1
|
|
|
"""The central module containing all code dealing with importing data from |
2
|
|
|
Netzentwicklungsplan 2035, Version 2031, Szenario C |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
from pathlib import Path |
6
|
|
|
import datetime |
7
|
|
|
import json |
8
|
|
|
import time |
9
|
|
|
|
10
|
|
|
from sqlalchemy import Column, Float, Integer, String |
11
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
12
|
|
|
from sqlalchemy.orm import sessionmaker |
13
|
|
|
import numpy as np |
14
|
|
|
import pandas as pd |
15
|
|
|
import yaml |
16
|
|
|
|
17
|
|
|
from egon.data import db |
18
|
|
|
from egon.data.config import settings |
19
|
|
|
from egon.data.datasets import Dataset |
20
|
|
|
from egon.data.metadata import ( |
21
|
|
|
context, |
22
|
|
|
generate_resource_fields_from_sqla_model, |
23
|
|
|
license_ccby, |
24
|
|
|
meta_metadata, |
25
|
|
|
sources, |
26
|
|
|
) |
27
|
|
|
import egon.data.config |
28
|
|
|
|
29
|
|
|
Base = declarative_base() |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class EgonScenarioCapacities(Base): |
33
|
|
|
__tablename__ = "egon_scenario_capacities" |
34
|
|
|
__table_args__ = {"schema": "supply"} |
35
|
|
|
index = Column(Integer, primary_key=True) |
36
|
|
|
component = Column(String(25)) |
37
|
|
|
carrier = Column(String(50)) |
38
|
|
|
capacity = Column(Float) |
39
|
|
|
nuts = Column(String(12)) |
40
|
|
|
scenario_name = Column(String(50)) |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class NEP2021ConvPowerPlants(Base): |
44
|
|
|
__tablename__ = "egon_nep_2021_conventional_powerplants" |
45
|
|
|
__table_args__ = {"schema": "supply"} |
46
|
|
|
index = Column(String(50), primary_key=True) |
47
|
|
|
bnetza_id = Column(String(50)) |
48
|
|
|
name = Column(String(100)) |
49
|
|
|
name_unit = Column(String(50)) |
50
|
|
|
carrier_nep = Column(String(50)) |
51
|
|
|
carrier = Column(String(12)) |
52
|
|
|
chp = Column(String(12)) |
53
|
|
|
postcode = Column(String(12)) |
54
|
|
|
city = Column(String(50)) |
55
|
|
|
federal_state = Column(String(12)) |
56
|
|
|
commissioned = Column(String(12)) |
57
|
|
|
status = Column(String(50)) |
58
|
|
|
capacity = Column(Float) |
59
|
|
|
a2035_chp = Column(String(12)) |
60
|
|
|
a2035_capacity = Column(Float) |
61
|
|
|
b2035_chp = Column(String(12)) |
62
|
|
|
b2035_capacity = Column(Float) |
63
|
|
|
c2035_chp = Column(String(12)) |
64
|
|
|
c2035_capacity = Column(Float) |
65
|
|
|
b2040_chp = Column(String(12)) |
66
|
|
|
b2040_capacity = Column(Float) |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
class ScenarioCapacities(Dataset): |
70
|
|
|
def __init__(self, dependencies): |
71
|
|
|
super().__init__( |
72
|
|
|
name="ScenarioCapacities", |
73
|
|
|
version="0.0.12", |
74
|
|
|
dependencies=dependencies, |
75
|
|
|
tasks=(create_table, insert_data_nep, eGon100_capacities, add_metadata), |
76
|
|
|
) |
77
|
|
|
|
78
|
|
|
|
79
|
|
|
|
80
|
|
|
def create_table(): |
81
|
|
|
"""Create input tables for scenario setup |
82
|
|
|
|
83
|
|
|
Returns |
84
|
|
|
------- |
85
|
|
|
None. |
86
|
|
|
|
87
|
|
|
""" |
88
|
|
|
|
89
|
|
|
engine = db.engine() |
90
|
|
|
db.execute_sql("CREATE SCHEMA IF NOT EXISTS supply;") |
91
|
|
|
EgonScenarioCapacities.__table__.drop(bind=engine, checkfirst=True) |
92
|
|
|
NEP2021ConvPowerPlants.__table__.drop(bind=engine, checkfirst=True) |
93
|
|
|
EgonScenarioCapacities.__table__.create(bind=engine, checkfirst=True) |
94
|
|
|
NEP2021ConvPowerPlants.__table__.create(bind=engine, checkfirst=True) |
95
|
|
|
|
96
|
|
|
|
97
|
|
|
def nuts_mapping(): |
98
|
|
|
|
99
|
|
|
nuts_mapping = { |
100
|
|
|
"BW": "DE1", |
101
|
|
|
"NW": "DEA", |
102
|
|
|
"HE": "DE7", |
103
|
|
|
"BB": "DE4", |
104
|
|
|
"HB": "DE5", |
105
|
|
|
"RP": "DEB", |
106
|
|
|
"ST": "DEE", |
107
|
|
|
"SH": "DEF", |
108
|
|
|
"MV": "DE8", |
109
|
|
|
"TH": "DEG", |
110
|
|
|
"NI": "DE9", |
111
|
|
|
"SN": "DED", |
112
|
|
|
"HH": "DE6", |
113
|
|
|
"SL": "DEC", |
114
|
|
|
"BE": "DE3", |
115
|
|
|
"BY": "DE2", |
116
|
|
|
} |
117
|
|
|
|
118
|
|
|
return nuts_mapping |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
def insert_capacities_per_federal_state_nep(): |
122
|
|
|
"""Inserts installed capacities per federal state accordning to |
123
|
|
|
NEP 2035 (version 2021), scenario 2035 C |
124
|
|
|
|
125
|
|
|
Returns |
126
|
|
|
------- |
127
|
|
|
None. |
128
|
|
|
|
129
|
|
|
""" |
130
|
|
|
|
131
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
132
|
|
|
targets = egon.data.config.datasets()["scenario_input"]["targets"] |
133
|
|
|
|
134
|
|
|
# Connect to local database |
135
|
|
|
engine = db.engine() |
136
|
|
|
|
137
|
|
|
# Delete rows if already exist |
138
|
|
|
db.execute_sql( |
139
|
|
|
f""" |
140
|
|
|
DELETE FROM |
141
|
|
|
{targets['scenario_capacities']['schema']}. |
142
|
|
|
{targets['scenario_capacities']['table']} |
143
|
|
|
WHERE scenario_name = 'eGon2035' |
144
|
|
|
AND nuts != 'DE' |
145
|
|
|
""" |
146
|
|
|
) |
147
|
|
|
|
148
|
|
|
# read-in installed capacities per federal state of germany |
149
|
|
|
target_file = ( |
150
|
|
|
Path(".") |
151
|
|
|
/ "data_bundle_egon_data" |
152
|
|
|
/ "nep2035_version2021" |
153
|
|
|
/ sources["eGon2035"]["capacities"] |
154
|
|
|
) |
155
|
|
|
|
156
|
|
|
df = pd.read_excel( |
157
|
|
|
target_file, |
158
|
|
|
sheet_name="1.Entwurf_NEP2035_V2021", |
159
|
|
|
index_col="Unnamed: 0", |
160
|
|
|
) |
161
|
|
|
|
162
|
|
|
df_draft = pd.read_excel( |
163
|
|
|
target_file, |
164
|
|
|
sheet_name="Entwurf_des_Szenariorahmens", |
165
|
|
|
index_col="Unnamed: 0", |
166
|
|
|
) |
167
|
|
|
|
168
|
|
|
# Import data on wind offshore capacities |
169
|
|
|
df_windoff = pd.read_excel( |
170
|
|
|
target_file, |
171
|
|
|
sheet_name="WInd_Offshore_NEP", |
172
|
|
|
).dropna(subset=["Bundesland", "Netzverknuepfungspunkt"]) |
173
|
|
|
|
174
|
|
|
# Remove trailing whitespace from column Bundesland |
175
|
|
|
df_windoff["Bundesland"] = df_windoff["Bundesland"].str.strip() |
176
|
|
|
|
177
|
|
|
# Group and sum capacities per federal state |
178
|
|
|
df_windoff_fs = ( |
179
|
|
|
df_windoff[["Bundesland", "C 2035"]].groupby(["Bundesland"]).sum() |
180
|
|
|
) |
181
|
|
|
|
182
|
|
|
# List federal state with an assigned wind offshore capacity |
183
|
|
|
index_list = list(df_windoff_fs.index.values) |
184
|
|
|
|
185
|
|
|
# Overwrite capacities in df_windoff with more accurate values from |
186
|
|
|
# df_windoff_fs |
187
|
|
|
|
188
|
|
|
for state in index_list: |
189
|
|
|
|
190
|
|
|
df.at["Wind offshore", state] = ( |
191
|
|
|
df_windoff_fs.at[state, "C 2035"] / 1000 |
192
|
|
|
) |
193
|
|
|
|
194
|
|
|
# sort NEP-carriers: |
195
|
|
|
rename_carrier = { |
196
|
|
|
"Wind onshore": "wind_onshore", |
197
|
|
|
"Wind offshore": "wind_offshore", |
198
|
|
|
"sonstige Konventionelle": "others", |
199
|
|
|
"Speicherwasser": "reservoir", |
200
|
|
|
"Laufwasser": "run_of_river", |
201
|
|
|
"Biomasse": "biomass", |
202
|
|
|
"Erdgas": "gas", |
203
|
|
|
"Kuppelgas": "gas", |
204
|
|
|
"PV (Aufdach)": "solar_rooftop", |
205
|
|
|
"PV (Freiflaeche)": "solar", |
206
|
|
|
"Pumpspeicher": "pumped_hydro", |
207
|
|
|
"sonstige EE": "others", |
208
|
|
|
"Oel": "oil", |
209
|
|
|
"Haushaltswaermepumpen": "residential_rural_heat_pump", |
210
|
|
|
"KWK < 10 MW": "small_chp", |
211
|
|
|
} |
212
|
|
|
# 'Elektromobilitaet gesamt': 'transport', |
213
|
|
|
# 'Elektromobilitaet privat': 'transport'} |
214
|
|
|
|
215
|
|
|
# nuts1 to federal state in Germany |
216
|
|
|
map_nuts = pd.read_sql( |
217
|
|
|
f""" |
218
|
|
|
SELECT DISTINCT ON (nuts) gen, nuts |
219
|
|
|
FROM {sources['boundaries']['schema']}.{sources['boundaries']['table']} |
220
|
|
|
""", |
221
|
|
|
engine, |
222
|
|
|
index_col="gen", |
223
|
|
|
) |
224
|
|
|
|
225
|
|
|
insert_data = pd.DataFrame() |
226
|
|
|
|
227
|
|
|
scaled_carriers = [ |
228
|
|
|
"Haushaltswaermepumpen", |
229
|
|
|
"PV (Aufdach)", |
230
|
|
|
"PV (Freiflaeche)", |
231
|
|
|
] |
232
|
|
|
|
233
|
|
|
for bl in map_nuts.index: |
234
|
|
|
|
235
|
|
|
data = pd.DataFrame(df[bl]) |
236
|
|
|
|
237
|
|
|
# if distribution to federal states is not provided, |
238
|
|
|
# use data from draft of scenario report |
239
|
|
|
for c in scaled_carriers: |
240
|
|
|
data.loc[c, bl] = ( |
241
|
|
|
df_draft.loc[c, bl] |
242
|
|
|
/ df_draft.loc[c, "Summe"] |
243
|
|
|
* df.loc[c, "Summe"] |
244
|
|
|
) |
245
|
|
|
|
246
|
|
|
# split hydro into run of river and reservoir |
247
|
|
|
# according to draft of scenario report |
248
|
|
|
if data.loc["Lauf- und Speicherwasser", bl] > 0: |
249
|
|
|
for c in ["Speicherwasser", "Laufwasser"]: |
250
|
|
|
data.loc[c, bl] = ( |
251
|
|
|
data.loc["Lauf- und Speicherwasser", bl] |
252
|
|
|
* df_draft.loc[c, bl] |
253
|
|
|
/ df_draft.loc[["Speicherwasser", "Laufwasser"], bl].sum() |
254
|
|
|
) |
255
|
|
|
|
256
|
|
|
data["carrier"] = data.index.map(rename_carrier) |
257
|
|
|
data = data.groupby(data.carrier)[bl].sum().reset_index() |
258
|
|
|
data["component"] = "generator" |
259
|
|
|
data["nuts"] = map_nuts.nuts[bl] |
260
|
|
|
data["scenario_name"] = "eGon2035" |
261
|
|
|
|
262
|
|
|
# According to NEP, each heatpump has 5kW_el installed capacity |
263
|
|
|
# source: Entwurf des Szenariorahmens NEP 2035, version 2021, page 47 |
264
|
|
|
data.loc[data.carrier == "residential_rural_heat_pump", bl] *= 5e-6 |
265
|
|
|
data.loc[ |
266
|
|
|
data.carrier == "residential_rural_heat_pump", "component" |
267
|
|
|
] = "link" |
268
|
|
|
|
269
|
|
|
data = data.rename(columns={bl: "capacity"}) |
270
|
|
|
|
271
|
|
|
# convert GW to MW |
272
|
|
|
data.capacity *= 1e3 |
273
|
|
|
|
274
|
|
|
insert_data = insert_data.append(data) |
275
|
|
|
|
276
|
|
|
# Get aggregated capacities from nep's power plant list for certain carrier |
277
|
|
|
|
278
|
|
|
carriers = ["oil", "other_non_renewable", "pumped_hydro"] |
279
|
|
|
|
280
|
|
|
capacities_list = aggr_nep_capacities(carriers) |
281
|
|
|
|
282
|
|
|
# Filter by carrier |
283
|
|
|
updated = insert_data[insert_data["carrier"].isin(carriers)] |
284
|
|
|
|
285
|
|
|
# Merge to replace capacities for carriers "oil", "other_non_renewable" and |
286
|
|
|
# "pumped_hydro" |
287
|
|
|
updated = ( |
288
|
|
|
updated.merge(capacities_list, on=["carrier", "nuts"], how="left") |
289
|
|
|
.fillna(0) |
290
|
|
|
.drop(["capacity"], axis=1) |
291
|
|
|
.rename(columns={"c2035_capacity": "capacity"}) |
292
|
|
|
) |
293
|
|
|
|
294
|
|
|
# Remove updated entries from df |
295
|
|
|
original = insert_data[~insert_data["carrier"].isin(carriers)] |
296
|
|
|
|
297
|
|
|
# Join dfs |
298
|
|
|
insert_data = pd.concat([original, updated]) |
299
|
|
|
|
300
|
|
|
# Insert data to db |
301
|
|
|
insert_data.to_sql( |
302
|
|
|
targets["scenario_capacities"]["table"], |
303
|
|
|
engine, |
304
|
|
|
schema=targets["scenario_capacities"]["schema"], |
305
|
|
|
if_exists="append", |
306
|
|
|
index=insert_data.index, |
307
|
|
|
) |
308
|
|
|
|
309
|
|
|
# Add district heating data accordning to energy and full load hours |
310
|
|
|
district_heating_input() |
311
|
|
|
|
312
|
|
|
|
313
|
|
|
def population_share(): |
314
|
|
|
"""Calulate share of population in testmode |
315
|
|
|
|
316
|
|
|
Returns |
317
|
|
|
------- |
318
|
|
|
float |
319
|
|
|
Share of population in testmode |
320
|
|
|
|
321
|
|
|
""" |
322
|
|
|
|
323
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
324
|
|
|
|
325
|
|
|
return ( |
326
|
|
|
pd.read_sql( |
327
|
|
|
f""" |
328
|
|
|
SELECT SUM(population) |
329
|
|
|
FROM {sources['zensus_population']['schema']}. |
330
|
|
|
{sources['zensus_population']['table']} |
331
|
|
|
WHERE population>0 |
332
|
|
|
""", |
333
|
|
|
con=db.engine(), |
334
|
|
|
)["sum"][0] |
335
|
|
|
/ 80324282 |
336
|
|
|
) |
337
|
|
|
|
338
|
|
|
|
339
|
|
|
def aggr_nep_capacities(carriers): |
340
|
|
|
"""Aggregates capacities from NEP power plants list by carrier and federal |
341
|
|
|
state |
342
|
|
|
|
343
|
|
|
Returns |
344
|
|
|
------- |
345
|
|
|
pandas.Dataframe |
346
|
|
|
Dataframe with capacities per federal state and carrier |
347
|
|
|
|
348
|
|
|
""" |
349
|
|
|
# Get list of power plants from nep |
350
|
|
|
nep_capacities = insert_nep_list_powerplants(export=False)[ |
351
|
|
|
["federal_state", "carrier", "c2035_capacity"] |
352
|
|
|
] |
353
|
|
|
|
354
|
|
|
# Sum up capacities per federal state and carrier |
355
|
|
|
capacities_list = ( |
356
|
|
|
nep_capacities.groupby(["federal_state", "carrier"])["c2035_capacity"] |
357
|
|
|
.sum() |
358
|
|
|
.to_frame() |
359
|
|
|
.reset_index() |
360
|
|
|
) |
361
|
|
|
|
362
|
|
|
# Neglect entries with carriers not in argument |
363
|
|
|
capacities_list = capacities_list[capacities_list.carrier.isin(carriers)] |
364
|
|
|
|
365
|
|
|
# Include NUTS code |
366
|
|
|
capacities_list["nuts"] = capacities_list.federal_state.map(nuts_mapping()) |
367
|
|
|
|
368
|
|
|
# Drop entries for foreign plants with nan values and federal_state column |
369
|
|
|
capacities_list = capacities_list.dropna(subset=["nuts"]).drop( |
370
|
|
|
columns=["federal_state"] |
371
|
|
|
) |
372
|
|
|
|
373
|
|
|
return capacities_list |
374
|
|
|
|
375
|
|
|
|
376
|
|
|
def map_carrier(): |
377
|
|
|
"""Map carriers from NEP and Marktstammdatenregister to carriers from eGon |
378
|
|
|
|
379
|
|
|
Returns |
380
|
|
|
------- |
381
|
|
|
pandas.Series |
382
|
|
|
List of mapped carriers |
383
|
|
|
|
384
|
|
|
""" |
385
|
|
|
return pd.Series( |
386
|
|
|
data={ |
387
|
|
|
"Abfall": "others", |
388
|
|
|
"Erdgas": "gas", |
389
|
|
|
"Sonstige\nEnergieträger": "others", |
390
|
|
|
"Steinkohle": "coal", |
391
|
|
|
"Kuppelgase": "gas", |
392
|
|
|
"Mineralöl-\nprodukte": "oil", |
393
|
|
|
"Braunkohle": "lignite", |
394
|
|
|
"Waerme": "others", |
395
|
|
|
"Mineraloelprodukte": "oil", |
396
|
|
|
"NichtBiogenerAbfall": "others", |
397
|
|
|
"AndereGase": "gas", |
398
|
|
|
"Sonstige_Energietraeger": "others", |
399
|
|
|
"Kernenergie": "nuclear", |
400
|
|
|
"Pumpspeicher": "pumped_hydro", |
401
|
|
|
"Mineralöl-\nProdukte": "oil", |
402
|
|
|
} |
403
|
|
|
) |
404
|
|
|
|
405
|
|
|
|
406
|
|
|
def insert_nep_list_powerplants(export=True): |
407
|
|
|
"""Insert list of conventional powerplants attached to the approval |
408
|
|
|
of the scenario report by BNetzA |
409
|
|
|
|
410
|
|
|
Parameters |
411
|
|
|
---------- |
412
|
|
|
export : bool |
413
|
|
|
Choose if nep list should be exported to the data |
414
|
|
|
base. The default is True. |
415
|
|
|
If export=False a data frame will be returned |
416
|
|
|
|
417
|
|
|
Returns |
418
|
|
|
------- |
419
|
|
|
kw_liste_nep : pandas.DataFrame |
420
|
|
|
List of conventional power plants from nep if export=False |
421
|
|
|
""" |
422
|
|
|
|
423
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
424
|
|
|
targets = egon.data.config.datasets()["scenario_input"]["targets"] |
425
|
|
|
|
426
|
|
|
# Connect to local database |
427
|
|
|
engine = db.engine() |
428
|
|
|
|
429
|
|
|
# Read-in data from csv-file |
430
|
|
|
target_file = ( |
431
|
|
|
Path(".") |
432
|
|
|
/ "data_bundle_egon_data" |
433
|
|
|
/ "nep2035_version2021" |
434
|
|
|
/ sources["eGon2035"]["list_conv_pp"] |
435
|
|
|
) |
436
|
|
|
|
437
|
|
|
kw_liste_nep = pd.read_csv(target_file, delimiter=";", decimal=",") |
438
|
|
|
|
439
|
|
|
# Adjust column names |
440
|
|
|
kw_liste_nep = kw_liste_nep.rename( |
441
|
|
|
columns={ |
442
|
|
|
"BNetzA-ID": "bnetza_id", |
443
|
|
|
"Kraftwerksname": "name", |
444
|
|
|
"Blockname": "name_unit", |
445
|
|
|
"Energieträger": "carrier_nep", |
446
|
|
|
"KWK\nJa/Nein": "chp", |
447
|
|
|
"PLZ": "postcode", |
448
|
|
|
"Ort": "city", |
449
|
|
|
"Bundesland/\nLand": "federal_state", |
450
|
|
|
"Inbetrieb-\nnahmejahr": "commissioned", |
451
|
|
|
"Status": "status", |
452
|
|
|
"el. Leistung\n06.02.2020": "capacity", |
453
|
|
|
"A 2035:\nKWK-Ersatz": "a2035_chp", |
454
|
|
|
"A 2035:\nLeistung": "a2035_capacity", |
455
|
|
|
"B 2035\nKWK-Ersatz": "b2035_chp", |
456
|
|
|
"B 2035:\nLeistung": "b2035_capacity", |
457
|
|
|
"C 2035:\nKWK-Ersatz": "c2035_chp", |
458
|
|
|
"C 2035:\nLeistung": "c2035_capacity", |
459
|
|
|
"B 2040:\nKWK-Ersatz": "b2040_chp", |
460
|
|
|
"B 2040:\nLeistung": "b2040_capacity", |
461
|
|
|
} |
462
|
|
|
) |
463
|
|
|
|
464
|
|
|
# Cut data to federal state if in testmode |
465
|
|
|
boundary = settings()["egon-data"]["--dataset-boundary"] |
466
|
|
|
if boundary != "Everything": |
467
|
|
|
map_states = { |
468
|
|
|
"Baden-Württemberg": "BW", |
469
|
|
|
"Nordrhein-Westfalen": "NW", |
470
|
|
|
"Hessen": "HE", |
471
|
|
|
"Brandenburg": "BB", |
472
|
|
|
"Bremen": "HB", |
473
|
|
|
"Rheinland-Pfalz": "RP", |
474
|
|
|
"Sachsen-Anhalt": "ST", |
475
|
|
|
"Schleswig-Holstein": "SH", |
476
|
|
|
"Mecklenburg-Vorpommern": "MV", |
477
|
|
|
"Thüringen": "TH", |
478
|
|
|
"Niedersachsen": "NI", |
479
|
|
|
"Sachsen": "SN", |
480
|
|
|
"Hamburg": "HH", |
481
|
|
|
"Saarland": "SL", |
482
|
|
|
"Berlin": "BE", |
483
|
|
|
"Bayern": "BY", |
484
|
|
|
} |
485
|
|
|
|
486
|
|
|
kw_liste_nep = kw_liste_nep[ |
487
|
|
|
kw_liste_nep.federal_state.isin([map_states[boundary], np.nan]) |
488
|
|
|
] |
489
|
|
|
|
490
|
|
|
for col in [ |
491
|
|
|
"capacity", |
492
|
|
|
"a2035_capacity", |
493
|
|
|
"b2035_capacity", |
494
|
|
|
"c2035_capacity", |
495
|
|
|
"b2040_capacity", |
496
|
|
|
]: |
497
|
|
|
kw_liste_nep.loc[ |
498
|
|
|
kw_liste_nep[kw_liste_nep.federal_state.isnull()].index, col |
499
|
|
|
] *= population_share() |
500
|
|
|
|
501
|
|
|
kw_liste_nep["carrier"] = map_carrier()[kw_liste_nep.carrier_nep].values |
502
|
|
|
|
503
|
|
|
if export is True: |
504
|
|
|
# Insert data to db |
505
|
|
|
kw_liste_nep.to_sql( |
506
|
|
|
targets["nep_conventional_powerplants"]["table"], |
507
|
|
|
engine, |
508
|
|
|
schema=targets["nep_conventional_powerplants"]["schema"], |
509
|
|
|
if_exists="replace", |
510
|
|
|
) |
511
|
|
|
else: |
512
|
|
|
return kw_liste_nep |
513
|
|
|
|
514
|
|
|
|
515
|
|
|
def district_heating_input(): |
516
|
|
|
"""Imports data for district heating networks in Germany |
517
|
|
|
|
518
|
|
|
Returns |
519
|
|
|
------- |
520
|
|
|
None. |
521
|
|
|
|
522
|
|
|
""" |
523
|
|
|
|
524
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
525
|
|
|
|
526
|
|
|
# import data to dataframe |
527
|
|
|
file = ( |
528
|
|
|
Path(".") |
529
|
|
|
/ "data_bundle_egon_data" |
530
|
|
|
/ "nep2035_version2021" |
531
|
|
|
/ sources["eGon2035"]["capacities"] |
532
|
|
|
) |
533
|
|
|
df = pd.read_excel( |
534
|
|
|
file, sheet_name="Kurzstudie_KWK", dtype={"Wert": float} |
535
|
|
|
) |
536
|
|
|
df.set_index(["Energietraeger", "Name"], inplace=True) |
537
|
|
|
|
538
|
|
|
# Scale values to population share in testmode |
539
|
|
|
if settings()["egon-data"]["--dataset-boundary"] != "Everything": |
540
|
|
|
df.loc[ |
541
|
|
|
pd.IndexSlice[:, "Fernwaermeerzeugung"], "Wert" |
542
|
|
|
] *= population_share() |
543
|
|
|
|
544
|
|
|
# Connect to database |
545
|
|
|
engine = db.engine() |
546
|
|
|
session = sessionmaker(bind=engine)() |
547
|
|
|
|
548
|
|
|
# insert heatpumps and resistive heater as link |
549
|
|
|
for c in ["Grosswaermepumpe", "Elektrodenheizkessel"]: |
550
|
|
|
entry = EgonScenarioCapacities( |
551
|
|
|
component="link", |
552
|
|
|
scenario_name="eGon2035", |
553
|
|
|
nuts="DE", |
554
|
|
|
carrier="urban_central_" |
555
|
|
|
+ ("heat_pump" if c == "Grosswaermepumpe" else "resistive_heater"), |
556
|
|
|
capacity=df.loc[(c, "Fernwaermeerzeugung"), "Wert"] |
557
|
|
|
* 1e6 |
558
|
|
|
/ df.loc[(c, "Volllaststunden"), "Wert"] |
559
|
|
|
/ df.loc[(c, "Wirkungsgrad"), "Wert"], |
560
|
|
|
) |
561
|
|
|
|
562
|
|
|
session.add(entry) |
563
|
|
|
|
564
|
|
|
# insert solar- and geothermal as generator |
565
|
|
|
for c in ["Geothermie", "Solarthermie"]: |
566
|
|
|
entry = EgonScenarioCapacities( |
567
|
|
|
component="generator", |
568
|
|
|
scenario_name="eGon2035", |
569
|
|
|
nuts="DE", |
570
|
|
|
carrier="urban_central_" |
571
|
|
|
+ ( |
572
|
|
|
"solar_thermal_collector" |
573
|
|
|
if c == "Solarthermie" |
574
|
|
|
else "geo_thermal" |
575
|
|
|
), |
576
|
|
|
capacity=df.loc[(c, "Fernwaermeerzeugung"), "Wert"] |
577
|
|
|
* 1e6 |
578
|
|
|
/ df.loc[(c, "Volllaststunden"), "Wert"], |
579
|
|
|
) |
580
|
|
|
|
581
|
|
|
session.add(entry) |
582
|
|
|
|
583
|
|
|
session.commit() |
584
|
|
|
|
585
|
|
|
|
586
|
|
|
def insert_data_nep(): |
587
|
|
|
"""Overall function for importing scenario input data for eGon2035 scenario |
588
|
|
|
|
589
|
|
|
Returns |
590
|
|
|
------- |
591
|
|
|
None. |
592
|
|
|
|
593
|
|
|
""" |
594
|
|
|
|
595
|
|
|
insert_nep_list_powerplants(export=True) |
596
|
|
|
|
597
|
|
|
insert_capacities_per_federal_state_nep() |
598
|
|
|
|
599
|
|
|
|
600
|
|
|
def eGon100_capacities(): |
601
|
|
|
"""Inserts installed capacities for the eGon100 scenario |
602
|
|
|
|
603
|
|
|
Returns |
604
|
|
|
------- |
605
|
|
|
None. |
606
|
|
|
|
607
|
|
|
""" |
608
|
|
|
|
609
|
|
|
sources = egon.data.config.datasets()["scenario_input"]["sources"] |
610
|
|
|
targets = egon.data.config.datasets()["scenario_input"]["targets"] |
611
|
|
|
|
612
|
|
|
# read-in installed capacities |
613
|
|
|
execute_pypsa_eur_sec = False |
614
|
|
|
cwd = Path(".") |
615
|
|
|
|
616
|
|
|
if execute_pypsa_eur_sec: |
617
|
|
|
filepath = cwd / "run-pypsa-eur-sec" |
618
|
|
|
pypsa_eur_sec_repos = filepath / "pypsa-eur-sec" |
619
|
|
|
# Read YAML file |
620
|
|
|
pes_egonconfig = pypsa_eur_sec_repos / "config_egon.yaml" |
621
|
|
|
with open(pes_egonconfig, "r") as stream: |
622
|
|
|
data_config = yaml.safe_load(stream) |
623
|
|
|
|
624
|
|
|
target_file = ( |
625
|
|
|
pypsa_eur_sec_repos |
626
|
|
|
/ "results" |
627
|
|
|
/ data_config["run"] |
628
|
|
|
/ "csvs" |
629
|
|
|
/ sources["eGon100RE"]["capacities"] |
630
|
|
|
) |
631
|
|
|
|
632
|
|
|
else: |
633
|
|
|
target_file = ( |
634
|
|
|
cwd |
635
|
|
|
/ "data_bundle_egon_data" |
636
|
|
|
/ "pypsa_eur_sec" |
637
|
|
|
/ "2022-07-26-egondata-integration" |
638
|
|
|
/ "csvs" |
639
|
|
|
/ sources["eGon100RE"]["capacities"] |
640
|
|
|
) |
641
|
|
|
|
642
|
|
|
df = pd.read_csv(target_file, skiprows=5) |
643
|
|
|
df.columns = ["component", "country", "carrier", "p_nom"] |
644
|
|
|
|
645
|
|
|
df.set_index("carrier", inplace=True) |
646
|
|
|
|
647
|
|
|
df = df[df.country.str[:2] == "DE"] |
648
|
|
|
|
649
|
|
|
# Drop country column |
650
|
|
|
df.drop("country", axis=1, inplace=True) |
651
|
|
|
|
652
|
|
|
# Drop copmponents which will be optimized in eGo |
653
|
|
|
unused_carrier = [ |
654
|
|
|
"BEV charger", |
655
|
|
|
"DAC", |
656
|
|
|
"H2 Electrolysis", |
657
|
|
|
"electricity distribution grid", |
658
|
|
|
"home battery charger", |
659
|
|
|
"home battery discharger", |
660
|
|
|
"H2", |
661
|
|
|
"Li ion", |
662
|
|
|
"home battery", |
663
|
|
|
"residential rural water tanks charger", |
664
|
|
|
"residential rural water tanks discharger", |
665
|
|
|
"services rural water tanks charger", |
666
|
|
|
"services rural water tanks discharger", |
667
|
|
|
"residential rural water tanks", |
668
|
|
|
"services rural water tanks", |
669
|
|
|
"urban central water tanks", |
670
|
|
|
"urban central water tanks charger", |
671
|
|
|
"urban central water tanks discharger", |
672
|
|
|
"H2 Fuel Cell", |
673
|
|
|
] |
674
|
|
|
|
675
|
|
|
df = df[~df.index.isin(unused_carrier)] |
676
|
|
|
|
677
|
|
|
df.index = df.index.str.replace(" ", "_") |
678
|
|
|
|
679
|
|
|
# Aggregate offshore wind |
680
|
|
|
df = df.append( |
681
|
|
|
pd.DataFrame( |
682
|
|
|
index=["wind_offshore"], |
683
|
|
|
data={ |
684
|
|
|
"p_nom": (df.p_nom["offwind-ac"] + df.p_nom["offwind-dc"]), |
685
|
|
|
"component": df.component["offwind-ac"], |
686
|
|
|
}, |
687
|
|
|
) |
688
|
|
|
) |
689
|
|
|
df = df.drop(["offwind-ac", "offwind-dc"]) |
690
|
|
|
|
691
|
|
|
# Aggregate technologies with and without carbon_capture (CC) |
692
|
|
|
for carrier in ["SMR", "urban_central_gas_CHP"]: |
693
|
|
|
df.p_nom[carrier] += df.p_nom[f"{carrier}_CC"] |
694
|
|
|
df = df.drop([f"{carrier}_CC"]) |
695
|
|
|
|
696
|
|
|
# Aggregate residential and services rural heat supply |
697
|
|
|
for merge_carrier in [ |
698
|
|
|
"rural_resistive_heater", |
699
|
|
|
"rural_ground_heat_pump", |
700
|
|
|
"rural_gas_boiler", |
701
|
|
|
"rural_solar_thermal", |
702
|
|
|
]: |
703
|
|
|
if f"residential_{merge_carrier}" in df.index: |
704
|
|
|
df = df.append( |
705
|
|
|
pd.DataFrame( |
706
|
|
|
index=[merge_carrier], |
707
|
|
|
data={ |
708
|
|
|
"p_nom": ( |
709
|
|
|
df.p_nom[f"residential_{merge_carrier}"] |
710
|
|
|
+ df.p_nom[f"services_{merge_carrier}"] |
711
|
|
|
), |
712
|
|
|
"component": df.component[ |
713
|
|
|
f"residential_{merge_carrier}" |
714
|
|
|
], |
715
|
|
|
}, |
716
|
|
|
) |
717
|
|
|
) |
718
|
|
|
df = df.drop( |
719
|
|
|
[f"residential_{merge_carrier}", f"services_{merge_carrier}"] |
720
|
|
|
) |
721
|
|
|
|
722
|
|
|
# Rename carriers |
723
|
|
|
df.rename( |
724
|
|
|
{ |
725
|
|
|
"onwind": "wind_onshore", |
726
|
|
|
"ror": "run_of_river", |
727
|
|
|
"PHS": "pumped_hydro", |
728
|
|
|
"OCGT": "gas", |
729
|
|
|
"rural_ground_heat_pump": "residential_rural_heat_pump", |
730
|
|
|
"urban_central_air_heat_pump": "urban_central_heat_pump", |
731
|
|
|
"urban_central_solar_thermal": ( |
732
|
|
|
"urban_central_solar_thermal_collector" |
733
|
|
|
), |
734
|
|
|
}, |
735
|
|
|
inplace=True, |
736
|
|
|
) |
737
|
|
|
|
738
|
|
|
# Reset index |
739
|
|
|
df = df.reset_index() |
740
|
|
|
|
741
|
|
|
# Rename columns |
742
|
|
|
df.rename( |
743
|
|
|
{"p_nom": "capacity", "index": "carrier"}, axis="columns", inplace=True |
744
|
|
|
) |
745
|
|
|
|
746
|
|
|
df["scenario_name"] = "eGon100RE" |
747
|
|
|
df["nuts"] = "DE" |
748
|
|
|
|
749
|
|
|
db.execute_sql( |
750
|
|
|
f""" |
751
|
|
|
DELETE FROM |
752
|
|
|
{targets['scenario_capacities']['schema']}.{targets['scenario_capacities']['table']} |
753
|
|
|
WHERE scenario_name='eGon100RE' |
754
|
|
|
""" |
755
|
|
|
) |
756
|
|
|
|
757
|
|
|
df.to_sql( |
758
|
|
|
targets["scenario_capacities"]["table"], |
759
|
|
|
schema=targets["scenario_capacities"]["schema"], |
760
|
|
|
con=db.engine(), |
761
|
|
|
if_exists="append", |
762
|
|
|
index=False, |
763
|
|
|
) |
764
|
|
|
|
765
|
|
|
|
766
|
|
|
|
767
|
|
|
def add_metadata(): |
768
|
|
|
"""Add metdata to supply.egon_scenario_capacities |
769
|
|
|
|
770
|
|
|
Returns |
771
|
|
|
------- |
772
|
|
|
None. |
773
|
|
|
|
774
|
|
|
""" |
775
|
|
|
|
776
|
|
|
# Import column names and datatypes |
777
|
|
|
fields = pd.DataFrame( |
778
|
|
|
generate_resource_fields_from_sqla_model(EgonScenarioCapacities) |
779
|
|
|
).set_index("name") |
780
|
|
|
|
781
|
|
|
# Set descriptions and units |
782
|
|
|
fields.loc["index", "description"] = "Index" |
783
|
|
|
fields.loc[ |
784
|
|
|
"component", "description" |
785
|
|
|
] = "Name of representative PyPSA component" |
786
|
|
|
fields.loc["carrier", "description"] = "Name of carrier" |
787
|
|
|
fields.loc["capacity", "description"] = "Installed capacity" |
788
|
|
|
fields.loc["capacity", "unit"] = "MW" |
789
|
|
|
fields.loc[ |
790
|
|
|
"nuts", "description" |
791
|
|
|
] = "NUTS region, either federal state or Germany" |
792
|
|
|
fields.loc[ |
793
|
|
|
"scenario_name", "description" |
794
|
|
|
] = "Name of corresponding eGon scenario" |
795
|
|
|
|
796
|
|
|
# Reformat pandas.DataFrame to dict |
797
|
|
|
fields = fields.reset_index().to_dict(orient="records") |
798
|
|
|
|
799
|
|
|
meta = { |
800
|
|
|
"name": "supply.egon_scenario_capacities", |
801
|
|
|
"title": "eGon scenario capacities", |
802
|
|
|
"id": "WILL_BE_SET_AT_PUBLICATION", |
803
|
|
|
"description": "Installed capacities of scenarios used in the eGon project", |
804
|
|
|
"language": ["de-DE"], |
805
|
|
|
"publicationDate": datetime.date.today().isoformat(), |
806
|
|
|
"context": context(), |
807
|
|
|
"spatial": { |
808
|
|
|
"location": None, |
809
|
|
|
"extent": "Germany", |
810
|
|
|
"resolution": None, |
811
|
|
|
}, |
812
|
|
|
"sources": [ |
813
|
|
|
sources()["nep2021"], |
814
|
|
|
sources()["vg250"], |
815
|
|
|
sources()["zensus"], |
816
|
|
|
sources()["egon-data"], |
817
|
|
|
], |
818
|
|
|
"licenses": [ |
819
|
|
|
license_ccby( |
820
|
|
|
"© Übertragungsnetzbetreiber; " |
821
|
|
|
"© Bundesamt für Kartographie und Geodäsie 2020 (Daten verändert); " |
822
|
|
|
"© Statistische Ämter des Bundes und der Länder 2014", |
823
|
|
|
"© Jonathan Amme, Clara Büttner, Ilka Cußmann, Julian Endres, Carlos Epia, Stephan Günther, Ulf Müller, Amélia Nadal, Guido Pleßmann, Francesco Witte", |
824
|
|
|
) |
825
|
|
|
], |
826
|
|
|
"contributors": [ |
827
|
|
|
{ |
828
|
|
|
"title": "Clara Büttner", |
829
|
|
|
"email": "http://github.com/ClaraBuettner", |
830
|
|
|
"date": time.strftime("%Y-%m-%d"), |
831
|
|
|
"object": None, |
832
|
|
|
"comment": "Imported data", |
833
|
|
|
}, |
834
|
|
|
], |
835
|
|
|
"resources": [ |
836
|
|
|
{ |
837
|
|
|
"profile": "tabular-data-resource", |
838
|
|
|
"name": "supply.egon_scenario_capacities", |
839
|
|
|
"path": None, |
840
|
|
|
"format": "PostgreSQL", |
841
|
|
|
"encoding": "UTF-8", |
842
|
|
|
"schema": { |
843
|
|
|
"fields": fields, |
844
|
|
|
"primaryKey": ["index"], |
845
|
|
|
"foreignKeys": [], |
846
|
|
|
}, |
847
|
|
|
"dialect": {"delimiter": None, "decimalSeparator": "."}, |
848
|
|
|
} |
849
|
|
|
], |
850
|
|
|
"metaMetadata": meta_metadata(), |
851
|
|
|
} |
852
|
|
|
|
853
|
|
|
# Create json dump |
854
|
|
|
meta_json = "'" + json.dumps(meta) + "'" |
855
|
|
|
|
856
|
|
|
# Add metadata as a comment to the table |
857
|
|
|
db.submit_comment( |
858
|
|
|
meta_json, |
859
|
|
|
EgonScenarioCapacities.__table__.schema, |
860
|
|
|
EgonScenarioCapacities.__table__.name, |
861
|
|
|
) |
862
|
|
|
|