values: |
329
|
|
|
slice_df = pd.merge( |
330
|
|
|
df[df.area_id == area], |
331
|
|
|
idp_df, |
332
|
|
|
left_on="selected_idp", |
333
|
|
|
right_on="index", |
334
|
|
|
) |
335
|
|
|
|
336
|
|
|
for hour in range(24): |
337
|
|
|
slice_df[hour] = ( |
338
|
|
|
slice_df.idp.str[hour] |
339
|
|
|
.mul(slice_df.daily_demand_share) |
340
|
|
|
.mul( |
341
|
|
|
annual_demand.loc[ |
342
|
|
|
slice_df.zensus_population_id.values, |
343
|
|
|
"per_building", |
344
|
|
|
].values |
345
|
|
|
) |
346
|
|
|
) |
347
|
|
|
|
348
|
|
|
hh = np.concatenate( |
349
|
|
|
slice_df.groupby("day").sum()[range(24)].values |
350
|
|
|
).ravel() |
351
|
|
|
|
352
|
|
|
cts = CTS_demand_dist[ |
353
|
|
|
(CTS_demand_dist.scenario == scenario) |
354
|
|
|
& (CTS_demand_dist.index == area) |
355
|
|
|
].drop("scenario", axis="columns") |
356
|
|
|
|
357
|
|
|
if (area in df.area_id.values) and not cts.empty: |
358
|
|
|
entry = EgonTimeseriesDistrictHeating( |
359
|
|
|
area_id=int(area), |
360
|
|
|
scenario=scenario, |
361
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
|
|
|
|
362
|
|
|
) |
363
|
|
|
elif (area in df.area_id.values) and cts.empty: |
364
|
|
|
entry = EgonTimeseriesDistrictHeating( |
365
|
|
|
area_id=int(area), |
366
|
|
|
scenario=scenario, |
367
|
|
|
dist_aggregated_mw=(hh).tolist(), |
368
|
|
|
) |
369
|
|
|
elif not cts.empty: |
370
|
|
|
entry = EgonTimeseriesDistrictHeating( |
371
|
|
|
area_id=int(area), |
372
|
|
|
scenario=scenario, |
373
|
|
|
dist_aggregated_mw=(cts.values[0]).tolist(), |
374
|
|
|
) |
375
|
|
|
|
376
|
|
|
session.add(entry) |
|
|
|
|
377
|
|
|
session.commit() |
378
|
|
|
|
379
|
|
|
print( |
380
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
381
|
|
|
) |
382
|
|
|
print(datetime.now() - start_time) |
383
|
|
|
|
384
|
|
|
|
385
|
|
|
def create_individual_heat_per_mv_grid(scenario="eGon2035", mv_grid_id=1564): |
386
|
|
|
start_time = datetime.now() |
387
|
|
|
df = db.select_dataframe( |
388
|
|
|
f""" |
389
|
|
|
|
390
|
|
|
SELECT SUM(building_demand_per_hour) as demand_profile, hour_of_year |
391
|
|
|
FROM |
392
|
|
|
|
393
|
|
|
( |
394
|
|
|
SELECT demand.demand * |
395
|
|
|
c.daily_demand_share * hourly_demand as building_demand_per_hour, |
396
|
|
|
ordinality + 24* (c.day_of_year-1) as hour_of_year, |
397
|
|
|
demand_profile.building_id, |
398
|
|
|
c.day_of_year, |
399
|
|
|
ordinality |
400
|
|
|
|
401
|
|
|
FROM |
402
|
|
|
|
403
|
|
|
(SELECT zensus_population_id, demand FROM |
404
|
|
|
demand.egon_peta_heat |
405
|
|
|
WHERE scenario = '{scenario}' |
406
|
|
|
AND sector = 'residential' |
407
|
|
|
AND zensus_population_id IN ( |
408
|
|
|
SELECT zensus_population_id FROM |
409
|
|
|
boundaries.egon_map_zensus_grid_districts |
410
|
|
|
WHERE bus_id = {mv_grid_id} |
411
|
|
|
)) as demand |
412
|
|
|
|
413
|
|
|
JOIN boundaries.egon_map_zensus_climate_zones b |
414
|
|
|
ON demand.zensus_population_id = b.zensus_population_id |
415
|
|
|
|
416
|
|
|
JOIN demand.egon_daily_heat_demand_per_climate_zone c |
417
|
|
|
ON c.climate_zone = b.climate_zone |
418
|
|
|
|
419
|
|
|
JOIN (SELECT e.idp, ordinality as day, zensus_population_id, building_id |
420
|
|
|
FROM demand.heat_timeseries_selected_profiles d, |
421
|
|
|
UNNEST (d.selected_idp_profiles) WITH ORDINALITY as selected_idp |
422
|
|
|
JOIN demand.heat_idp_pool e |
423
|
|
|
ON selected_idp = e.index |
424
|
|
|
WHERE zensus_population_id IN ( |
425
|
|
|
SELECT zensus_population_id FROM |
426
|
|
|
boundaries.egon_map_zensus_grid_districts |
427
|
|
|
WHERE bus_id = {mv_grid_id} |
428
|
|
|
)) demand_profile |
429
|
|
|
ON (demand_profile.day = c.day_of_year AND |
430
|
|
|
demand_profile.zensus_population_id = b.zensus_population_id) |
431
|
|
|
|
432
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
433
|
|
|
FROM demand.heat_timeseries_selected_profiles |
434
|
|
|
WHERE zensus_population_id IN( |
435
|
|
|
SELECT zensus_population_id FROM |
436
|
|
|
demand.heat_timeseries_selected_profiles |
437
|
|
|
WHERE zensus_population_id IN ( |
438
|
|
|
SELECT zensus_population_id FROM |
439
|
|
|
boundaries.egon_map_zensus_grid_districts |
440
|
|
|
WHERE bus_id = {mv_grid_id} |
441
|
|
|
)) |
442
|
|
|
GROUP BY zensus_population_id) building |
443
|
|
|
ON building.zensus_population_id = b.zensus_population_id, |
444
|
|
|
|
445
|
|
|
UNNEST(demand_profile.idp) WITH ORDINALITY as hourly_demand |
446
|
|
|
) result |
447
|
|
|
|
448
|
|
|
|
449
|
|
|
GROUP BY hour_of_year |
450
|
|
|
|
451
|
|
|
""" |
452
|
|
|
) |
453
|
|
|
|
454
|
|
|
print(f"Time to create time series for mv grid {scenario} {mv_grid_id}:") |
455
|
|
|
print(datetime.now() - start_time) |
456
|
|
|
|
457
|
|
|
return df |
458
|
|
|
|
459
|
|
|
|
460
|
|
|
def calulate_peak_load(df, scenario): |
461
|
|
|
|
462
|
|
|
# peat load in W_th |
463
|
|
|
data = ( |
464
|
|
|
df.groupby("building_id") |
465
|
|
|
.max()[range(24)] |
466
|
|
|
.max(axis=1) |
467
|
|
|
.mul(1000000) |
468
|
|
|
.astype(int) |
469
|
|
|
.reset_index() |
470
|
|
|
) |
471
|
|
|
|
472
|
|
|
data["scenario"] = scenario |
473
|
|
|
|
474
|
|
|
data.rename({0: "w_th"}, axis="columns", inplace=True) |
475
|
|
|
|
476
|
|
|
data.to_sql( |
477
|
|
|
EgonIndividualHeatingPeakLoads.__table__.name, |
478
|
|
|
schema=EgonIndividualHeatingPeakLoads.__table__.schema, |
479
|
|
|
con=db.engine(), |
480
|
|
|
if_exists="append", |
481
|
|
|
index=False, |
482
|
|
|
) |
483
|
|
|
|
484
|
|
|
|
485
|
|
|
def create_individual_heating_peak_loads(scenario="eGon2035"): |
486
|
|
|
|
487
|
|
|
engine = db.engine() |
488
|
|
|
|
489
|
|
|
EgonIndividualHeatingPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
490
|
|
|
|
491
|
|
|
EgonIndividualHeatingPeakLoads.__table__.create( |
492
|
|
|
bind=engine, checkfirst=True |
493
|
|
|
) |
494
|
|
|
|
495
|
|
|
start_time = datetime.now() |
496
|
|
|
|
497
|
|
|
idp_df = db.select_dataframe( |
498
|
|
|
""" |
499
|
|
|
SELECT index, idp FROM demand.heat_idp_pool |
500
|
|
|
""", |
501
|
|
|
index_col="index", |
502
|
|
|
) |
503
|
|
|
|
504
|
|
|
annual_demand = db.select_dataframe( |
505
|
|
|
f""" |
506
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building, bus_id |
507
|
|
|
FROM demand.egon_peta_heat a |
508
|
|
|
|
509
|
|
|
|
510
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
511
|
|
|
FROM demand.heat_timeseries_selected_profiles |
512
|
|
|
WHERE zensus_population_id IN( |
513
|
|
|
SELECT zensus_population_id FROM |
514
|
|
|
demand.heat_timeseries_selected_profiles |
515
|
|
|
WHERE zensus_population_id IN ( |
516
|
|
|
SELECT zensus_population_id FROM |
517
|
|
|
boundaries.egon_map_zensus_grid_districts |
518
|
|
|
)) |
519
|
|
|
GROUP BY zensus_population_id)c |
520
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
521
|
|
|
|
522
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
523
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
524
|
|
|
|
525
|
|
|
WHERE a.scenario = '{scenario}' |
526
|
|
|
AND a.sector = 'residential' |
527
|
|
|
AND a.zensus_population_id NOT IN ( |
528
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
529
|
|
|
WHERE scenario = '{scenario}' |
530
|
|
|
) |
531
|
|
|
|
532
|
|
|
""", |
533
|
|
|
index_col="zensus_population_id", |
534
|
|
|
) |
535
|
|
|
|
536
|
|
|
daily_demand_shares = db.select_dataframe( |
537
|
|
|
""" |
538
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
539
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
540
|
|
|
""" |
541
|
|
|
) |
542
|
|
|
|
543
|
|
|
start_time = datetime.now() |
544
|
|
|
for grid in annual_demand.bus_id.unique(): |
545
|
|
|
|
546
|
|
|
selected_profiles = db.select_dataframe( |
547
|
|
|
f""" |
548
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
549
|
|
|
selected_idp, ordinality as day |
550
|
|
|
FROM demand.heat_timeseries_selected_profiles a |
551
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
552
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
553
|
|
|
, |
554
|
|
|
|
555
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
556
|
|
|
|
557
|
|
|
WHERE a.zensus_population_id NOT IN ( |
558
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
559
|
|
|
WHERE scenario = '{scenario}' |
560
|
|
|
) |
561
|
|
|
AND a.zensus_population_id IN ( |
562
|
|
|
SELECT zensus_population_id |
563
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
564
|
|
|
WHERE bus_id = '{grid}' |
565
|
|
|
) |
566
|
|
|
|
567
|
|
|
""" |
568
|
|
|
) |
569
|
|
|
|
570
|
|
|
df = pd.merge( |
571
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
572
|
|
|
) |
573
|
|
|
|
574
|
|
|
slice_df = pd.merge( |
575
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
576
|
|
|
) |
577
|
|
|
|
578
|
|
|
for hour in range(24): |
579
|
|
|
slice_df[hour] = ( |
580
|
|
|
slice_df.idp.str[hour] |
581
|
|
|
.mul(slice_df.daily_demand_share) |
582
|
|
|
.mul( |
583
|
|
|
annual_demand.loc[ |
584
|
|
|
slice_df.zensus_population_id.values, "per_building" |
585
|
|
|
].values |
586
|
|
|
) |
587
|
|
|
) |
588
|
|
|
|
589
|
|
|
calulate_peak_load(slice_df, scenario) |
590
|
|
|
|
591
|
|
|
print(f"Time to create peak loads per building for {scenario}") |
592
|
|
|
print(datetime.now() - start_time) |
593
|
|
|
|
594
|
|
|
|
595
|
|
|
def create_individual_heating_profile_python_like(scenario="eGon2035"): |
596
|
|
|
|
597
|
|
|
start_time = datetime.now() |
598
|
|
|
|
599
|
|
|
idp_df = db.select_dataframe( |
600
|
|
|
f""" |
601
|
|
|
SELECT index, idp FROM demand.heat_idp_pool |
602
|
|
|
""", |
603
|
|
|
index_col="index", |
604
|
|
|
) |
605
|
|
|
|
606
|
|
|
annual_demand = db.select_dataframe( |
607
|
|
|
f""" |
608
|
|
|
SELECT a.zensus_population_id, demand/c.count as per_building, bus_id |
609
|
|
|
FROM demand.egon_peta_heat a |
610
|
|
|
|
611
|
|
|
|
612
|
|
|
JOIN (SELECT COUNT(building_id), zensus_population_id |
613
|
|
|
FROM demand.heat_timeseries_selected_profiles |
614
|
|
|
WHERE zensus_population_id IN( |
615
|
|
|
SELECT zensus_population_id FROM |
616
|
|
|
demand.heat_timeseries_selected_profiles |
617
|
|
|
WHERE zensus_population_id IN ( |
618
|
|
|
SELECT zensus_population_id FROM |
619
|
|
|
boundaries.egon_map_zensus_grid_districts |
620
|
|
|
)) |
621
|
|
|
GROUP BY zensus_population_id)c |
622
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
623
|
|
|
|
624
|
|
|
JOIN boundaries.egon_map_zensus_grid_districts d |
625
|
|
|
ON a.zensus_population_id = d.zensus_population_id |
626
|
|
|
|
627
|
|
|
WHERE a.scenario = '{scenario}' |
628
|
|
|
AND a.sector = 'residential' |
629
|
|
|
AND a.zensus_population_id NOT IN ( |
630
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
631
|
|
|
WHERE scenario = '{scenario}' |
632
|
|
|
) |
633
|
|
|
|
634
|
|
|
""", |
635
|
|
|
index_col="zensus_population_id", |
636
|
|
|
) |
637
|
|
|
|
638
|
|
|
daily_demand_shares = db.select_dataframe( |
639
|
|
|
f""" |
640
|
|
|
SELECT climate_zone, day_of_year as day, daily_demand_share FROM |
641
|
|
|
demand.egon_daily_heat_demand_per_climate_zone |
642
|
|
|
""" |
643
|
|
|
) |
644
|
|
|
|
645
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
646
|
|
|
aggregation_level="district" |
647
|
|
|
) |
648
|
|
|
|
649
|
|
|
# TODO: use session_scope! |
650
|
|
|
from sqlalchemy.orm import sessionmaker |
651
|
|
|
|
652
|
|
|
session = sessionmaker(bind=db.engine())() |
653
|
|
|
|
654
|
|
|
print( |
655
|
|
|
f"Time to create overhead for time series for district heating scenario {scenario}" |
656
|
|
|
) |
657
|
|
|
print(datetime.now() - start_time) |
658
|
|
|
|
659
|
|
|
start_time = datetime.now() |
660
|
|
|
for grid in annual_demand.bus_id.unique(): |
661
|
|
|
|
662
|
|
|
selected_profiles = db.select_dataframe( |
663
|
|
|
f""" |
664
|
|
|
SELECT a.zensus_population_id, building_id, c.climate_zone, |
665
|
|
|
selected_idp, ordinality as day |
666
|
|
|
FROM demand.heat_timeseries_selected_profiles a |
667
|
|
|
INNER JOIN boundaries.egon_map_zensus_climate_zones c |
668
|
|
|
ON a.zensus_population_id = c.zensus_population_id |
669
|
|
|
, |
670
|
|
|
|
671
|
|
|
UNNEST (selected_idp_profiles) WITH ORDINALITY as selected_idp |
672
|
|
|
|
673
|
|
|
WHERE a.zensus_population_id NOT IN ( |
674
|
|
|
SELECT zensus_population_id FROM demand.egon_map_zensus_district_heating_areas |
675
|
|
|
WHERE scenario = '{scenario}' |
676
|
|
|
) |
677
|
|
|
AND a.zensus_population_id IN ( |
678
|
|
|
SELECT zensus_population_id |
679
|
|
|
FROM boundaries.egon_map_zensus_grid_districts |
680
|
|
|
WHERE bus_id = '{grid}' |
681
|
|
|
) |
682
|
|
|
|
683
|
|
|
""" |
684
|
|
|
) |
685
|
|
|
|
686
|
|
|
df = pd.merge( |
687
|
|
|
selected_profiles, daily_demand_shares, on=["day", "climate_zone"] |
688
|
|
|
) |
689
|
|
|
|
690
|
|
|
slice_df = pd.merge( |
691
|
|
|
df, idp_df, left_on="selected_idp", right_on="index" |
692
|
|
|
) |
693
|
|
|
|
694
|
|
|
for hour in range(24): |
695
|
|
|
slice_df[hour] = ( |
696
|
|
|
slice_df.idp.str[hour] |
697
|
|
|
.mul(slice_df.daily_demand_share) |
698
|
|
|
.mul( |
699
|
|
|
annual_demand.loc[ |
700
|
|
|
slice_df.zensus_population_id.values, "per_building" |
701
|
|
|
].values |
702
|
|
|
) |
703
|
|
|
) |
704
|
|
|
|
705
|
|
|
cts = CTS_demand_grid[ |
706
|
|
|
(CTS_demand_grid.scenario == scenario) |
707
|
|
|
& (CTS_demand_grid.index == grid) |
708
|
|
|
].drop("scenario", axis="columns") |
709
|
|
|
|
710
|
|
|
hh = np.concatenate( |
711
|
|
|
slice_df.groupby("day").sum()[range(24)].values |
712
|
|
|
).ravel() |
713
|
|
|
|
714
|
|
|
if not (slice_df[hour].empty or cts.empty): |
|
|
|
|
715
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
716
|
|
|
bus_id=int(grid), |
717
|
|
|
scenario=scenario, |
718
|
|
|
dist_aggregated_mw=(hh + cts.values[0]).tolist(), |
719
|
|
|
) |
720
|
|
|
elif not slice_df[hour].empty: |
721
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
722
|
|
|
bus_id=int(grid), |
723
|
|
|
scenario=scenario, |
724
|
|
|
dist_aggregated_mw=(hh).tolist(), |
725
|
|
|
) |
726
|
|
|
elif not cts.empty: |
727
|
|
|
entry = EgonEtragoTimeseriesIndividualHeating( |
728
|
|
|
bus_id=int(grid), |
729
|
|
|
scenario=scenario, |
730
|
|
|
dist_aggregated_mw=(cts).tolist(), |
731
|
|
|
) |
732
|
|
|
|
733
|
|
|
session.add(entry) |
|
|
|
|
734
|
|
|
|
735
|
|
|
session.commit() |
736
|
|
|
|
737
|
|
|
print( |
738
|
|
|
f"Time to create time series for district heating scenario {scenario}" |
739
|
|
|
) |
740
|
|
|
print(datetime.now() - start_time) |
741
|
|
|
|
742
|
|
|
|
743
|
|
|
def district_heating(method="python"): |
744
|
|
|
|
745
|
|
|
engine = db.engine() |
746
|
|
|
EgonTimeseriesDistrictHeating.__table__.drop(bind=engine, checkfirst=True) |
747
|
|
|
EgonTimeseriesDistrictHeating.__table__.create( |
748
|
|
|
bind=engine, checkfirst=True |
749
|
|
|
) |
750
|
|
|
|
751
|
|
|
if method == "python": |
752
|
|
|
create_district_heating_profile_python_like("eGon2035") |
753
|
|
|
create_district_heating_profile_python_like("eGon100RE") |
754
|
|
|
|
755
|
|
|
else: |
756
|
|
|
|
757
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
758
|
|
|
aggregation_level="district" |
759
|
|
|
) |
760
|
|
|
|
761
|
|
|
ids = db.select_dataframe( |
762
|
|
|
""" |
763
|
|
|
SELECT area_id, scenario |
764
|
|
|
FROM demand.egon_district_heating_areas |
765
|
|
|
""" |
766
|
|
|
) |
767
|
|
|
|
768
|
|
|
df = pd.DataFrame( |
769
|
|
|
columns=["area_id", "scenario", "dist_aggregated_mw"] |
770
|
|
|
) |
771
|
|
|
|
772
|
|
|
for index, row in ids.iterrows(): |
773
|
|
|
series = create_district_heating_profile( |
774
|
|
|
scenario=row.scenario, area_id=row.area_id |
775
|
|
|
) |
776
|
|
|
|
777
|
|
|
cts = ( |
778
|
|
|
CTS_demand_dist[ |
779
|
|
|
(CTS_demand_dist.scenario == row.scenario) |
780
|
|
|
& (CTS_demand_dist.index == row.area_id) |
781
|
|
|
] |
782
|
|
|
.drop("scenario", axis="columns") |
783
|
|
|
.transpose() |
784
|
|
|
) |
785
|
|
|
|
786
|
|
|
if not cts.empty: |
787
|
|
|
data = ( |
788
|
|
|
cts[row.area_id] + series.demand_profile |
789
|
|
|
).values.tolist() |
790
|
|
|
else: |
791
|
|
|
data = series.demand_profile.values.tolist() |
792
|
|
|
|
793
|
|
|
df = df.append( |
794
|
|
|
pd.Series( |
795
|
|
|
data={ |
796
|
|
|
"area_id": row.area_id, |
797
|
|
|
"scenario": row.scenario, |
798
|
|
|
"dist_aggregated_mw": data, |
799
|
|
|
}, |
800
|
|
|
), |
801
|
|
|
ignore_index=True, |
802
|
|
|
) |
803
|
|
|
|
804
|
|
|
df.to_sql( |
805
|
|
|
"egon_timeseries_district_heating", |
806
|
|
|
schema="demand", |
807
|
|
|
con=db.engine(), |
808
|
|
|
if_exists="append", |
809
|
|
|
index=False, |
810
|
|
|
) |
811
|
|
|
|
812
|
|
|
|
813
|
|
|
def individual_heating_per_mv_grid(method="python"): |
814
|
|
|
|
815
|
|
|
if method == "python": |
816
|
|
|
engine = db.engine() |
817
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
818
|
|
|
bind=engine, checkfirst=True |
819
|
|
|
) |
820
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
821
|
|
|
bind=engine, checkfirst=True |
822
|
|
|
) |
823
|
|
|
|
824
|
|
|
create_individual_heating_profile_python_like("eGon2035") |
825
|
|
|
create_individual_heating_profile_python_like("eGon100RE") |
826
|
|
|
|
827
|
|
|
else: |
828
|
|
|
|
829
|
|
|
engine = db.engine() |
830
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
831
|
|
|
bind=engine, checkfirst=True |
832
|
|
|
) |
833
|
|
|
EgonEtragoTimeseriesIndividualHeating.__table__.create( |
834
|
|
|
bind=engine, checkfirst=True |
835
|
|
|
) |
836
|
|
|
|
837
|
|
|
CTS_demand_dist, CTS_demand_grid, CTS_demand_zensus = CTS_demand_scale( |
838
|
|
|
aggregation_level="district" |
839
|
|
|
) |
840
|
|
|
df = pd.DataFrame(columns=["bus_id", "scenario", "dist_aggregated_mw"]) |
841
|
|
|
|
842
|
|
|
ids = db.select_dataframe( |
843
|
|
|
""" |
844
|
|
|
SELECT bus_id |
845
|
|
|
FROM grid.egon_mv_grid_district |
846
|
|
|
""" |
847
|
|
|
) |
848
|
|
|
|
849
|
|
|
for index, row in ids.iterrows(): |
850
|
|
|
|
851
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
852
|
|
|
series = create_individual_heat_per_mv_grid( |
853
|
|
|
scenario, row.bus_id |
854
|
|
|
) |
855
|
|
|
cts = ( |
856
|
|
|
CTS_demand_grid[ |
857
|
|
|
(CTS_demand_grid.scenario == scenario) |
858
|
|
|
& (CTS_demand_grid.index == row.bus_id) |
859
|
|
|
] |
860
|
|
|
.drop("scenario", axis="columns") |
861
|
|
|
.transpose() |
862
|
|
|
) |
863
|
|
|
if not cts.empty: |
864
|
|
|
data = ( |
865
|
|
|
cts[row.bus_id] + series.demand_profile |
866
|
|
|
).values.tolist() |
867
|
|
|
else: |
868
|
|
|
data = series.demand_profile.values.tolist() |
869
|
|
|
|
870
|
|
|
df = df.append( |
871
|
|
|
pd.Series( |
872
|
|
|
data={ |
873
|
|
|
"bus_id": row.bus_id, |
874
|
|
|
"scenario": scenario, |
875
|
|
|
"dist_aggregated_mw": data, |
876
|
|
|
}, |
877
|
|
|
), |
878
|
|
|
ignore_index=True, |
879
|
|
|
) |
880
|
|
|
|
881
|
|
|
df.to_sql( |
882
|
|
|
"egon_etrago_timeseries_individual_heating", |
883
|
|
|
schema="demand", |
884
|
|
|
con=db.engine(), |
885
|
|
|
if_exists="append", |
886
|
|
|
index=False, |
887
|
|
|
) |
888
|
|
|
|
889
|
|
|
|
890
|
|
|
# def store_national_profiles( |
891
|
|
|
# residential_demand_grid, |
892
|
|
|
# CTS_demand_grid, |
893
|
|
|
# residential_demand_dist, |
894
|
|
|
# CTS_demand_dist, |
895
|
|
|
# ): |
896
|
|
|
|
897
|
|
|
# folder = Path(".") / "input-pypsa-eur-sec" |
898
|
|
|
# # Create the folder, if it does not exists already |
899
|
|
|
# if not os.path.exists(folder): |
900
|
|
|
# os.mkdir(folder) |
901
|
|
|
|
902
|
|
|
# for scenario in CTS_demand_grid.scenario.unique(): |
903
|
|
|
# national_demand = pd.DataFrame( |
904
|
|
|
# columns=["residential rural", "services rural", "urban central"], |
905
|
|
|
# index=pd.date_range( |
906
|
|
|
# datetime(2011, 1, 1, 0), periods=8760, freq="H" |
907
|
|
|
# ), |
908
|
|
|
# ) |
909
|
|
|
|
910
|
|
|
# national_demand["residential rural"] = ( |
911
|
|
|
# residential_demand_grid[ |
912
|
|
|
# residential_demand_grid.scenario == scenario |
913
|
|
|
# ] |
914
|
|
|
# .drop("scenario", axis="columns") |
915
|
|
|
# .sum() |
916
|
|
|
# .values |
917
|
|
|
# ) |
918
|
|
|
# national_demand["services rural"] = ( |
919
|
|
|
# CTS_demand_grid[CTS_demand_grid.scenario == scenario] |
920
|
|
|
# .sum(numeric_only=True) |
921
|
|
|
# .values |
922
|
|
|
# ) |
923
|
|
|
# national_demand["urban central"] = ( |
924
|
|
|
# residential_demand_dist[ |
925
|
|
|
# residential_demand_dist.scenario == scenario |
926
|
|
|
# ] |
927
|
|
|
# .drop("scenario", axis="columns") |
928
|
|
|
# .sum() |
929
|
|
|
# .values |
930
|
|
|
# + CTS_demand_dist[CTS_demand_dist.scenario == scenario] |
931
|
|
|
# .drop("scenario", axis="columns") |
932
|
|
|
# .sum() |
933
|
|
|
# .values |
934
|
|
|
# ) |
935
|
|
|
|
936
|
|
|
# national_demand.to_csv( |
937
|
|
|
# folder / f"heat_demand_timeseries_DE_{scenario}.csv" |
938
|
|
|
# ) |
939
|
|
|
|
940
|
|
|
|
941
|
|
|
class HeatTimeSeries(Dataset): |
942
|
|
|
def __init__(self, dependencies): |
943
|
|
|
super().__init__( |
944
|
|
|
name="HeatTimeSeries", |
945
|
|
|
version="0.0.7.dev", |
946
|
|
|
dependencies=dependencies, |
947
|
|
|
tasks=( |
948
|
|
|
{ |
949
|
|
|
map_climate_zones_to_zensus, |
950
|
|
|
daily_demand_shares_per_climate_zone, |
951
|
|
|
create, |
952
|
|
|
}, |
953
|
|
|
select, |
954
|
|
|
district_heating, |
955
|
|
|
), |
956
|
|
|
) |
957
|
|
|
|