Total Complexity | 76 |
Total Lines | 1716 |
Duplicated Lines | 9.67 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.heat_supply.individual_heating often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with |
||
2 | individual heat supply. |
||
3 | |||
4 | """ |
||
5 | from pathlib import Path |
||
6 | import os |
||
7 | import random |
||
8 | import time |
||
9 | |||
10 | from airflow.operators.python_operator import PythonOperator |
||
11 | from psycopg2.extensions import AsIs, register_adapter |
||
12 | from sqlalchemy import ARRAY, REAL, Column, Integer, String |
||
13 | from sqlalchemy.ext.declarative import declarative_base |
||
14 | import geopandas as gpd |
||
15 | import numpy as np |
||
16 | import pandas as pd |
||
17 | import saio |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.datasets import Dataset |
||
21 | from egon.data.datasets.district_heating_areas import ( |
||
22 | MapZensusDistrictHeatingAreas, |
||
23 | ) |
||
24 | from egon.data.datasets.electricity_demand_timeseries.cts_buildings import ( |
||
25 | calc_cts_building_profiles, |
||
26 | ) |
||
27 | from egon.data.datasets.electricity_demand_timeseries.mapping import ( |
||
28 | EgonMapZensusMvgdBuildings, |
||
29 | ) |
||
30 | from egon.data.datasets.electricity_demand_timeseries.tools import ( |
||
31 | write_table_to_postgres, |
||
32 | ) |
||
33 | from egon.data.datasets.heat_demand import EgonPetaHeat |
||
34 | from egon.data.datasets.heat_demand_timeseries.daily import ( |
||
35 | EgonDailyHeatDemandPerClimateZone, |
||
36 | EgonMapZensusClimateZones, |
||
37 | ) |
||
38 | from egon.data.datasets.heat_demand_timeseries.idp_pool import ( |
||
39 | EgonHeatTimeseries, |
||
40 | ) |
||
41 | |||
42 | # get zensus cells with district heating |
||
43 | from egon.data.datasets.zensus_mv_grid_districts import MapZensusGridDistricts |
||
44 | |||
45 | engine = db.engine() |
||
46 | Base = declarative_base() |
||
47 | |||
48 | |||
49 | class EgonEtragoTimeseriesIndividualHeating(Base): |
||
50 | __tablename__ = "egon_etrago_timeseries_individual_heating" |
||
51 | __table_args__ = {"schema": "demand"} |
||
52 | bus_id = Column(Integer, primary_key=True) |
||
53 | scenario = Column(String, primary_key=True) |
||
54 | carrier = Column(String, primary_key=True) |
||
55 | dist_aggregated_mw = Column(ARRAY(REAL)) |
||
56 | |||
57 | |||
58 | class EgonHpCapacityBuildings(Base): |
||
59 | __tablename__ = "egon_hp_capacity_buildings" |
||
60 | __table_args__ = {"schema": "demand"} |
||
61 | building_id = Column(Integer, primary_key=True) |
||
62 | scenario = Column(String, primary_key=True) |
||
63 | hp_capacity = Column(REAL) |
||
64 | |||
65 | |||
66 | View Code Duplication | class HeatPumpsPypsaEurSec(Dataset): |
|
|
|||
67 | def __init__(self, dependencies): |
||
68 | def dyn_parallel_tasks(): |
||
69 | """Dynamically generate tasks |
||
70 | |||
71 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
72 | |||
73 | The number of parallel tasks is defined via parameter |
||
74 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
75 | |||
76 | Returns |
||
77 | ------- |
||
78 | set of airflow.PythonOperators |
||
79 | The tasks. Each element is of |
||
80 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
81 | determine_hp_capacity_eGon2035_pypsa_eur_sec` |
||
82 | """ |
||
83 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
84 | "parallel_tasks", 1 |
||
85 | ) |
||
86 | # ========== Register np datatypes with SQLA ========== |
||
87 | register_adapter(np.float64, adapt_numpy_float64) |
||
88 | register_adapter(np.int64, adapt_numpy_int64) |
||
89 | # ===================================================== |
||
90 | |||
91 | with db.session_scope() as session: |
||
92 | query = ( |
||
93 | session.query( |
||
94 | MapZensusGridDistricts.bus_id, |
||
95 | ) |
||
96 | .filter( |
||
97 | MapZensusGridDistricts.zensus_population_id |
||
98 | == EgonPetaHeat.zensus_population_id |
||
99 | ) |
||
100 | .distinct(MapZensusGridDistricts.bus_id) |
||
101 | ) |
||
102 | mvgd_ids = pd.read_sql( |
||
103 | query.statement, query.session.bind, index_col=None |
||
104 | ) |
||
105 | |||
106 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
107 | |||
108 | mvgd_ids = np.array_split( |
||
109 | mvgd_ids["bus_id"].values, parallel_tasks |
||
110 | ) |
||
111 | |||
112 | # mvgd_bunch_size = divmod(MVGD_MIN_COUNT, parallel_tasks)[0] |
||
113 | tasks = set() |
||
114 | for i, bulk in enumerate(mvgd_ids): |
||
115 | tasks.add( |
||
116 | PythonOperator( |
||
117 | task_id=( |
||
118 | f"determine-hp-capacity-pypsa-eur-sec_" |
||
119 | f"mvgd_{min(bulk)}-{max(bulk)}" |
||
120 | ), |
||
121 | python_callable=determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec, |
||
122 | op_kwargs={ |
||
123 | "mvgd_ids": bulk, |
||
124 | }, |
||
125 | ) |
||
126 | ) |
||
127 | return tasks |
||
128 | |||
129 | super().__init__( |
||
130 | name="HeatPumpsPypsaEurSec", |
||
131 | version="0.0.0", |
||
132 | dependencies=dependencies, |
||
133 | tasks=( |
||
134 | create_peak_load_table, |
||
135 | create_egon_etrago_timeseries_individual_heating, |
||
136 | {*dyn_parallel_tasks()}, |
||
137 | ), |
||
138 | ) |
||
139 | |||
140 | |||
141 | View Code Duplication | class HeatPumps2035(Dataset): |
|
142 | def __init__(self, dependencies): |
||
143 | def dyn_parallel_tasks(): |
||
144 | """Dynamically generate tasks |
||
145 | |||
146 | The goal is to speed up tasks by parallelising bulks of mvgds. |
||
147 | |||
148 | The number of parallel tasks is defined via parameter |
||
149 | `parallel_tasks` in the dataset config `datasets.yml`. |
||
150 | |||
151 | Returns |
||
152 | ------- |
||
153 | set of airflow.PythonOperators |
||
154 | The tasks. Each element is of |
||
155 | :func:`egon.data.datasets.heat_supply.individual_heating. |
||
156 | determine_hp_capacity_eGon2035_pypsa_eur_sec` |
||
157 | """ |
||
158 | parallel_tasks = config.datasets()["demand_timeseries_mvgd"].get( |
||
159 | "parallel_tasks", 1 |
||
160 | ) |
||
161 | # ========== Register np datatypes with SQLA ========== |
||
162 | register_adapter(np.float64, adapt_numpy_float64) |
||
163 | register_adapter(np.int64, adapt_numpy_int64) |
||
164 | # ===================================================== |
||
165 | |||
166 | with db.session_scope() as session: |
||
167 | query = ( |
||
168 | session.query( |
||
169 | MapZensusGridDistricts.bus_id, |
||
170 | ) |
||
171 | .filter( |
||
172 | MapZensusGridDistricts.zensus_population_id |
||
173 | == EgonPetaHeat.zensus_population_id |
||
174 | ) |
||
175 | .distinct(MapZensusGridDistricts.bus_id) |
||
176 | ) |
||
177 | mvgd_ids = pd.read_sql( |
||
178 | query.statement, query.session.bind, index_col=None |
||
179 | ) |
||
180 | |||
181 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
182 | |||
183 | mvgd_ids = np.array_split( |
||
184 | mvgd_ids["bus_id"].values, parallel_tasks |
||
185 | ) |
||
186 | |||
187 | # mvgd_bunch_size = divmod(MVGD_MIN_COUNT, parallel_tasks)[0] |
||
188 | tasks = set() |
||
189 | for i, bulk in enumerate(mvgd_ids): |
||
190 | tasks.add( |
||
191 | PythonOperator( |
||
192 | task_id=( |
||
193 | f"determine-hp-capacity-eGon2035_" |
||
194 | f"mvgd_{min(bulk)}-{max(bulk)}" |
||
195 | ), |
||
196 | python_callable=determine_hp_cap_peak_load_mvgd_ts_2035, |
||
197 | op_kwargs={ |
||
198 | "mvgd_ids": bulk, |
||
199 | }, |
||
200 | ) |
||
201 | ) |
||
202 | return tasks |
||
203 | |||
204 | super().__init__( |
||
205 | name="HeatPumps2035", |
||
206 | version="0.0.0", |
||
207 | dependencies=dependencies, |
||
208 | tasks=( |
||
209 | create_hp_capacity_table, |
||
210 | delete_peak_loads_if_existing, |
||
211 | {*dyn_parallel_tasks()}, |
||
212 | ), |
||
213 | ) |
||
214 | |||
215 | |||
216 | class HeatPumps2050(Dataset): |
||
217 | def __init__(self, dependencies): |
||
218 | super().__init__( |
||
219 | name="HeatPumps2050", |
||
220 | version="0.0.0", |
||
221 | dependencies=dependencies, |
||
222 | tasks=(determine_hp_cap_buildings_eGon100RE), |
||
223 | ) |
||
224 | |||
225 | |||
226 | class BuildingHeatPeakLoads(Base): |
||
227 | __tablename__ = "egon_building_heat_peak_loads" |
||
228 | __table_args__ = {"schema": "demand"} |
||
229 | |||
230 | building_id = Column(Integer, primary_key=True) |
||
231 | scenario = Column(String, primary_key=True) |
||
232 | sector = Column(String, primary_key=True) |
||
233 | peak_load_in_w = Column(REAL) |
||
234 | |||
235 | |||
236 | def adapt_numpy_float64(numpy_float64): |
||
237 | return AsIs(numpy_float64) |
||
238 | |||
239 | |||
240 | def adapt_numpy_int64(numpy_int64): |
||
241 | return AsIs(numpy_int64) |
||
242 | |||
243 | |||
244 | def timeit(func): |
||
245 | """ |
||
246 | Decorator for measuring function's running time. |
||
247 | """ |
||
248 | |||
249 | def measure_time(*args, **kw): |
||
250 | start_time = time.time() |
||
251 | result = func(*args, **kw) |
||
252 | print( |
||
253 | "Processing time of %s(): %.2f seconds." |
||
254 | % (func.__qualname__, time.time() - start_time) |
||
255 | ) |
||
256 | return result |
||
257 | |||
258 | return measure_time |
||
259 | |||
260 | |||
261 | def cascade_per_technology( |
||
262 | heat_per_mv, |
||
263 | technologies, |
||
264 | scenario, |
||
265 | distribution_level, |
||
266 | max_size_individual_chp=0.05, |
||
267 | ): |
||
268 | |||
269 | """Add plants for individual heat. |
||
270 | Currently only on mv grid district level. |
||
271 | |||
272 | Parameters |
||
273 | ---------- |
||
274 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
275 | MV grid districts including the heat demand |
||
276 | technologies : pandas.DataFrame |
||
277 | List of supply technologies and their parameters |
||
278 | scenario : str |
||
279 | Name of the scenario |
||
280 | max_size_individual_chp : float |
||
281 | Maximum capacity of an individual chp in MW |
||
282 | Returns |
||
283 | ------- |
||
284 | mv_grid_districts : geopandas.geodataframe.GeoDataFrame |
||
285 | MV grid district which need additional individual heat supply |
||
286 | technologies : pandas.DataFrame |
||
287 | List of supply technologies and their parameters |
||
288 | append_df : pandas.DataFrame |
||
289 | List of plants per mv grid for the selected technology |
||
290 | |||
291 | """ |
||
292 | sources = config.datasets()["heat_supply"]["sources"] |
||
293 | |||
294 | tech = technologies[technologies.priority == technologies.priority.max()] |
||
295 | |||
296 | # Distribute heat pumps linear to remaining demand. |
||
297 | if tech.index == "heat_pump": |
||
298 | |||
299 | if distribution_level == "federal_state": |
||
300 | # Select target values per federal state |
||
301 | target = db.select_dataframe( |
||
302 | f""" |
||
303 | SELECT DISTINCT ON (gen) gen as state, capacity |
||
304 | FROM {sources['scenario_capacities']['schema']}. |
||
305 | {sources['scenario_capacities']['table']} a |
||
306 | JOIN {sources['federal_states']['schema']}. |
||
307 | {sources['federal_states']['table']} b |
||
308 | ON a.nuts = b.nuts |
||
309 | WHERE scenario_name = '{scenario}' |
||
310 | AND carrier = 'residential_rural_heat_pump' |
||
311 | """, |
||
312 | index_col="state", |
||
313 | ) |
||
314 | |||
315 | heat_per_mv["share"] = heat_per_mv.groupby( |
||
316 | "state" |
||
317 | ).remaining_demand.apply(lambda grp: grp / grp.sum()) |
||
318 | |||
319 | append_df = ( |
||
320 | heat_per_mv["share"] |
||
321 | .mul(target.capacity[heat_per_mv["state"]].values) |
||
322 | .reset_index() |
||
323 | ) |
||
324 | else: |
||
325 | # Select target value for Germany |
||
326 | target = db.select_dataframe( |
||
327 | f""" |
||
328 | SELECT SUM(capacity) AS capacity |
||
329 | FROM {sources['scenario_capacities']['schema']}. |
||
330 | {sources['scenario_capacities']['table']} a |
||
331 | WHERE scenario_name = '{scenario}' |
||
332 | AND carrier = 'residential_rural_heat_pump' |
||
333 | """ |
||
334 | ) |
||
335 | |||
336 | heat_per_mv["share"] = ( |
||
337 | heat_per_mv.remaining_demand |
||
338 | / heat_per_mv.remaining_demand.sum() |
||
339 | ) |
||
340 | |||
341 | append_df = ( |
||
342 | heat_per_mv["share"].mul(target.capacity[0]).reset_index() |
||
343 | ) |
||
344 | |||
345 | append_df.rename( |
||
346 | {"bus_id": "mv_grid_id", "share": "capacity"}, axis=1, inplace=True |
||
347 | ) |
||
348 | |||
349 | elif tech.index == "gas_boiler": |
||
350 | |||
351 | append_df = pd.DataFrame( |
||
352 | data={ |
||
353 | "capacity": heat_per_mv.remaining_demand.div( |
||
354 | tech.estimated_flh.values[0] |
||
355 | ), |
||
356 | "carrier": "residential_rural_gas_boiler", |
||
357 | "mv_grid_id": heat_per_mv.index, |
||
358 | "scenario": scenario, |
||
359 | } |
||
360 | ) |
||
361 | |||
362 | if append_df.size > 0: |
||
363 | append_df["carrier"] = tech.index[0] |
||
364 | heat_per_mv.loc[ |
||
365 | append_df.mv_grid_id, "remaining_demand" |
||
366 | ] -= append_df.set_index("mv_grid_id").capacity.mul( |
||
367 | tech.estimated_flh.values[0] |
||
368 | ) |
||
369 | |||
370 | heat_per_mv = heat_per_mv[heat_per_mv.remaining_demand >= 0] |
||
371 | |||
372 | technologies = technologies.drop(tech.index) |
||
373 | |||
374 | return heat_per_mv, technologies, append_df |
||
375 | |||
376 | |||
377 | def cascade_heat_supply_indiv(scenario, distribution_level, plotting=True): |
||
378 | """Assigns supply strategy for individual heating in four steps. |
||
379 | |||
380 | 1.) all small scale CHP are connected. |
||
381 | 2.) If the supply can not meet the heat demand, solar thermal collectors |
||
382 | are attached. This is not implemented yet, since individual |
||
383 | solar thermal plants are not considered in eGon2035 scenario. |
||
384 | 3.) If this is not suitable, the mv grid is also supplied by heat pumps. |
||
385 | 4.) The last option are individual gas boilers. |
||
386 | |||
387 | Parameters |
||
388 | ---------- |
||
389 | scenario : str |
||
390 | Name of scenario |
||
391 | plotting : bool, optional |
||
392 | Choose if individual heating supply is plotted. The default is True. |
||
393 | |||
394 | Returns |
||
395 | ------- |
||
396 | resulting_capacities : pandas.DataFrame |
||
397 | List of plants per mv grid |
||
398 | |||
399 | """ |
||
400 | |||
401 | sources = config.datasets()["heat_supply"]["sources"] |
||
402 | |||
403 | # Select residential heat demand per mv grid district and federal state |
||
404 | heat_per_mv = db.select_geodataframe( |
||
405 | f""" |
||
406 | SELECT d.bus_id as bus_id, SUM(demand) as demand, |
||
407 | c.vg250_lan as state, d.geom |
||
408 | FROM {sources['heat_demand']['schema']}. |
||
409 | {sources['heat_demand']['table']} a |
||
410 | JOIN {sources['map_zensus_grid']['schema']}. |
||
411 | {sources['map_zensus_grid']['table']} b |
||
412 | ON a.zensus_population_id = b.zensus_population_id |
||
413 | JOIN {sources['map_vg250_grid']['schema']}. |
||
414 | {sources['map_vg250_grid']['table']} c |
||
415 | ON b.bus_id = c.bus_id |
||
416 | JOIN {sources['mv_grids']['schema']}. |
||
417 | {sources['mv_grids']['table']} d |
||
418 | ON d.bus_id = c.bus_id |
||
419 | WHERE scenario = '{scenario}' |
||
420 | AND a.zensus_population_id NOT IN ( |
||
421 | SELECT zensus_population_id |
||
422 | FROM {sources['map_dh']['schema']}.{sources['map_dh']['table']} |
||
423 | WHERE scenario = '{scenario}') |
||
424 | GROUP BY d.bus_id, vg250_lan, geom |
||
425 | """, |
||
426 | index_col="bus_id", |
||
427 | ) |
||
428 | |||
429 | # Store geometry of mv grid |
||
430 | geom_mv = heat_per_mv.geom.centroid.copy() |
||
431 | |||
432 | # Initalize Dataframe for results |
||
433 | resulting_capacities = pd.DataFrame( |
||
434 | columns=["mv_grid_id", "carrier", "capacity"] |
||
435 | ) |
||
436 | |||
437 | # Set technology data according to |
||
438 | # http://www.wbzu.de/seminare/infopool/infopool-bhkw |
||
439 | # TODO: Add gas boilers and solar themal (eGon100RE) |
||
440 | technologies = pd.DataFrame( |
||
441 | index=["heat_pump", "gas_boiler"], |
||
442 | columns=["estimated_flh", "priority"], |
||
443 | data={"estimated_flh": [4000, 8000], "priority": [2, 1]}, |
||
444 | ) |
||
445 | |||
446 | # In the beginning, the remaining demand equals demand |
||
447 | heat_per_mv["remaining_demand"] = heat_per_mv["demand"] |
||
448 | |||
449 | # Connect new technologies, if there is still heat demand left |
||
450 | while (len(technologies) > 0) and (len(heat_per_mv) > 0): |
||
451 | # Attach new supply technology |
||
452 | heat_per_mv, technologies, append_df = cascade_per_technology( |
||
453 | heat_per_mv, technologies, scenario, distribution_level |
||
454 | ) |
||
455 | # Collect resulting capacities |
||
456 | resulting_capacities = resulting_capacities.append( |
||
457 | append_df, ignore_index=True |
||
458 | ) |
||
459 | |||
460 | if plotting: |
||
461 | plot_heat_supply(resulting_capacities) |
||
462 | |||
463 | return gpd.GeoDataFrame( |
||
464 | resulting_capacities, |
||
465 | geometry=geom_mv[resulting_capacities.mv_grid_id].values, |
||
466 | ) |
||
467 | |||
468 | |||
469 | def get_peta_demand(mvgd, scenario): |
||
470 | """ |
||
471 | Retrieve annual peta heat demand for residential buildings for either |
||
472 | eGon2035 or eGon100RE scenario. |
||
473 | |||
474 | Parameters |
||
475 | ---------- |
||
476 | mvgd : int |
||
477 | MV grid ID. |
||
478 | scenario : str |
||
479 | Possible options are eGon2035 or eGon100RE |
||
480 | |||
481 | Returns |
||
482 | ------- |
||
483 | df_peta_demand : pd.DataFrame |
||
484 | Annual residential heat demand per building and scenario. Columns of the |
||
485 | dataframe are zensus_population_id and demand. |
||
486 | |||
487 | """ |
||
488 | |||
489 | with db.session_scope() as session: |
||
490 | query = ( |
||
491 | session.query( |
||
492 | MapZensusGridDistricts.zensus_population_id, |
||
493 | EgonPetaHeat.demand, |
||
494 | ) |
||
495 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
496 | .filter( |
||
497 | MapZensusGridDistricts.zensus_population_id |
||
498 | == EgonPetaHeat.zensus_population_id |
||
499 | ) |
||
500 | .filter( |
||
501 | EgonPetaHeat.sector == "residential", |
||
502 | EgonPetaHeat.scenario == scenario, |
||
503 | ) |
||
504 | ) |
||
505 | |||
506 | df_peta_demand = pd.read_sql( |
||
507 | query.statement, query.session.bind, index_col=None |
||
508 | ) |
||
509 | |||
510 | return df_peta_demand |
||
511 | |||
512 | |||
513 | def get_residential_heat_profile_ids(mvgd): |
||
514 | """ |
||
515 | Retrieve 365 daily heat profiles ids per residential building and selected |
||
516 | mvgd. |
||
517 | |||
518 | Parameters |
||
519 | ---------- |
||
520 | mvgd : int |
||
521 | ID of MVGD |
||
522 | |||
523 | Returns |
||
524 | ------- |
||
525 | df_profiles_ids : pd.DataFrame |
||
526 | Residential daily heat profile ID's per building. Columns of the dataframe |
||
527 | are zensus_population_id, building_id, selected_idp_profiles, buildings |
||
528 | and day_of_year. |
||
529 | |||
530 | """ |
||
531 | with db.session_scope() as session: |
||
532 | query = ( |
||
533 | session.query( |
||
534 | MapZensusGridDistricts.zensus_population_id, |
||
535 | EgonHeatTimeseries.building_id, |
||
536 | EgonHeatTimeseries.selected_idp_profiles, |
||
537 | ) |
||
538 | .filter(MapZensusGridDistricts.bus_id == mvgd) |
||
539 | .filter( |
||
540 | MapZensusGridDistricts.zensus_population_id |
||
541 | == EgonHeatTimeseries.zensus_population_id |
||
542 | ) |
||
543 | ) |
||
544 | |||
545 | df_profiles_ids = pd.read_sql( |
||
546 | query.statement, query.session.bind, index_col=None |
||
547 | ) |
||
548 | # Add building count per cell |
||
549 | df_profiles_ids = pd.merge( |
||
550 | left=df_profiles_ids, |
||
551 | right=df_profiles_ids.groupby("zensus_population_id")["building_id"] |
||
552 | .count() |
||
553 | .rename("buildings"), |
||
554 | left_on="zensus_population_id", |
||
555 | right_index=True, |
||
556 | ) |
||
557 | |||
558 | # unnest array of ids per building |
||
559 | df_profiles_ids = df_profiles_ids.explode("selected_idp_profiles") |
||
560 | # add day of year column by order of list |
||
561 | df_profiles_ids["day_of_year"] = ( |
||
562 | df_profiles_ids.groupby("building_id").cumcount() + 1 |
||
563 | ) |
||
564 | return df_profiles_ids |
||
565 | |||
566 | |||
567 | def get_daily_profiles(profile_ids): |
||
568 | """ |
||
569 | Parameters |
||
570 | ---------- |
||
571 | profile_ids : list(int) |
||
572 | daily heat profile ID's |
||
573 | |||
574 | Returns |
||
575 | ------- |
||
576 | df_profiles : pd.DataFrame |
||
577 | Residential daily heat profiles. Columns of the dataframe are idp, house, |
||
578 | temperature_class and hour. |
||
579 | |||
580 | """ |
||
581 | saio.register_schema("demand", db.engine()) |
||
582 | from saio.demand import egon_heat_idp_pool |
||
583 | |||
584 | with db.session_scope() as session: |
||
585 | query = session.query(egon_heat_idp_pool).filter( |
||
586 | egon_heat_idp_pool.index.in_(profile_ids) |
||
587 | ) |
||
588 | |||
589 | df_profiles = pd.read_sql( |
||
590 | query.statement, query.session.bind, index_col="index" |
||
591 | ) |
||
592 | |||
593 | # unnest array of profile values per id |
||
594 | df_profiles = df_profiles.explode("idp") |
||
595 | # Add column for hour of day |
||
596 | df_profiles["hour"] = df_profiles.groupby(axis=0, level=0).cumcount() + 1 |
||
597 | |||
598 | return df_profiles |
||
599 | |||
600 | |||
601 | def get_daily_demand_share(mvgd): |
||
602 | """per census cell |
||
603 | Parameters |
||
604 | ---------- |
||
605 | mvgd : int |
||
606 | MVGD id |
||
607 | |||
608 | Returns |
||
609 | ------- |
||
610 | df_daily_demand_share : pd.DataFrame |
||
611 | Daily annual demand share per cencus cell. Columns of the dataframe |
||
612 | are zensus_population_id, day_of_year and daily_demand_share. |
||
613 | |||
614 | """ |
||
615 | |||
616 | with db.session_scope() as session: |
||
617 | query = session.query( |
||
618 | MapZensusGridDistricts.zensus_population_id, |
||
619 | EgonDailyHeatDemandPerClimateZone.day_of_year, |
||
620 | EgonDailyHeatDemandPerClimateZone.daily_demand_share, |
||
621 | ).filter( |
||
622 | EgonMapZensusClimateZones.climate_zone |
||
623 | == EgonDailyHeatDemandPerClimateZone.climate_zone, |
||
624 | MapZensusGridDistricts.zensus_population_id |
||
625 | == EgonMapZensusClimateZones.zensus_population_id, |
||
626 | MapZensusGridDistricts.bus_id == mvgd, |
||
627 | ) |
||
628 | |||
629 | df_daily_demand_share = pd.read_sql( |
||
630 | query.statement, query.session.bind, index_col=None |
||
631 | ) |
||
632 | return df_daily_demand_share |
||
633 | |||
634 | |||
635 | def calc_residential_heat_profiles_per_mvgd(mvgd, scenario): |
||
636 | """ |
||
637 | Gets residential heat profiles per building in MV grid for either eGon2035 |
||
638 | or eGon100RE scenario. |
||
639 | |||
640 | Parameters |
||
641 | ---------- |
||
642 | mvgd : int |
||
643 | MV grid ID. |
||
644 | scenario : str |
||
645 | Possible options are eGon2035 or eGon100RE. |
||
646 | |||
647 | Returns |
||
648 | -------- |
||
649 | pd.DataFrame |
||
650 | Heat demand profiles of buildings. Columns are: |
||
651 | * zensus_population_id : int |
||
652 | Zensus cell ID building is in. |
||
653 | * building_id : int |
||
654 | ID of building. |
||
655 | * day_of_year : int |
||
656 | Day of the year (1 - 365). |
||
657 | * hour : int |
||
658 | Hour of the day (1 - 24). |
||
659 | * demand_ts : float |
||
660 | Building's residential heat demand in MW, for specified hour |
||
661 | of the year (specified through columns `day_of_year` and |
||
662 | `hour`). |
||
663 | """ |
||
664 | |||
665 | columns = [ |
||
666 | "zensus_population_id", |
||
667 | "building_id", |
||
668 | "day_of_year", |
||
669 | "hour", |
||
670 | "demand_ts", |
||
671 | ] |
||
672 | |||
673 | df_peta_demand = get_peta_demand(mvgd, scenario) |
||
674 | |||
675 | # TODO maybe return empty dataframe |
||
676 | if df_peta_demand.empty: |
||
677 | logger.info(f"No demand for MVGD: {mvgd}") |
||
678 | return pd.DataFrame(columns=columns) |
||
679 | |||
680 | df_profiles_ids = get_residential_heat_profile_ids(mvgd) |
||
681 | |||
682 | if df_profiles_ids.empty: |
||
683 | logger.info(f"No profiles for MVGD: {mvgd}") |
||
684 | return pd.DataFrame(columns=columns) |
||
685 | |||
686 | df_profiles = get_daily_profiles( |
||
687 | df_profiles_ids["selected_idp_profiles"].unique() |
||
688 | ) |
||
689 | |||
690 | df_daily_demand_share = get_daily_demand_share(mvgd) |
||
691 | |||
692 | # Merge profile ids to peta demand by zensus_population_id |
||
693 | df_profile_merge = pd.merge( |
||
694 | left=df_peta_demand, right=df_profiles_ids, on="zensus_population_id" |
||
695 | ) |
||
696 | |||
697 | # Merge daily demand to daily profile ids by zensus_population_id and day |
||
698 | df_profile_merge = pd.merge( |
||
699 | left=df_profile_merge, |
||
700 | right=df_daily_demand_share, |
||
701 | on=["zensus_population_id", "day_of_year"], |
||
702 | ) |
||
703 | |||
704 | # Merge daily profiles by profile id |
||
705 | df_profile_merge = pd.merge( |
||
706 | left=df_profile_merge, |
||
707 | right=df_profiles[["idp", "hour"]], |
||
708 | left_on="selected_idp_profiles", |
||
709 | right_index=True, |
||
710 | ) |
||
711 | |||
712 | # Scale profiles |
||
713 | df_profile_merge["demand_ts"] = ( |
||
714 | df_profile_merge["idp"] |
||
715 | .mul(df_profile_merge["daily_demand_share"]) |
||
716 | .mul(df_profile_merge["demand"]) |
||
717 | .div(df_profile_merge["buildings"]) |
||
718 | ) |
||
719 | |||
720 | return df_profile_merge.loc[:, columns] |
||
721 | |||
722 | |||
723 | View Code Duplication | def plot_heat_supply(resulting_capacities): |
|
724 | |||
725 | from matplotlib import pyplot as plt |
||
726 | |||
727 | mv_grids = db.select_geodataframe( |
||
728 | """ |
||
729 | SELECT * FROM grid.egon_mv_grid_district |
||
730 | """, |
||
731 | index_col="bus_id", |
||
732 | ) |
||
733 | |||
734 | for c in ["CHP", "heat_pump"]: |
||
735 | mv_grids[c] = ( |
||
736 | resulting_capacities[resulting_capacities.carrier == c] |
||
737 | .set_index("mv_grid_id") |
||
738 | .capacity |
||
739 | ) |
||
740 | |||
741 | fig, ax = plt.subplots(1, 1) |
||
742 | mv_grids.boundary.plot(linewidth=0.2, ax=ax, color="black") |
||
743 | mv_grids.plot( |
||
744 | ax=ax, |
||
745 | column=c, |
||
746 | cmap="magma_r", |
||
747 | legend=True, |
||
748 | legend_kwds={ |
||
749 | "label": f"Installed {c} in MW", |
||
750 | "orientation": "vertical", |
||
751 | }, |
||
752 | ) |
||
753 | plt.savefig(f"plots/individual_heat_supply_{c}.png", dpi=300) |
||
754 | |||
755 | |||
756 | def get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
757 | scenario, mv_grid_id |
||
758 | ): |
||
759 | """ |
||
760 | Returns zensus cell IDs with decentral heating systems in given MV grid. |
||
761 | |||
762 | As cells with district heating differ between scenarios, this is also |
||
763 | depending on the scenario. |
||
764 | |||
765 | Parameters |
||
766 | ----------- |
||
767 | scenario : str |
||
768 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
769 | mv_grid_id : int |
||
770 | ID of MV grid. |
||
771 | |||
772 | Returns |
||
773 | -------- |
||
774 | pd.Index(int) |
||
775 | Zensus cell IDs (as int) of buildings with decentral heating systems in |
||
776 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
777 | used in a query. |
||
778 | |||
779 | """ |
||
780 | |||
781 | # get zensus cells in grid |
||
782 | zensus_population_ids = db.select_dataframe( |
||
783 | f""" |
||
784 | SELECT zensus_population_id |
||
785 | FROM boundaries.egon_map_zensus_grid_districts |
||
786 | WHERE bus_id = {mv_grid_id} |
||
787 | """, |
||
788 | index_col=None, |
||
789 | ).zensus_population_id.values |
||
790 | |||
791 | # maybe use adapter |
||
792 | # convert to pd.Index (otherwise type is np.int64, which will for some |
||
793 | # reason throw an error when used in a query) |
||
794 | zensus_population_ids = pd.Index(zensus_population_ids) |
||
795 | |||
796 | # get zensus cells with district heating |
||
797 | with db.session_scope() as session: |
||
798 | query = session.query( |
||
799 | MapZensusDistrictHeatingAreas.zensus_population_id, |
||
800 | ).filter( |
||
801 | MapZensusDistrictHeatingAreas.scenario == scenario, |
||
802 | MapZensusDistrictHeatingAreas.zensus_population_id.in_( |
||
803 | zensus_population_ids |
||
804 | ), |
||
805 | ) |
||
806 | |||
807 | cells_with_dh = pd.read_sql( |
||
808 | query.statement, query.session.bind, index_col=None |
||
809 | ).zensus_population_id.values |
||
810 | |||
811 | # remove zensus cells with district heating |
||
812 | zensus_population_ids = zensus_population_ids.drop( |
||
813 | cells_with_dh, errors="ignore" |
||
814 | ) |
||
815 | return pd.Index(zensus_population_ids) |
||
816 | |||
817 | |||
818 | def get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
819 | scenario, mv_grid_id |
||
820 | ): |
||
821 | """ |
||
822 | Returns building IDs of buildings with decentral residential heat demand in |
||
823 | given MV grid. |
||
824 | |||
825 | As cells with district heating differ between scenarios, this is also |
||
826 | depending on the scenario. |
||
827 | |||
828 | Parameters |
||
829 | ----------- |
||
830 | scenario : str |
||
831 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
832 | mv_grid_id : int |
||
833 | ID of MV grid. |
||
834 | |||
835 | Returns |
||
836 | -------- |
||
837 | pd.Index(int) |
||
838 | Building IDs (as int) of buildings with decentral heating system in |
||
839 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
840 | used in a query. |
||
841 | |||
842 | """ |
||
843 | # get zensus cells with decentral heating |
||
844 | zensus_population_ids = ( |
||
845 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
846 | scenario, mv_grid_id |
||
847 | ) |
||
848 | ) |
||
849 | |||
850 | # get buildings with decentral heat demand |
||
851 | saio.register_schema("demand", engine) |
||
852 | from saio.demand import egon_heat_timeseries_selected_profiles |
||
853 | |||
854 | with db.session_scope() as session: |
||
855 | query = session.query( |
||
856 | egon_heat_timeseries_selected_profiles.building_id, |
||
857 | ).filter( |
||
858 | egon_heat_timeseries_selected_profiles.zensus_population_id.in_( |
||
859 | zensus_population_ids |
||
860 | ) |
||
861 | ) |
||
862 | |||
863 | buildings_with_heat_demand = pd.read_sql( |
||
864 | query.statement, query.session.bind, index_col=None |
||
865 | ).building_id.values |
||
866 | |||
867 | return pd.Index(buildings_with_heat_demand) |
||
868 | |||
869 | |||
870 | def get_cts_buildings_with_decentral_heat_demand_in_mv_grid( |
||
871 | scenario, mv_grid_id |
||
872 | ): |
||
873 | """ |
||
874 | Returns building IDs of buildings with decentral CTS heat demand in |
||
875 | given MV grid. |
||
876 | |||
877 | As cells with district heating differ between scenarios, this is also |
||
878 | depending on the scenario. |
||
879 | |||
880 | Parameters |
||
881 | ----------- |
||
882 | scenario : str |
||
883 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
884 | mv_grid_id : int |
||
885 | ID of MV grid. |
||
886 | |||
887 | Returns |
||
888 | -------- |
||
889 | pd.Index(int) |
||
890 | Building IDs (as int) of buildings with decentral heating system in |
||
891 | given MV grid. Type is pandas Index to avoid errors later on when it is |
||
892 | used in a query. |
||
893 | |||
894 | """ |
||
895 | |||
896 | # get zensus cells with decentral heating |
||
897 | zensus_population_ids = ( |
||
898 | get_zensus_cells_with_decentral_heat_demand_in_mv_grid( |
||
899 | scenario, mv_grid_id |
||
900 | ) |
||
901 | ) |
||
902 | |||
903 | # get buildings with decentral heat demand |
||
904 | with db.session_scope() as session: |
||
905 | query = session.query(EgonMapZensusMvgdBuildings.building_id).filter( |
||
906 | EgonMapZensusMvgdBuildings.sector == "cts", |
||
907 | EgonMapZensusMvgdBuildings.zensus_population_id.in_( |
||
908 | zensus_population_ids |
||
909 | ), |
||
910 | ) |
||
911 | |||
912 | buildings_with_heat_demand = pd.read_sql( |
||
913 | query.statement, query.session.bind, index_col=None |
||
914 | ).building_id.values |
||
915 | |||
916 | return pd.Index(buildings_with_heat_demand) |
||
917 | |||
918 | |||
919 | def get_buildings_with_decentral_heat_demand_in_mv_grid(mvgd, scenario): |
||
920 | """ |
||
921 | Returns building IDs of buildings with decentral heat demand in |
||
922 | given MV grid. |
||
923 | |||
924 | As cells with district heating differ between scenarios, this is also |
||
925 | depending on the scenario. |
||
926 | |||
927 | Parameters |
||
928 | ----------- |
||
929 | mv_grid_id : int |
||
930 | ID of MV grid. |
||
931 | scenario : str |
||
932 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
933 | |||
934 | Returns |
||
935 | -------- |
||
936 | pd.Index(int) |
||
937 | Building IDs (as int) of buildings with decentral heating system in given |
||
938 | MV grid. Type is pandas Index to avoid errors later on when it is |
||
939 | used in a query. |
||
940 | |||
941 | """ |
||
942 | # get residential buildings with decentral heating systems |
||
943 | buildings_decentral_heating_res = ( |
||
944 | get_residential_buildings_with_decentral_heat_demand_in_mv_grid( |
||
945 | scenario, mvgd |
||
946 | ) |
||
947 | ) |
||
948 | |||
949 | # get CTS buildings with decentral heating systems |
||
950 | buildings_decentral_heating_cts = ( |
||
951 | get_cts_buildings_with_decentral_heat_demand_in_mv_grid(scenario, mvgd) |
||
952 | ) |
||
953 | |||
954 | # merge residential and CTS buildings |
||
955 | buildings_decentral_heating = buildings_decentral_heating_res.append( |
||
956 | buildings_decentral_heating_cts |
||
957 | ).unique() |
||
958 | |||
959 | return buildings_decentral_heating |
||
960 | |||
961 | |||
962 | def get_total_heat_pump_capacity_of_mv_grid(scenario, mv_grid_id): |
||
963 | """ |
||
964 | Returns total heat pump capacity per grid that was previously defined |
||
965 | (by NEP or pypsa-eur-sec). |
||
966 | |||
967 | Parameters |
||
968 | ----------- |
||
969 | scenario : str |
||
970 | Name of scenario. Can be either "eGon2035" or "eGon100RE". |
||
971 | mv_grid_id : int |
||
972 | ID of MV grid. |
||
973 | |||
974 | Returns |
||
975 | -------- |
||
976 | float |
||
977 | Total heat pump capacity in MW in given MV grid. |
||
978 | |||
979 | """ |
||
980 | from egon.data.datasets.heat_supply import EgonIndividualHeatingSupply |
||
981 | |||
982 | with db.session_scope() as session: |
||
983 | query = ( |
||
984 | session.query( |
||
985 | EgonIndividualHeatingSupply.mv_grid_id, |
||
986 | EgonIndividualHeatingSupply.capacity, |
||
987 | ) |
||
988 | .filter(EgonIndividualHeatingSupply.scenario == scenario) |
||
989 | .filter(EgonIndividualHeatingSupply.carrier == "heat_pump") |
||
990 | .filter(EgonIndividualHeatingSupply.mv_grid_id == mv_grid_id) |
||
991 | ) |
||
992 | |||
993 | hp_cap_mv_grid = pd.read_sql( |
||
994 | query.statement, query.session.bind, index_col="mv_grid_id" |
||
995 | ) |
||
996 | if hp_cap_mv_grid.empty: |
||
997 | return 0.0 |
||
998 | else: |
||
999 | return hp_cap_mv_grid.capacity.values[0] |
||
1000 | |||
1001 | |||
1002 | def get_heat_peak_demand_per_building(scenario, building_ids): |
||
1003 | """""" |
||
1004 | |||
1005 | with db.session_scope() as session: |
||
1006 | query = ( |
||
1007 | session.query( |
||
1008 | BuildingHeatPeakLoads.building_id, |
||
1009 | BuildingHeatPeakLoads.peak_load_in_w, |
||
1010 | ).filter(BuildingHeatPeakLoads.scenario == scenario) |
||
1011 | # .filter(BuildingHeatPeakLoads.sector == "both") |
||
1012 | .filter(BuildingHeatPeakLoads.building_id.in_(building_ids)) |
||
1013 | ) |
||
1014 | |||
1015 | df_heat_peak_demand = pd.read_sql( |
||
1016 | query.statement, query.session.bind, index_col=None |
||
1017 | ) |
||
1018 | |||
1019 | # TODO remove check |
||
1020 | if df_heat_peak_demand.duplicated("building_id").any(): |
||
1021 | raise ValueError("Duplicate building_id") |
||
1022 | |||
1023 | # convert to series and from W to MW |
||
1024 | df_heat_peak_demand = df_heat_peak_demand.set_index("building_id").loc[ |
||
1025 | :, "peak_load_in_w"] * 1e6 |
||
1026 | return df_heat_peak_demand |
||
1027 | |||
1028 | |||
1029 | def determine_minimum_hp_capacity_per_building( |
||
1030 | peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
1031 | ): |
||
1032 | """ |
||
1033 | Determines minimum required heat pump capacity. |
||
1034 | |||
1035 | Parameters |
||
1036 | ---------- |
||
1037 | peak_heat_demand : pd.Series |
||
1038 | Series with peak heat demand per building in MW. Index contains the |
||
1039 | building ID. |
||
1040 | flexibility_factor : float |
||
1041 | Factor to overdimension the heat pump to allow for some flexible |
||
1042 | dispatch in times of high heat demand. Per default, a factor of 24/18 |
||
1043 | is used, to take into account |
||
1044 | |||
1045 | Returns |
||
1046 | ------- |
||
1047 | pd.Series |
||
1048 | Pandas series with minimum required heat pump capacity per building in |
||
1049 | MW. |
||
1050 | |||
1051 | """ |
||
1052 | return peak_heat_demand * flexibility_factor / cop |
||
1053 | |||
1054 | |||
1055 | def determine_buildings_with_hp_in_mv_grid( |
||
1056 | hp_cap_mv_grid, min_hp_cap_per_building |
||
1057 | ): |
||
1058 | """ |
||
1059 | Distributes given total heat pump capacity to buildings based on their peak |
||
1060 | heat demand. |
||
1061 | |||
1062 | Parameters |
||
1063 | ----------- |
||
1064 | hp_cap_mv_grid : float |
||
1065 | Total heat pump capacity in MW in given MV grid. |
||
1066 | min_hp_cap_per_building : pd.Series |
||
1067 | Pandas series with minimum required heat pump capacity per building |
||
1068 | in MW. |
||
1069 | |||
1070 | Returns |
||
1071 | ------- |
||
1072 | pd.Index(int) |
||
1073 | Building IDs (as int) of buildings to get heat demand time series for. |
||
1074 | |||
1075 | """ |
||
1076 | building_ids = min_hp_cap_per_building.index |
||
1077 | |||
1078 | # get buildings with PV to give them a higher priority when selecting |
||
1079 | # buildings a heat pump will be allocated to |
||
1080 | saio.register_schema("supply", engine) |
||
1081 | from saio.supply import egon_power_plants_pv_roof_building |
||
1082 | |||
1083 | with db.session_scope() as session: |
||
1084 | query = session.query( |
||
1085 | egon_power_plants_pv_roof_building.building_id |
||
1086 | ).filter( |
||
1087 | egon_power_plants_pv_roof_building.building_id.in_(building_ids) |
||
1088 | ) |
||
1089 | |||
1090 | buildings_with_pv = pd.read_sql( |
||
1091 | query.statement, query.session.bind, index_col=None |
||
1092 | ).building_id.values |
||
1093 | # set different weights for buildings with PV and without PV |
||
1094 | weight_with_pv = 1.5 |
||
1095 | weight_without_pv = 1.0 |
||
1096 | weights = pd.concat( |
||
1097 | [ |
||
1098 | pd.DataFrame( |
||
1099 | {"weight": weight_without_pv}, |
||
1100 | index=building_ids.drop(buildings_with_pv, errors="ignore"), |
||
1101 | ), |
||
1102 | pd.DataFrame({"weight": weight_with_pv}, index=buildings_with_pv), |
||
1103 | ] |
||
1104 | ) |
||
1105 | # normalise weights (probability needs to add up to 1) |
||
1106 | weights.weight = weights.weight / weights.weight.sum() |
||
1107 | |||
1108 | # get random order at which buildings are chosen |
||
1109 | np.random.seed(db.credentials()["--random-seed"]) |
||
1110 | buildings_with_hp_order = np.random.choice( |
||
1111 | weights.index, |
||
1112 | size=len(weights), |
||
1113 | replace=False, |
||
1114 | p=weights.weight.values, |
||
1115 | ) |
||
1116 | |||
1117 | # select buildings until HP capacity in MV grid is reached (some rest |
||
1118 | # capacity will remain) |
||
1119 | hp_cumsum = min_hp_cap_per_building.loc[buildings_with_hp_order].cumsum() |
||
1120 | buildings_with_hp = hp_cumsum[hp_cumsum <= hp_cap_mv_grid].index |
||
1121 | |||
1122 | # choose random heat pumps until remaining heat pumps are larger than |
||
1123 | # remaining heat pump capacity |
||
1124 | remaining_hp_cap = ( |
||
1125 | hp_cap_mv_grid - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1126 | ) |
||
1127 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1128 | building_ids.drop(buildings_with_hp) |
||
1129 | ] |
||
1130 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1131 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1132 | ].index |
||
1133 | while len(possible_buildings) > 0: |
||
1134 | random.seed(db.credentials()["--random-seed"]) |
||
1135 | new_hp_building = random.choice(possible_buildings) |
||
1136 | # add new building to building with HP |
||
1137 | buildings_with_hp = buildings_with_hp.append( |
||
1138 | pd.Index([new_hp_building]) |
||
1139 | ) |
||
1140 | # determine if there are still possible buildings |
||
1141 | remaining_hp_cap = ( |
||
1142 | hp_cap_mv_grid |
||
1143 | - min_hp_cap_per_building.loc[buildings_with_hp].sum() |
||
1144 | ) |
||
1145 | min_cap_buildings_wo_hp = min_hp_cap_per_building.loc[ |
||
1146 | building_ids.drop(buildings_with_hp) |
||
1147 | ] |
||
1148 | possible_buildings = min_cap_buildings_wo_hp[ |
||
1149 | min_cap_buildings_wo_hp <= remaining_hp_cap |
||
1150 | ].index |
||
1151 | |||
1152 | return buildings_with_hp |
||
1153 | |||
1154 | |||
1155 | def desaggregate_hp_capacity(min_hp_cap_per_building, hp_cap_mv_grid): |
||
1156 | """ |
||
1157 | Desaggregates the required total heat pump capacity to buildings. |
||
1158 | |||
1159 | All buildings are previously assigned a minimum required heat pump |
||
1160 | capacity. If the total heat pump capacity exceeds this, larger heat pumps |
||
1161 | are assigned. |
||
1162 | |||
1163 | Parameters |
||
1164 | ------------ |
||
1165 | min_hp_cap_per_building : pd.Series |
||
1166 | Pandas series with minimum required heat pump capacity per building |
||
1167 | in MW. |
||
1168 | hp_cap_mv_grid : float |
||
1169 | Total heat pump capacity in MW in given MV grid. |
||
1170 | |||
1171 | Returns |
||
1172 | -------- |
||
1173 | pd.Series |
||
1174 | Pandas series with heat pump capacity per building in MW. |
||
1175 | |||
1176 | """ |
||
1177 | # distribute remaining capacity to all buildings with HP depending on |
||
1178 | # installed HP capacity |
||
1179 | |||
1180 | allocated_cap = min_hp_cap_per_building.sum() |
||
1181 | remaining_cap = hp_cap_mv_grid - allocated_cap |
||
1182 | |||
1183 | fac = remaining_cap / allocated_cap |
||
1184 | hp_cap_per_building = ( |
||
1185 | min_hp_cap_per_building * fac + min_hp_cap_per_building |
||
1186 | ) |
||
1187 | hp_cap_per_building.index.name = "building_id" |
||
1188 | |||
1189 | return hp_cap_per_building |
||
1190 | |||
1191 | |||
1192 | def determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1193 | peak_heat_demand, building_ids |
||
1194 | ): |
||
1195 | """ |
||
1196 | Determines minimum required HP capacity in MV grid in MW as input for |
||
1197 | pypsa-eur-sec. |
||
1198 | |||
1199 | Parameters |
||
1200 | ---------- |
||
1201 | peak_heat_demand : pd.Series |
||
1202 | Series with peak heat demand per building in MW. Index contains the |
||
1203 | building ID. |
||
1204 | building_ids : pd.Index(int) |
||
1205 | Building IDs (as int) of buildings with decentral heating system in |
||
1206 | given MV grid. |
||
1207 | |||
1208 | Returns |
||
1209 | -------- |
||
1210 | float |
||
1211 | Minimum required HP capacity in MV grid in MW. |
||
1212 | |||
1213 | """ |
||
1214 | if len(building_ids) > 0: |
||
1215 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1216 | # determine minimum required heat pump capacity per building |
||
1217 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1218 | peak_heat_demand |
||
1219 | ) |
||
1220 | return min_hp_cap_buildings.sum() |
||
1221 | else: |
||
1222 | return 0.0 |
||
1223 | |||
1224 | |||
1225 | def determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1226 | mv_grid_id, peak_heat_demand, building_ids |
||
1227 | ): |
||
1228 | """ |
||
1229 | Determines which buildings in the MV grid will have a HP (buildings with PV |
||
1230 | rooftop are more likely to be assigned) in the eGon2035 scenario, as well |
||
1231 | as their respective HP capacity in MW. |
||
1232 | |||
1233 | Parameters |
||
1234 | ----------- |
||
1235 | mv_grid_id : int |
||
1236 | ID of MV grid. |
||
1237 | peak_heat_demand : pd.Series |
||
1238 | Series with peak heat demand per building in MW. Index contains the |
||
1239 | building ID. |
||
1240 | building_ids : pd.Index(int) |
||
1241 | Building IDs (as int) of buildings with decentral heating system in |
||
1242 | given MV grid. |
||
1243 | |||
1244 | """ |
||
1245 | |||
1246 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1247 | "eGon2035", mv_grid_id |
||
1248 | ) |
||
1249 | |||
1250 | if len(building_ids) > 0 and hp_cap_grid > 0.0: |
||
1251 | peak_heat_demand = peak_heat_demand.loc[building_ids] |
||
1252 | |||
1253 | # determine minimum required heat pump capacity per building |
||
1254 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1255 | peak_heat_demand |
||
1256 | ) |
||
1257 | |||
1258 | # select buildings that will have a heat pump |
||
1259 | buildings_with_hp = determine_buildings_with_hp_in_mv_grid( |
||
1260 | hp_cap_grid, min_hp_cap_buildings |
||
1261 | ) |
||
1262 | |||
1263 | # distribute total heat pump capacity to all buildings with HP |
||
1264 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1265 | min_hp_cap_buildings.loc[buildings_with_hp], hp_cap_grid |
||
1266 | ) |
||
1267 | |||
1268 | return hp_cap_per_building.rename("hp_capacity") |
||
1269 | |||
1270 | else: |
||
1271 | return pd.Series().rename("hp_capacity") |
||
1272 | |||
1273 | |||
1274 | def determine_hp_cap_buildings_eGon100RE_per_mvgd(mv_grid_id): |
||
1275 | """ |
||
1276 | Determines HP capacity per building in eGon100RE scenario. |
||
1277 | |||
1278 | In eGon100RE scenario all buildings without district heating get a heat |
||
1279 | pump. |
||
1280 | |||
1281 | Returns |
||
1282 | -------- |
||
1283 | pd.Series |
||
1284 | Pandas series with heat pump capacity per building in MW. |
||
1285 | |||
1286 | """ |
||
1287 | |||
1288 | hp_cap_grid = get_total_heat_pump_capacity_of_mv_grid( |
||
1289 | "eGon100RE", mv_grid_id |
||
1290 | ) |
||
1291 | |||
1292 | if hp_cap_grid > 0.0: |
||
1293 | |||
1294 | # get buildings with decentral heating systems |
||
1295 | building_ids = get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1296 | mv_grid_id, scenario="eGon100RE" |
||
1297 | ) |
||
1298 | |||
1299 | # TODO get peak demand from db |
||
1300 | df_peak_heat_demand = get_heat_peak_demand_per_building( |
||
1301 | "eGon100RE", building_ids |
||
1302 | ) |
||
1303 | |||
1304 | # determine minimum required heat pump capacity per building |
||
1305 | min_hp_cap_buildings = determine_minimum_hp_capacity_per_building( |
||
1306 | df_peak_heat_demand, flexibility_factor=24 / 18, cop=1.7 |
||
1307 | ) |
||
1308 | |||
1309 | # distribute total heat pump capacity to all buildings with HP |
||
1310 | hp_cap_per_building = desaggregate_hp_capacity( |
||
1311 | min_hp_cap_buildings, hp_cap_grid |
||
1312 | ) |
||
1313 | |||
1314 | return hp_cap_per_building.rename("hp_capacity") |
||
1315 | else: |
||
1316 | return pd.Series().rename("hp_capacity") |
||
1317 | |||
1318 | |||
1319 | def determine_hp_cap_buildings_eGon100RE(): |
||
1320 | """ |
||
1321 | Main function to determine HP capacity per building in eGon100RE scenario. |
||
1322 | |||
1323 | """ |
||
1324 | |||
1325 | with db.session_scope() as session: |
||
1326 | query = ( |
||
1327 | session.query( |
||
1328 | MapZensusGridDistricts.bus_id, |
||
1329 | ) |
||
1330 | .filter( |
||
1331 | MapZensusGridDistricts.zensus_population_id |
||
1332 | == EgonPetaHeat.zensus_population_id |
||
1333 | ) |
||
1334 | .distinct(MapZensusGridDistricts.bus_id) |
||
1335 | ) |
||
1336 | mvgd_ids = pd.read_sql(query.statement, query.session.bind, index_col=None) |
||
1337 | mvgd_ids = mvgd_ids.sort_values("bus_id").reset_index(drop=True) |
||
1338 | |||
1339 | df_hp_cap_per_building_100RE_db = pd.DataFrame() |
||
1340 | |||
1341 | for mvgd_id in mvgd_ids: |
||
1342 | |||
1343 | hp_cap_per_building_100RE = ( |
||
1344 | determine_hp_cap_buildings_eGon100RE_per_mvgd(mvgd_id) |
||
1345 | ) |
||
1346 | |||
1347 | if not hp_cap_per_building_100RE.empty: |
||
1348 | df_hp_cap_per_building_100RE_db = pd.concat( |
||
1349 | [ |
||
1350 | df_hp_cap_per_building_100RE_db, |
||
1351 | hp_cap_per_building_100RE.reset_index(), |
||
1352 | ], |
||
1353 | axis=0, |
||
1354 | ) |
||
1355 | |||
1356 | df_hp_cap_per_building_100RE_db["scenario"] = "eGon100RE" |
||
1357 | write_table_to_postgres( |
||
1358 | df_hp_cap_per_building_100RE_db, |
||
1359 | EgonHpCapacityBuildings, |
||
1360 | engine=engine, |
||
1361 | drop=False, |
||
1362 | ) |
||
1363 | |||
1364 | |||
1365 | def aggregate_residential_and_cts_profiles(mvgd, scenario): |
||
1366 | """ |
||
1367 | Gets residential and CTS heat demand profiles per building and aggregates them. |
||
1368 | |||
1369 | Parameters |
||
1370 | ---------- |
||
1371 | mvgd : int |
||
1372 | MV grid ID. |
||
1373 | scenario : str |
||
1374 | Possible options are eGon2035 or eGon100RE. |
||
1375 | |||
1376 | Returns |
||
1377 | -------- |
||
1378 | pd.DataFrame |
||
1379 | Table of demand profile per building. Column names are building IDs and index |
||
1380 | is hour of the year as int (0-8759). |
||
1381 | |||
1382 | """ |
||
1383 | # ############### get residential heat demand profiles ############### |
||
1384 | df_heat_ts = calc_residential_heat_profiles_per_mvgd( |
||
1385 | mvgd=mvgd, scenario=scenario |
||
1386 | ) |
||
1387 | |||
1388 | # pivot to allow aggregation with CTS profiles |
||
1389 | df_heat_ts = df_heat_ts.pivot( |
||
1390 | index=["day_of_year", "hour"], |
||
1391 | columns="building_id", |
||
1392 | values="demand_ts", |
||
1393 | ) |
||
1394 | df_heat_ts = df_heat_ts.sort_index().reset_index(drop=True) |
||
1395 | |||
1396 | # ############### get CTS heat demand profiles ############### |
||
1397 | heat_demand_cts_ts = calc_cts_building_profiles( |
||
1398 | bus_ids=[mvgd], |
||
1399 | scenario=scenario, |
||
1400 | sector="heat", |
||
1401 | ) |
||
1402 | |||
1403 | # ############# aggregate residential and CTS demand profiles ############# |
||
1404 | df_heat_ts = pd.concat([df_heat_ts, heat_demand_cts_ts], axis=1) |
||
1405 | |||
1406 | df_heat_ts = df_heat_ts.groupby(axis=1, level=0).sum() |
||
1407 | |||
1408 | return df_heat_ts |
||
1409 | |||
1410 | |||
1411 | def export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db): |
||
1412 | """""" |
||
1413 | |||
1414 | df_peak_loads_db = df_peak_loads_db.melt( |
||
1415 | id_vars="building_id", |
||
1416 | var_name="scenario", |
||
1417 | value_name="peak_load_in_w", |
||
1418 | ) |
||
1419 | df_peak_loads_db["sector"] = "residential+cts" |
||
1420 | # From MW to W |
||
1421 | df_peak_loads_db["peak_load_in_w"] = ( |
||
1422 | df_peak_loads_db["peak_load_in_w"] * 1e6 |
||
1423 | ) |
||
1424 | write_table_to_postgres( |
||
1425 | df_peak_loads_db, BuildingHeatPeakLoads, engine=engine |
||
1426 | ) |
||
1427 | |||
1428 | columns = { |
||
1429 | column.key: column.type |
||
1430 | for column in EgonEtragoTimeseriesIndividualHeating.__table__.columns |
||
1431 | } |
||
1432 | df_heat_mvgd_ts_db = df_heat_mvgd_ts_db.loc[:, columns.keys()] |
||
1433 | |||
1434 | df_heat_mvgd_ts_db.to_sql( |
||
1435 | name=EgonEtragoTimeseriesIndividualHeating.__table__.name, |
||
1436 | schema=EgonEtragoTimeseriesIndividualHeating.__table__.schema, |
||
1437 | con=engine, |
||
1438 | if_exists="append", |
||
1439 | method="multi", |
||
1440 | index=False, |
||
1441 | dtype=columns, |
||
1442 | ) |
||
1443 | |||
1444 | |||
1445 | def export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec): |
||
1446 | |||
1447 | df_hp_min_cap_mv_grid_pypsa_eur_sec.index.name = "mvgd_id" |
||
1448 | df_hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1449 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_frame( |
||
1450 | name="min_hp_capacity" |
||
1451 | ).reset_index() |
||
1452 | ) |
||
1453 | |||
1454 | folder = Path(".") / "input-pypsa-eur-sec" |
||
1455 | file = folder / "minimum_hp_capacity_mv_grid_2035.csv" |
||
1456 | # Create the folder, if it does not exist already |
||
1457 | if not os.path.exists(folder): |
||
1458 | os.mkdir(folder) |
||
1459 | # TODO check append |
||
1460 | if not file.is_file(): |
||
1461 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv(file) |
||
1462 | # TODO outsource into separate task incl delete file if clearing |
||
1463 | else: |
||
1464 | df_hp_min_cap_mv_grid_pypsa_eur_sec.to_csv( |
||
1465 | file, mode="a", header=False |
||
1466 | ) |
||
1467 | |||
1468 | |||
1469 | def determine_hp_cap_peak_load_mvgd_ts_2035(mvgd_ids): |
||
1470 | """ |
||
1471 | Main function to determine HP capacity per building in eGon2035 scenario. |
||
1472 | Further, creates heat demand time series for all buildings with heat pumps |
||
1473 | in MV grid, as well as for all buildings with gas boilers, used in eTraGo. |
||
1474 | |||
1475 | Parameters |
||
1476 | ----------- |
||
1477 | mvgd_ids : list(int) |
||
1478 | List of MV grid IDs to determine data for. |
||
1479 | |||
1480 | """ |
||
1481 | |||
1482 | # ========== Register np datatypes with SQLA ========== |
||
1483 | register_adapter(np.float64, adapt_numpy_float64) |
||
1484 | register_adapter(np.int64, adapt_numpy_int64) |
||
1485 | # ===================================================== |
||
1486 | |||
1487 | df_peak_loads_db = pd.DataFrame() |
||
1488 | df_hp_cap_per_building_2035_db = pd.DataFrame() |
||
1489 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1490 | |||
1491 | for mvgd in mvgd_ids: |
||
1492 | |||
1493 | logger.debug(f"MVGD={mvgd} | Start") |
||
1494 | |||
1495 | # ############# aggregate residential and CTS demand profiles ##### |
||
1496 | |||
1497 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1498 | mvgd, scenario="eGon2035" |
||
1499 | ) |
||
1500 | |||
1501 | # ##################### determine peak loads ################### |
||
1502 | logger.debug(f"MVGD={mvgd} | Determine peak loads.") |
||
1503 | |||
1504 | peak_load = df_heat_ts.max().rename("eGon2035") |
||
1505 | |||
1506 | # ######## determine HP capacity per building ######### |
||
1507 | logger.debug(f"MVGD={mvgd} | Determine HP capacities.") |
||
1508 | |||
1509 | buildings_decentral_heating = ( |
||
1510 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1511 | mvgd, scenario="eGon2035" |
||
1512 | ) |
||
1513 | ) |
||
1514 | hp_cap_per_building_2035 = ( |
||
1515 | determine_hp_cap_buildings_eGon2035_per_mvgd( |
||
1516 | mvgd, |
||
1517 | peak_load, |
||
1518 | buildings_decentral_heating, |
||
1519 | ) |
||
1520 | ) |
||
1521 | buildings_gas_2035 = pd.Index(buildings_decentral_heating).drop( |
||
1522 | hp_cap_per_building_2035.index |
||
1523 | ) |
||
1524 | |||
1525 | # ################ aggregated heat profiles ################### |
||
1526 | logger.debug(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1527 | |||
1528 | df_mvgd_ts_2035_hp = df_heat_ts.loc[ |
||
1529 | :, |
||
1530 | hp_cap_per_building_2035.index, |
||
1531 | ].sum(axis=1) |
||
1532 | |||
1533 | # heat demand time series for buildings with gas boiler |
||
1534 | df_mvgd_ts_2035_gas = df_heat_ts.loc[:, buildings_gas_2035].sum(axis=1) |
||
1535 | |||
1536 | df_heat_mvgd_ts = pd.DataFrame( |
||
1537 | data={ |
||
1538 | "carrier": ["heat_pump", "CH4"], |
||
1539 | "bus_id": mvgd, |
||
1540 | "scenario": ["eGon2035", "eGon2035"], |
||
1541 | "dist_aggregated_mw": [ |
||
1542 | df_mvgd_ts_2035_hp.to_list(), |
||
1543 | df_mvgd_ts_2035_gas.to_list(), |
||
1544 | ], |
||
1545 | } |
||
1546 | ) |
||
1547 | |||
1548 | # ################ collect results ################## |
||
1549 | logger.debug(f"MVGD={mvgd} | Collect results.") |
||
1550 | |||
1551 | df_peak_loads_db = pd.concat( |
||
1552 | [df_peak_loads_db, peak_load.reset_index()], |
||
1553 | axis=0, |
||
1554 | ignore_index=True, |
||
1555 | ) |
||
1556 | |||
1557 | df_heat_mvgd_ts_db = pd.concat( |
||
1558 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1559 | ) |
||
1560 | |||
1561 | df_hp_cap_per_building_2035_db = pd.concat( |
||
1562 | [ |
||
1563 | df_hp_cap_per_building_2035_db, |
||
1564 | hp_cap_per_building_2035.reset_index(), |
||
1565 | ], |
||
1566 | axis=0, |
||
1567 | ) |
||
1568 | |||
1569 | # ################ export to db ####################### |
||
1570 | logger.debug(" Write data to db.") |
||
1571 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db) |
||
1572 | |||
1573 | df_hp_cap_per_building_2035_db["scenario"] = "eGon2035" |
||
1574 | write_table_to_postgres( |
||
1575 | df_hp_cap_per_building_2035_db, |
||
1576 | EgonHpCapacityBuildings, |
||
1577 | engine=engine, |
||
1578 | drop=False, |
||
1579 | ) |
||
1580 | |||
1581 | |||
1582 | def determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec(mvgd_ids): |
||
1583 | """ |
||
1584 | Main function to determine minimum required HP capacity in MV for pypsa-eur-sec. |
||
1585 | Further, creates heat demand time series for all buildings with heat pumps in MV |
||
1586 | grid in eGon100RE scenario, used in eTraGo. |
||
1587 | |||
1588 | Parameters |
||
1589 | ----------- |
||
1590 | mvgd_ids : list(int) |
||
1591 | List of MV grid IDs to determine data for. |
||
1592 | |||
1593 | """ |
||
1594 | |||
1595 | # ========== Register np datatypes with SQLA ========== |
||
1596 | register_adapter(np.float64, adapt_numpy_float64) |
||
1597 | register_adapter(np.int64, adapt_numpy_int64) |
||
1598 | # ===================================================== |
||
1599 | |||
1600 | df_peak_loads_db = pd.DataFrame() |
||
1601 | df_heat_mvgd_ts_db = pd.DataFrame() |
||
1602 | df_hp_min_cap_mv_grid_pypsa_eur_sec = pd.Series() |
||
1603 | |||
1604 | for mvgd in mvgd_ids: |
||
1605 | |||
1606 | logger.debug(f"MVGD={mvgd} | Start") |
||
1607 | |||
1608 | # ############# aggregate residential and CTS demand profiles ##### |
||
1609 | |||
1610 | df_heat_ts = aggregate_residential_and_cts_profiles( |
||
1611 | mvgd, scenario="eGon100RE" |
||
1612 | ) |
||
1613 | |||
1614 | # ##################### determine peak loads ################### |
||
1615 | logger.debug(f"MVGD={mvgd} | Determine peak loads.") |
||
1616 | |||
1617 | peak_load_100RE = df_heat_ts.max().rename("eGon100RE") |
||
1618 | |||
1619 | # ######## determine minimum HP capacity pypsa-eur-sec ########### |
||
1620 | buildings_decentral_heating = ( |
||
1621 | get_buildings_with_decentral_heat_demand_in_mv_grid( |
||
1622 | mvgd, scenario="eGon100RE" |
||
1623 | ) |
||
1624 | ) |
||
1625 | hp_min_cap_mv_grid_pypsa_eur_sec = ( |
||
1626 | determine_min_hp_cap_buildings_pypsa_eur_sec( |
||
1627 | peak_load_100RE, |
||
1628 | buildings_decentral_heating, |
||
1629 | ) |
||
1630 | ) |
||
1631 | |||
1632 | # ################ aggregated heat profiles ################### |
||
1633 | logger.debug(f"MVGD={mvgd} | Aggregate heat profiles.") |
||
1634 | |||
1635 | df_mvgd_ts_hp = df_heat_ts.loc[ |
||
1636 | :, |
||
1637 | buildings_decentral_heating, |
||
1638 | ].sum(axis=1) |
||
1639 | |||
1640 | df_heat_mvgd_ts = pd.DataFrame( |
||
1641 | data={ |
||
1642 | "carrier": "heat_pump", |
||
1643 | "bus_id": mvgd, |
||
1644 | "scenario": "eGon100RE", |
||
1645 | "dist_aggregated_mw": [df_mvgd_ts_hp.to_list()], |
||
1646 | } |
||
1647 | ) |
||
1648 | |||
1649 | # ################ collect results ################## |
||
1650 | logger.debug(f"MVGD={mvgd} | Collect results.") |
||
1651 | |||
1652 | df_peak_loads_db = pd.concat( |
||
1653 | [df_peak_loads_db, peak_load_100RE.reset_index()], |
||
1654 | axis=0, |
||
1655 | ignore_index=True, |
||
1656 | ) |
||
1657 | |||
1658 | df_heat_mvgd_ts_db = pd.concat( |
||
1659 | [df_heat_mvgd_ts_db, df_heat_mvgd_ts], axis=0, ignore_index=True |
||
1660 | ) |
||
1661 | |||
1662 | df_hp_min_cap_mv_grid_pypsa_eur_sec.loc[ |
||
1663 | mvgd |
||
1664 | ] = hp_min_cap_mv_grid_pypsa_eur_sec |
||
1665 | |||
1666 | # ################ export to db and csv ###################### |
||
1667 | logger.debug(" Write data to db.") |
||
1668 | export_to_db(df_peak_loads_db, df_heat_mvgd_ts_db) |
||
1669 | |||
1670 | logger.debug("Write pypsa-eur-sec min HP capacities to csv.") |
||
1671 | export_min_cap_to_csv(df_hp_min_cap_mv_grid_pypsa_eur_sec) |
||
1672 | |||
1673 | |||
1674 | def create_peak_load_table(): |
||
1675 | |||
1676 | BuildingHeatPeakLoads.__table__.drop(bind=engine, checkfirst=True) |
||
1677 | BuildingHeatPeakLoads.__table__.create(bind=engine, checkfirst=True) |
||
1678 | |||
1679 | |||
1680 | def create_hp_capacity_table(): |
||
1681 | |||
1682 | EgonHpCapacityBuildings.__table__.drop(bind=engine, checkfirst=True) |
||
1683 | EgonHpCapacityBuildings.__table__.create(bind=engine, checkfirst=True) |
||
1684 | |||
1685 | |||
1686 | def create_egon_etrago_timeseries_individual_heating(): |
||
1687 | |||
1688 | EgonEtragoTimeseriesIndividualHeating.__table__.drop( |
||
1689 | bind=engine, checkfirst=True |
||
1690 | ) |
||
1691 | EgonEtragoTimeseriesIndividualHeating.__table__.create( |
||
1692 | bind=engine, checkfirst=True |
||
1693 | ) |
||
1694 | |||
1695 | |||
1696 | def delete_peak_loads_if_existing(): |
||
1697 | """Remove all entries""" |
||
1698 | with db.session_scope() as session: |
||
1699 | # Buses |
||
1700 | session.query(BuildingHeatPeakLoads).filter( |
||
1701 | BuildingHeatPeakLoads.scenario == "eGon2035" |
||
1702 | ).delete(synchronize_session=False) |
||
1703 | |||
1704 | |||
1705 | if __name__ == "__main__": |
||
1706 | |||
1707 | determine_hp_cap_buildings_eGon100RE() |
||
1708 | |||
1709 | create_peak_load_table() |
||
1710 | create_egon_etrago_timeseries_individual_heating() |
||
1711 | determine_hp_cap_peak_load_mvgd_ts_pypsa_eur_sec([1556]) |
||
1712 | |||
1713 | create_hp_capacity_table() |
||
1714 | delete_peak_loads_if_existing() |
||
1715 | determine_hp_cap_peak_load_mvgd_ts_2035([1556]) |
||
1716 |