Conditions | 32 |
Total Lines | 788 |
Code Lines | 524 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like data.datasets.pypsaeursec.neighbor_reduction() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with importing data from |
||
268 | def neighbor_reduction(): |
||
269 | |||
270 | network = read_network() |
||
271 | |||
272 | network.links.drop("pipe_retrofit", axis="columns", inplace=True) |
||
273 | |||
274 | wanted_countries = [ |
||
275 | "DE", |
||
276 | "AT", |
||
277 | "CH", |
||
278 | "CZ", |
||
279 | "PL", |
||
280 | "SE", |
||
281 | "NO", |
||
282 | "DK", |
||
283 | "GB", |
||
284 | "NL", |
||
285 | "BE", |
||
286 | "FR", |
||
287 | "LU", |
||
288 | ] |
||
289 | foreign_buses = network.buses[ |
||
290 | ~network.buses.index.str.contains("|".join(wanted_countries)) |
||
291 | ] |
||
292 | network.buses = network.buses.drop( |
||
293 | network.buses.loc[foreign_buses.index].index |
||
294 | ) |
||
295 | |||
296 | # drop foreign lines and links from the 2nd row |
||
297 | |||
298 | network.lines = network.lines.drop( |
||
299 | network.lines[ |
||
300 | (network.lines["bus0"].isin(network.buses.index) == False) |
||
301 | & (network.lines["bus1"].isin(network.buses.index) == False) |
||
302 | ].index |
||
303 | ) |
||
304 | |||
305 | # select all lines which have at bus1 the bus which is kept |
||
306 | lines_cb_1 = network.lines[ |
||
307 | (network.lines["bus0"].isin(network.buses.index) == False) |
||
308 | ] |
||
309 | |||
310 | # create a load at bus1 with the line's hourly loading |
||
311 | for i, k in zip(lines_cb_1.bus1.values, lines_cb_1.index): |
||
312 | network.add( |
||
313 | "Load", |
||
314 | "slack_fix " + i + " " + k, |
||
315 | bus=i, |
||
316 | p_set=network.lines_t.p1[k], |
||
317 | ) |
||
318 | network.loads.carrier.loc[ |
||
319 | "slack_fix " + i + " " + k |
||
320 | ] = lines_cb_1.carrier[k] |
||
321 | |||
322 | # select all lines which have at bus0 the bus which is kept |
||
323 | lines_cb_0 = network.lines[ |
||
324 | (network.lines["bus1"].isin(network.buses.index) == False) |
||
325 | ] |
||
326 | |||
327 | # create a load at bus0 with the line's hourly loading |
||
328 | for i, k in zip(lines_cb_0.bus0.values, lines_cb_0.index): |
||
329 | network.add( |
||
330 | "Load", |
||
331 | "slack_fix " + i + " " + k, |
||
332 | bus=i, |
||
333 | p_set=network.lines_t.p0[k], |
||
334 | ) |
||
335 | network.loads.carrier.loc[ |
||
336 | "slack_fix " + i + " " + k |
||
337 | ] = lines_cb_0.carrier[k] |
||
338 | |||
339 | # do the same for links |
||
340 | |||
341 | network.links = network.links.drop( |
||
342 | network.links[ |
||
343 | (network.links["bus0"].isin(network.buses.index) == False) |
||
344 | & (network.links["bus1"].isin(network.buses.index) == False) |
||
345 | ].index |
||
346 | ) |
||
347 | |||
348 | # select all links which have at bus1 the bus which is kept |
||
349 | links_cb_1 = network.links[ |
||
350 | (network.links["bus0"].isin(network.buses.index) == False) |
||
351 | ] |
||
352 | |||
353 | # create a load at bus1 with the link's hourly loading |
||
354 | for i, k in zip(links_cb_1.bus1.values, links_cb_1.index): |
||
355 | network.add( |
||
356 | "Load", |
||
357 | "slack_fix_links " + i + " " + k, |
||
358 | bus=i, |
||
359 | p_set=network.links_t.p1[k], |
||
360 | ) |
||
361 | network.loads.carrier.loc[ |
||
362 | "slack_fix_links " + i + " " + k |
||
363 | ] = links_cb_1.carrier[k] |
||
364 | |||
365 | # select all links which have at bus0 the bus which is kept |
||
366 | links_cb_0 = network.links[ |
||
367 | (network.links["bus1"].isin(network.buses.index) == False) |
||
368 | ] |
||
369 | |||
370 | # create a load at bus0 with the link's hourly loading |
||
371 | for i, k in zip(links_cb_0.bus0.values, links_cb_0.index): |
||
372 | network.add( |
||
373 | "Load", |
||
374 | "slack_fix_links " + i + " " + k, |
||
375 | bus=i, |
||
376 | p_set=network.links_t.p0[k], |
||
377 | ) |
||
378 | network.loads.carrier.loc[ |
||
379 | "slack_fix_links " + i + " " + k |
||
380 | ] = links_cb_0.carrier[k] |
||
381 | |||
382 | # drop remaining foreign components |
||
383 | |||
384 | network.lines = network.lines.drop( |
||
385 | network.lines[ |
||
386 | (network.lines["bus0"].isin(network.buses.index) == False) |
||
387 | | (network.lines["bus1"].isin(network.buses.index) == False) |
||
388 | ].index |
||
389 | ) |
||
390 | |||
391 | network.links = network.links.drop( |
||
392 | network.links[ |
||
393 | (network.links["bus0"].isin(network.buses.index) == False) |
||
394 | | (network.links["bus1"].isin(network.buses.index) == False) |
||
395 | ].index |
||
396 | ) |
||
397 | |||
398 | network.transformers = network.transformers.drop( |
||
399 | network.transformers[ |
||
400 | (network.transformers["bus0"].isin(network.buses.index) == False) |
||
401 | | (network.transformers["bus1"].isin(network.buses.index) == False) |
||
402 | ].index |
||
403 | ) |
||
404 | network.generators = network.generators.drop( |
||
405 | network.generators[ |
||
406 | (network.generators["bus"].isin(network.buses.index) == False) |
||
407 | ].index |
||
408 | ) |
||
409 | |||
410 | network.loads = network.loads.drop( |
||
411 | network.loads[ |
||
412 | (network.loads["bus"].isin(network.buses.index) == False) |
||
413 | ].index |
||
414 | ) |
||
415 | |||
416 | network.storage_units = network.storage_units.drop( |
||
417 | network.storage_units[ |
||
418 | (network.storage_units["bus"].isin(network.buses.index) == False) |
||
419 | ].index |
||
420 | ) |
||
421 | |||
422 | components = [ |
||
423 | "loads", |
||
424 | "generators", |
||
425 | "lines", |
||
426 | "buses", |
||
427 | "transformers", |
||
428 | "links", |
||
429 | ] |
||
430 | for g in components: # loads_t |
||
431 | h = g + "_t" |
||
432 | nw = getattr(network, h) # network.loads_t |
||
433 | for i in nw.keys(): # network.loads_t.p |
||
434 | cols = [ |
||
435 | j |
||
436 | for j in getattr(nw, i).columns |
||
437 | if j not in getattr(network, g).index |
||
438 | ] |
||
439 | for k in cols: |
||
440 | del getattr(nw, i)[k] |
||
441 | |||
442 | # writing components of neighboring countries to etrago tables |
||
443 | |||
444 | # Set country tag for all buses |
||
445 | network.buses.country = network.buses.index.str[:2] |
||
446 | neighbors = network.buses[network.buses.country != "DE"] |
||
447 | |||
448 | neighbors["new_index"] = ( |
||
449 | db.next_etrago_id("bus") + neighbors.reset_index().index |
||
450 | ) |
||
451 | |||
452 | # lines, the foreign crossborder lines |
||
453 | # (without crossborder lines to Germany!) |
||
454 | |||
455 | neighbor_lines = network.lines[ |
||
456 | network.lines.bus0.isin(neighbors.index) |
||
457 | & network.lines.bus1.isin(neighbors.index) |
||
458 | ] |
||
459 | if not network.lines_t["s_max_pu"].empty: |
||
460 | neighbor_lines_t = network.lines_t["s_max_pu"][neighbor_lines.index] |
||
461 | |||
462 | neighbor_lines.reset_index(inplace=True) |
||
463 | neighbor_lines.bus0 = ( |
||
464 | neighbors.loc[neighbor_lines.bus0, "new_index"].reset_index().new_index |
||
465 | ) |
||
466 | neighbor_lines.bus1 = ( |
||
467 | neighbors.loc[neighbor_lines.bus1, "new_index"].reset_index().new_index |
||
468 | ) |
||
469 | neighbor_lines.index += db.next_etrago_id("line") |
||
470 | |||
471 | if not network.lines_t["s_max_pu"].empty: |
||
472 | for i in neighbor_lines_t.columns: |
||
|
|||
473 | new_index = neighbor_lines[neighbor_lines["name"] == i].index |
||
474 | neighbor_lines_t.rename(columns={i: new_index[0]}, inplace=True) |
||
475 | |||
476 | # links |
||
477 | neighbor_links = network.links[ |
||
478 | network.links.bus0.isin(neighbors.index) |
||
479 | & network.links.bus1.isin(neighbors.index) |
||
480 | ] |
||
481 | |||
482 | neighbor_links.reset_index(inplace=True) |
||
483 | neighbor_links.bus0 = ( |
||
484 | neighbors.loc[neighbor_links.bus0, "new_index"].reset_index().new_index |
||
485 | ) |
||
486 | neighbor_links.bus1 = ( |
||
487 | neighbors.loc[neighbor_links.bus1, "new_index"].reset_index().new_index |
||
488 | ) |
||
489 | neighbor_links.index += db.next_etrago_id("link") |
||
490 | |||
491 | # generators |
||
492 | neighbor_gens = network.generators[ |
||
493 | network.generators.bus.isin(neighbors.index) |
||
494 | ] |
||
495 | neighbor_gens_t = network.generators_t["p_max_pu"][ |
||
496 | neighbor_gens[ |
||
497 | neighbor_gens.index.isin(network.generators_t["p_max_pu"].columns) |
||
498 | ].index |
||
499 | ] |
||
500 | |||
501 | neighbor_gens.reset_index(inplace=True) |
||
502 | neighbor_gens.bus = ( |
||
503 | neighbors.loc[neighbor_gens.bus, "new_index"].reset_index().new_index |
||
504 | ) |
||
505 | neighbor_gens.index += db.next_etrago_id("generator") |
||
506 | |||
507 | for i in neighbor_gens_t.columns: |
||
508 | new_index = neighbor_gens[neighbor_gens["name"] == i].index |
||
509 | neighbor_gens_t.rename(columns={i: new_index[0]}, inplace=True) |
||
510 | |||
511 | # loads |
||
512 | |||
513 | neighbor_loads = network.loads[network.loads.bus.isin(neighbors.index)] |
||
514 | neighbor_loads_t_index = neighbor_loads.index[ |
||
515 | neighbor_loads.index.isin(network.loads_t.p_set.columns) |
||
516 | ] |
||
517 | neighbor_loads_t = network.loads_t["p_set"][neighbor_loads_t_index] |
||
518 | |||
519 | neighbor_loads.reset_index(inplace=True) |
||
520 | neighbor_loads.bus = ( |
||
521 | neighbors.loc[neighbor_loads.bus, "new_index"].reset_index().new_index |
||
522 | ) |
||
523 | neighbor_loads.index += db.next_etrago_id("load") |
||
524 | |||
525 | for i in neighbor_loads_t.columns: |
||
526 | new_index = neighbor_loads[neighbor_loads["index"] == i].index |
||
527 | neighbor_loads_t.rename(columns={i: new_index[0]}, inplace=True) |
||
528 | |||
529 | # stores |
||
530 | neighbor_stores = network.stores[network.stores.bus.isin(neighbors.index)] |
||
531 | neighbor_stores_t_index = neighbor_stores.index[ |
||
532 | neighbor_stores.index.isin(network.stores_t.e_min_pu.columns) |
||
533 | ] |
||
534 | neighbor_stores_t = network.stores_t["e_min_pu"][neighbor_stores_t_index] |
||
535 | |||
536 | neighbor_stores.reset_index(inplace=True) |
||
537 | neighbor_stores.bus = ( |
||
538 | neighbors.loc[neighbor_stores.bus, "new_index"].reset_index().new_index |
||
539 | ) |
||
540 | neighbor_stores.index += db.next_etrago_id("store") |
||
541 | |||
542 | for i in neighbor_stores_t.columns: |
||
543 | new_index = neighbor_stores[neighbor_stores["name"] == i].index |
||
544 | neighbor_stores_t.rename(columns={i: new_index[0]}, inplace=True) |
||
545 | |||
546 | # storage_units |
||
547 | neighbor_storage = network.storage_units[ |
||
548 | network.storage_units.bus.isin(neighbors.index) |
||
549 | ] |
||
550 | neighbor_storage_t_index = neighbor_storage.index[ |
||
551 | neighbor_storage.index.isin(network.storage_units_t.inflow.columns) |
||
552 | ] |
||
553 | neighbor_storage_t = network.storage_units_t["inflow"][ |
||
554 | neighbor_storage_t_index |
||
555 | ] |
||
556 | |||
557 | neighbor_storage.reset_index(inplace=True) |
||
558 | neighbor_storage.bus = ( |
||
559 | neighbors.loc[neighbor_storage.bus, "new_index"] |
||
560 | .reset_index() |
||
561 | .new_index |
||
562 | ) |
||
563 | neighbor_storage.index += db.next_etrago_id("storage") |
||
564 | |||
565 | for i in neighbor_storage_t.columns: |
||
566 | new_index = neighbor_storage[neighbor_storage["name"] == i].index |
||
567 | neighbor_storage_t.rename(columns={i: new_index[0]}, inplace=True) |
||
568 | |||
569 | # Connect to local database |
||
570 | engine = db.engine() |
||
571 | |||
572 | neighbors["scn_name"] = "eGon100RE" |
||
573 | neighbors.index = neighbors["new_index"] |
||
574 | |||
575 | # Correct geometry for non AC buses |
||
576 | carriers = set(neighbors.carrier.to_list()) |
||
577 | carriers = [e for e in carriers if e not in ("AC", "biogas")] |
||
578 | non_AC_neighbors = pd.DataFrame() |
||
579 | for c in carriers: |
||
580 | c_neighbors = neighbors[neighbors.carrier == c].set_index( |
||
581 | "location", drop=False |
||
582 | ) |
||
583 | for i in ["x", "y"]: |
||
584 | c_neighbors = c_neighbors.drop(i, axis=1) |
||
585 | coordinates = neighbors[neighbors.carrier == "AC"][ |
||
586 | ["location", "x", "y"] |
||
587 | ].set_index("location") |
||
588 | c_neighbors = pd.concat([coordinates, c_neighbors], axis=1).set_index( |
||
589 | "new_index", drop=False |
||
590 | ) |
||
591 | non_AC_neighbors = non_AC_neighbors.append(c_neighbors) |
||
592 | neighbors = neighbors[neighbors.carrier == "AC"].append(non_AC_neighbors) |
||
593 | |||
594 | for i in ["new_index", "control", "generator", "location", "sub_network"]: |
||
595 | neighbors = neighbors.drop(i, axis=1) |
||
596 | |||
597 | # Add geometry column |
||
598 | neighbors = ( |
||
599 | gpd.GeoDataFrame( |
||
600 | neighbors, geometry=gpd.points_from_xy(neighbors.x, neighbors.y) |
||
601 | ) |
||
602 | .rename_geometry("geom") |
||
603 | .set_crs(4326) |
||
604 | ) |
||
605 | |||
606 | # Unify carrier names |
||
607 | neighbors.carrier = neighbors.carrier.str.replace(" ", "_") |
||
608 | neighbors.carrier.replace( |
||
609 | { |
||
610 | "gas": "CH4", |
||
611 | "gas_for_industry": "CH4_for_industry", |
||
612 | }, |
||
613 | inplace=True, |
||
614 | ) |
||
615 | |||
616 | neighbors.to_postgis( |
||
617 | "egon_etrago_bus", |
||
618 | engine, |
||
619 | schema="grid", |
||
620 | if_exists="append", |
||
621 | index=True, |
||
622 | index_label="bus_id", |
||
623 | ) |
||
624 | |||
625 | # prepare and write neighboring crossborder lines to etrago tables |
||
626 | def lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE"): |
||
627 | neighbor_lines["scn_name"] = scn |
||
628 | neighbor_lines["cables"] = 3 * neighbor_lines["num_parallel"].astype( |
||
629 | int |
||
630 | ) |
||
631 | neighbor_lines["s_nom"] = neighbor_lines["s_nom_min"] |
||
632 | |||
633 | for i in [ |
||
634 | "name", |
||
635 | "x_pu_eff", |
||
636 | "r_pu_eff", |
||
637 | "sub_network", |
||
638 | "x_pu", |
||
639 | "r_pu", |
||
640 | "g_pu", |
||
641 | "b_pu", |
||
642 | "s_nom_opt", |
||
643 | ]: |
||
644 | neighbor_lines = neighbor_lines.drop(i, axis=1) |
||
645 | |||
646 | # Define geometry and add to lines dataframe as 'topo' |
||
647 | gdf = gpd.GeoDataFrame(index=neighbor_lines.index) |
||
648 | gdf["geom_bus0"] = neighbors.geom[neighbor_lines.bus0].values |
||
649 | gdf["geom_bus1"] = neighbors.geom[neighbor_lines.bus1].values |
||
650 | gdf["geometry"] = gdf.apply( |
||
651 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
652 | ) |
||
653 | |||
654 | neighbor_lines = ( |
||
655 | gpd.GeoDataFrame(neighbor_lines, geometry=gdf["geometry"]) |
||
656 | .rename_geometry("topo") |
||
657 | .set_crs(4326) |
||
658 | ) |
||
659 | |||
660 | neighbor_lines["lifetime"] = get_sector_parameters("electricity", scn)[ |
||
661 | "lifetime" |
||
662 | ]["ac_ehv_overhead_line"] |
||
663 | |||
664 | neighbor_lines.to_postgis( |
||
665 | "egon_etrago_line", |
||
666 | engine, |
||
667 | schema="grid", |
||
668 | if_exists="append", |
||
669 | index=True, |
||
670 | index_label="line_id", |
||
671 | ) |
||
672 | |||
673 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon100RE") |
||
674 | lines_to_etrago(neighbor_lines=neighbor_lines, scn="eGon2035") |
||
675 | |||
676 | def links_to_etrago(neighbor_links, scn="eGon100RE", extendable=True): |
||
677 | """Prepare and write neighboring crossborder links to eTraGo table |
||
678 | |||
679 | This function prepare the neighboring crossborder links |
||
680 | generated the PyPSA-eur-sec (p-e-s) run by: |
||
681 | * Delete the useless columns |
||
682 | * If extendable is false only (non default case): |
||
683 | * Replace p_nom = 0 with the p_nom_op values (arrising |
||
684 | from the p-e-s optimisation) |
||
685 | * Setting p_nom_extendable to false |
||
686 | * Add geomtry to the links: 'geom' and 'topo' columns |
||
687 | * Change the name of the carriers to have the consistent in |
||
688 | eGon-data |
||
689 | |||
690 | The function insert then the link to the eTraGo table and has |
||
691 | no return. |
||
692 | |||
693 | Parameters |
||
694 | ---------- |
||
695 | neighbor_links : pandas.DataFrame |
||
696 | Dataframe containing the neighboring crossborder links |
||
697 | scn_name : str |
||
698 | Name of the scenario |
||
699 | extendable : bool |
||
700 | Boolean expressing if the links should be extendable or not |
||
701 | |||
702 | Returns |
||
703 | ------- |
||
704 | None |
||
705 | |||
706 | """ |
||
707 | neighbor_links["scn_name"] = scn |
||
708 | |||
709 | if extendable is True: |
||
710 | neighbor_links = neighbor_links.drop( |
||
711 | columns=[ |
||
712 | "name", |
||
713 | "geometry", |
||
714 | "tags", |
||
715 | "under_construction", |
||
716 | "underground", |
||
717 | "underwater_fraction", |
||
718 | "bus2", |
||
719 | "bus3", |
||
720 | "bus4", |
||
721 | "efficiency2", |
||
722 | "efficiency3", |
||
723 | "efficiency4", |
||
724 | "lifetime", |
||
725 | "p_nom_opt", |
||
726 | "pipe_retrofit", |
||
727 | ], |
||
728 | errors="ignore", |
||
729 | ) |
||
730 | |||
731 | elif extendable is False: |
||
732 | neighbor_links = neighbor_links.drop( |
||
733 | columns=[ |
||
734 | "name", |
||
735 | "geometry", |
||
736 | "tags", |
||
737 | "under_construction", |
||
738 | "underground", |
||
739 | "underwater_fraction", |
||
740 | "bus2", |
||
741 | "bus3", |
||
742 | "bus4", |
||
743 | "efficiency2", |
||
744 | "efficiency3", |
||
745 | "efficiency4", |
||
746 | "lifetime", |
||
747 | "p_nom", |
||
748 | "p_nom_extendable", |
||
749 | "pipe_retrofit", |
||
750 | ], |
||
751 | errors="ignore", |
||
752 | ) |
||
753 | neighbor_links = neighbor_links.rename( |
||
754 | columns={"p_nom_opt": "p_nom"} |
||
755 | ) |
||
756 | neighbor_links["p_nom_extendable"] = False |
||
757 | |||
758 | # Define geometry and add to lines dataframe as 'topo' |
||
759 | gdf = gpd.GeoDataFrame(index=neighbor_links.index) |
||
760 | gdf["geom_bus0"] = neighbors.geom[neighbor_links.bus0].values |
||
761 | gdf["geom_bus1"] = neighbors.geom[neighbor_links.bus1].values |
||
762 | gdf["geometry"] = gdf.apply( |
||
763 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
764 | ) |
||
765 | |||
766 | neighbor_links = ( |
||
767 | gpd.GeoDataFrame(neighbor_links, geometry=gdf["geometry"]) |
||
768 | .rename_geometry("topo") |
||
769 | .set_crs(4326) |
||
770 | ) |
||
771 | |||
772 | # Unify carrier names |
||
773 | neighbor_links.carrier = neighbor_links.carrier.str.replace(" ", "_") |
||
774 | |||
775 | neighbor_links.carrier.replace( |
||
776 | { |
||
777 | "H2_Electrolysis": "power_to_H2", |
||
778 | "H2_Fuel_Cell": "H2_to_power", |
||
779 | "H2_pipeline_retrofitted": "H2_retrofit", |
||
780 | "SMR": "CH4_to_H2", |
||
781 | "Sabatier": "H2_to_CH4", |
||
782 | "gas_for_industry": "CH4_for_industry", |
||
783 | "gas_pipeline": "CH4", |
||
784 | }, |
||
785 | inplace=True, |
||
786 | ) |
||
787 | |||
788 | neighbor_links.to_postgis( |
||
789 | "egon_etrago_link", |
||
790 | engine, |
||
791 | schema="grid", |
||
792 | if_exists="append", |
||
793 | index=True, |
||
794 | index_label="link_id", |
||
795 | ) |
||
796 | |||
797 | non_extendable_links_carriers = [ |
||
798 | "H2 pipeline retrofitted", |
||
799 | "gas pipeline", |
||
800 | "biogas to gas", |
||
801 | ] |
||
802 | |||
803 | # delete unwanted carriers for eTraGo |
||
804 | excluded_carriers = ["gas for industry CC", "SMR CC", "biogas to gas"] |
||
805 | neighbor_links = neighbor_links[ |
||
806 | ~neighbor_links.carrier.isin(excluded_carriers) |
||
807 | ] |
||
808 | |||
809 | links_to_etrago( |
||
810 | neighbor_links[ |
||
811 | ~neighbor_links.carrier.isin(non_extendable_links_carriers) |
||
812 | ], |
||
813 | "eGon100RE", |
||
814 | ) |
||
815 | links_to_etrago( |
||
816 | neighbor_links[ |
||
817 | neighbor_links.carrier.isin(non_extendable_links_carriers) |
||
818 | ], |
||
819 | "eGon100RE", |
||
820 | extendable=False, |
||
821 | ) |
||
822 | |||
823 | links_to_etrago(neighbor_links[neighbor_links.carrier == "DC"], "eGon2035") |
||
824 | |||
825 | # prepare neighboring generators for etrago tables |
||
826 | neighbor_gens["scn_name"] = "eGon100RE" |
||
827 | neighbor_gens["p_nom"] = neighbor_gens["p_nom_opt"] |
||
828 | neighbor_gens["p_nom_extendable"] = False |
||
829 | |||
830 | # Unify carrier names |
||
831 | neighbor_gens.carrier = neighbor_gens.carrier.str.replace(" ", "_") |
||
832 | |||
833 | neighbor_gens.carrier.replace( |
||
834 | { |
||
835 | "onwind": "wind_onshore", |
||
836 | "ror": "run_of_river", |
||
837 | "offwind-ac": "wind_offshore", |
||
838 | "offwind-dc": "wind_offshore", |
||
839 | "urban_central_solar_thermal": "urban_central_solar_thermal_collector", |
||
840 | "residential_rural_solar_thermal": "residential_rural_solar_thermal_collector", |
||
841 | "services_rural_solar_thermal": "services_rural_solar_thermal_collector", |
||
842 | }, |
||
843 | inplace=True, |
||
844 | ) |
||
845 | |||
846 | for i in ["name", "weight", "lifetime", "p_set", "q_set", "p_nom_opt"]: |
||
847 | neighbor_gens = neighbor_gens.drop(i, axis=1) |
||
848 | |||
849 | neighbor_gens.to_sql( |
||
850 | "egon_etrago_generator", |
||
851 | engine, |
||
852 | schema="grid", |
||
853 | if_exists="append", |
||
854 | index=True, |
||
855 | index_label="generator_id", |
||
856 | ) |
||
857 | |||
858 | # prepare neighboring loads for etrago tables |
||
859 | neighbor_loads["scn_name"] = "eGon100RE" |
||
860 | |||
861 | # Unify carrier names |
||
862 | neighbor_loads.carrier = neighbor_loads.carrier.str.replace(" ", "_") |
||
863 | |||
864 | neighbor_loads.carrier.replace( |
||
865 | { |
||
866 | "electricity": "AC", |
||
867 | "DC": "AC", |
||
868 | "industry_electricity": "AC", |
||
869 | "H2_pipeline_retrofitted": "H2_system_boundary", |
||
870 | "gas_pipeline": "CH4_system_boundary", |
||
871 | "gas_for_industry": "CH4_for_industry", |
||
872 | }, |
||
873 | inplace=True, |
||
874 | ) |
||
875 | |||
876 | neighbor_loads = neighbor_loads.drop( |
||
877 | columns=["index"], |
||
878 | errors="ignore", |
||
879 | ) |
||
880 | |||
881 | neighbor_loads.to_sql( |
||
882 | "egon_etrago_load", |
||
883 | engine, |
||
884 | schema="grid", |
||
885 | if_exists="append", |
||
886 | index=True, |
||
887 | index_label="load_id", |
||
888 | ) |
||
889 | |||
890 | # prepare neighboring stores for etrago tables |
||
891 | neighbor_stores["scn_name"] = "eGon100RE" |
||
892 | |||
893 | # Unify carrier names |
||
894 | neighbor_stores.carrier = neighbor_stores.carrier.str.replace(" ", "_") |
||
895 | |||
896 | neighbor_stores.carrier.replace( |
||
897 | { |
||
898 | "Li_ion": "battery", |
||
899 | "gas": "CH4", |
||
900 | }, |
||
901 | inplace=True, |
||
902 | ) |
||
903 | neighbor_stores.loc[ |
||
904 | ( |
||
905 | (neighbor_stores.e_nom_max <= 1e9) |
||
906 | & (neighbor_stores.carrier == "H2") |
||
907 | ), |
||
908 | "carrier", |
||
909 | ] = "H2_underground" |
||
910 | neighbor_stores.loc[ |
||
911 | ( |
||
912 | (neighbor_stores.e_nom_max > 1e9) |
||
913 | & (neighbor_stores.carrier == "H2") |
||
914 | ), |
||
915 | "carrier", |
||
916 | ] = "H2_overground" |
||
917 | |||
918 | for i in ["name", "p_set", "q_set", "e_nom_opt", "lifetime"]: |
||
919 | neighbor_stores = neighbor_stores.drop(i, axis=1) |
||
920 | |||
921 | neighbor_stores.to_sql( |
||
922 | "egon_etrago_store", |
||
923 | engine, |
||
924 | schema="grid", |
||
925 | if_exists="append", |
||
926 | index=True, |
||
927 | index_label="store_id", |
||
928 | ) |
||
929 | |||
930 | # prepare neighboring storage_units for etrago tables |
||
931 | neighbor_storage["scn_name"] = "eGon100RE" |
||
932 | |||
933 | # Unify carrier names |
||
934 | neighbor_storage.carrier = neighbor_storage.carrier.str.replace(" ", "_") |
||
935 | |||
936 | neighbor_storage.carrier.replace( |
||
937 | {"PHS": "pumped_hydro", "hydro": "reservoir"}, inplace=True |
||
938 | ) |
||
939 | |||
940 | for i in ["name", "p_nom_opt"]: |
||
941 | neighbor_storage = neighbor_storage.drop(i, axis=1) |
||
942 | |||
943 | neighbor_storage.to_sql( |
||
944 | "egon_etrago_storage", |
||
945 | engine, |
||
946 | schema="grid", |
||
947 | if_exists="append", |
||
948 | index=True, |
||
949 | index_label="storage_id", |
||
950 | ) |
||
951 | |||
952 | # writing neighboring loads_t p_sets to etrago tables |
||
953 | |||
954 | neighbor_loads_t_etrago = pd.DataFrame( |
||
955 | columns=["scn_name", "temp_id", "p_set"], |
||
956 | index=neighbor_loads_t.columns, |
||
957 | ) |
||
958 | neighbor_loads_t_etrago["scn_name"] = "eGon100RE" |
||
959 | neighbor_loads_t_etrago["temp_id"] = 1 |
||
960 | for i in neighbor_loads_t.columns: |
||
961 | neighbor_loads_t_etrago["p_set"][i] = neighbor_loads_t[ |
||
962 | i |
||
963 | ].values.tolist() |
||
964 | |||
965 | neighbor_loads_t_etrago.to_sql( |
||
966 | "egon_etrago_load_timeseries", |
||
967 | engine, |
||
968 | schema="grid", |
||
969 | if_exists="append", |
||
970 | index=True, |
||
971 | index_label="load_id", |
||
972 | ) |
||
973 | |||
974 | # writing neighboring generator_t p_max_pu to etrago tables |
||
975 | neighbor_gens_t_etrago = pd.DataFrame( |
||
976 | columns=["scn_name", "temp_id", "p_max_pu"], |
||
977 | index=neighbor_gens_t.columns, |
||
978 | ) |
||
979 | neighbor_gens_t_etrago["scn_name"] = "eGon100RE" |
||
980 | neighbor_gens_t_etrago["temp_id"] = 1 |
||
981 | for i in neighbor_gens_t.columns: |
||
982 | neighbor_gens_t_etrago["p_max_pu"][i] = neighbor_gens_t[ |
||
983 | i |
||
984 | ].values.tolist() |
||
985 | |||
986 | neighbor_gens_t_etrago.to_sql( |
||
987 | "egon_etrago_generator_timeseries", |
||
988 | engine, |
||
989 | schema="grid", |
||
990 | if_exists="append", |
||
991 | index=True, |
||
992 | index_label="generator_id", |
||
993 | ) |
||
994 | |||
995 | # writing neighboring stores_t e_min_pu to etrago tables |
||
996 | neighbor_stores_t_etrago = pd.DataFrame( |
||
997 | columns=["scn_name", "temp_id", "e_min_pu"], |
||
998 | index=neighbor_stores_t.columns, |
||
999 | ) |
||
1000 | neighbor_stores_t_etrago["scn_name"] = "eGon100RE" |
||
1001 | neighbor_stores_t_etrago["temp_id"] = 1 |
||
1002 | for i in neighbor_stores_t.columns: |
||
1003 | neighbor_stores_t_etrago["e_min_pu"][i] = neighbor_stores_t[ |
||
1004 | i |
||
1005 | ].values.tolist() |
||
1006 | |||
1007 | neighbor_stores_t_etrago.to_sql( |
||
1008 | "egon_etrago_store_timeseries", |
||
1009 | engine, |
||
1010 | schema="grid", |
||
1011 | if_exists="append", |
||
1012 | index=True, |
||
1013 | index_label="store_id", |
||
1014 | ) |
||
1015 | |||
1016 | # writing neighboring storage_units inflow to etrago tables |
||
1017 | neighbor_storage_t_etrago = pd.DataFrame( |
||
1018 | columns=["scn_name", "temp_id", "inflow"], |
||
1019 | index=neighbor_storage_t.columns, |
||
1020 | ) |
||
1021 | neighbor_storage_t_etrago["scn_name"] = "eGon100RE" |
||
1022 | neighbor_storage_t_etrago["temp_id"] = 1 |
||
1023 | for i in neighbor_storage_t.columns: |
||
1024 | neighbor_storage_t_etrago["inflow"][i] = neighbor_storage_t[ |
||
1025 | i |
||
1026 | ].values.tolist() |
||
1027 | |||
1028 | neighbor_storage_t_etrago.to_sql( |
||
1029 | "egon_etrago_storage_timeseries", |
||
1030 | engine, |
||
1031 | schema="grid", |
||
1032 | if_exists="append", |
||
1033 | index=True, |
||
1034 | index_label="storage_id", |
||
1035 | ) |
||
1036 | |||
1037 | # writing neighboring lines_t s_max_pu to etrago tables |
||
1038 | if not network.lines_t["s_max_pu"].empty: |
||
1039 | neighbor_lines_t_etrago = pd.DataFrame( |
||
1040 | columns=["scn_name", "s_max_pu"], index=neighbor_lines_t.columns |
||
1041 | ) |
||
1042 | neighbor_lines_t_etrago["scn_name"] = "eGon100RE" |
||
1043 | |||
1044 | for i in neighbor_lines_t.columns: |
||
1045 | neighbor_lines_t_etrago["s_max_pu"][i] = neighbor_lines_t[ |
||
1046 | i |
||
1047 | ].values.tolist() |
||
1048 | |||
1049 | neighbor_lines_t_etrago.to_sql( |
||
1050 | "egon_etrago_line_timeseries", |
||
1051 | engine, |
||
1052 | schema="grid", |
||
1053 | if_exists="append", |
||
1054 | index=True, |
||
1055 | index_label="line_id", |
||
1056 | ) |
||
1134 |