1
|
|
|
"""The central module containing all code dealing with processing |
2
|
|
|
timeseries data using demandregio |
3
|
|
|
|
4
|
|
|
""" |
5
|
|
|
|
6
|
|
|
from sqlalchemy import ARRAY, Column, Float, Integer, String |
7
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
8
|
|
|
import geopandas as gpd |
9
|
|
|
import numpy as np |
10
|
|
|
import pandas as pd |
11
|
|
|
|
12
|
|
|
from egon.data import db |
13
|
|
|
from egon.data.datasets.electricity_demand.temporal import calc_load_curve |
14
|
|
|
import egon.data.config |
15
|
|
|
|
16
|
|
|
Base = declarative_base() |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def identify_voltage_level(df): |
20
|
|
|
|
21
|
|
|
"""Identify the voltage_level of a grid component based on its peak load and |
22
|
|
|
defined thresholds. |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
Parameters |
26
|
|
|
---------- |
27
|
|
|
df : pandas.DataFrame |
28
|
|
|
Data frame containing information about peak loads |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
Returns |
32
|
|
|
------- |
33
|
|
|
pandas.DataFrame |
34
|
|
|
Data frame with an additional column with voltage level |
35
|
|
|
|
36
|
|
|
""" |
37
|
|
|
|
38
|
|
|
df["voltage_level"] = np.nan |
39
|
|
|
|
40
|
|
|
# Identify voltage_level for every demand area taking thresholds into account which were defined in the eGon project |
41
|
|
|
df.loc[df["peak_load"] <= 0.1, "voltage_level"] = 7 |
42
|
|
|
df.loc[df["peak_load"] > 0.1, "voltage_level"] = 6 |
43
|
|
|
df.loc[df["peak_load"] > 0.2, "voltage_level"] = 5 |
44
|
|
|
df.loc[df["peak_load"] > 5.5, "voltage_level"] = 4 |
45
|
|
|
df.loc[df["peak_load"] > 20, "voltage_level"] = 3 |
46
|
|
|
df.loc[df["peak_load"] > 120, "voltage_level"] = 1 |
47
|
|
|
|
48
|
|
|
return df |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
def identify_bus(load_curves, demand_area): |
52
|
|
|
"""Identify the grid connection point for a consumer by determining its grid level |
53
|
|
|
based on the time series' peak load and the spatial intersection to mv |
54
|
|
|
grid districts or ehv voronoi cells. |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
Parameters |
58
|
|
|
---------- |
59
|
|
|
load_curves : pandas.DataFrame |
60
|
|
|
Demand timeseries per demand area (e.g. osm landuse area, industrial site) |
61
|
|
|
|
62
|
|
|
demand_area: pandas.DataFrame |
63
|
|
|
Dataframe with id and geometry of areas where an industrial demand |
64
|
|
|
is assigned to, such as osm landuse areas or industrial sites. |
65
|
|
|
|
66
|
|
|
Returns |
67
|
|
|
------- |
68
|
|
|
pandas.DataFrame |
69
|
|
|
Aggregated industrial demand timeseries per bus |
70
|
|
|
|
71
|
|
|
""" |
72
|
|
|
|
73
|
|
|
sources = egon.data.config.datasets()["electrical_load_curves_industry"][ |
74
|
|
|
"sources" |
75
|
|
|
] |
76
|
|
|
|
77
|
|
|
# Select mv griddistrict |
78
|
|
|
griddistrict = db.select_geodataframe( |
79
|
|
|
f"""SELECT bus_id, geom FROM |
80
|
|
|
{sources['egon_mv_grid_district']['schema']}. |
81
|
|
|
{sources['egon_mv_grid_district']['table']}""", |
82
|
|
|
geom_col="geom", |
83
|
|
|
epsg=3035, |
84
|
|
|
) |
85
|
|
|
|
86
|
|
|
# Initialize dataframe to identify peak load per demand area (e.g. osm landuse area or industrial site) |
87
|
|
|
peak = pd.DataFrame(columns=["id", "peak_load"]) |
88
|
|
|
peak["id"] = load_curves.max(axis=0).index |
89
|
|
|
peak["peak_load"] = load_curves.max(axis=0).values |
90
|
|
|
|
91
|
|
|
peak = identify_voltage_level(peak) |
92
|
|
|
|
93
|
|
|
# Assign bus_id to demand area by merging landuse and peak df |
94
|
|
|
peak = pd.merge(demand_area, peak, right_on="id", left_index=True) |
95
|
|
|
|
96
|
|
|
# Identify all demand areas connected to HVMV buses |
97
|
|
|
peak_hv = peak[peak["voltage_level"] > 1] |
98
|
|
|
|
99
|
|
|
# Perform a spatial join between the centroid of the demand area and mv grid districts to identify grid connection point |
100
|
|
|
peak_hv["centroid"] = peak_hv["geom"].centroid |
101
|
|
|
peak_hv = peak_hv.set_geometry("centroid") |
102
|
|
|
peak_hv_c = gpd.sjoin(peak_hv, griddistrict, how="inner", op="intersects") |
103
|
|
|
|
104
|
|
|
# Perform a spatial join between the polygon of the demand area and mv grid districts to ensure every area got assign to a bus |
105
|
|
|
peak_hv_p = peak_hv[~peak_hv.isin(peak_hv_c)].dropna().set_geometry("geom") |
106
|
|
|
peak_hv_p = gpd.sjoin( |
107
|
|
|
peak_hv_p, griddistrict, how="inner", op="intersects" |
108
|
|
|
).drop_duplicates(subset=["id"]) |
109
|
|
|
|
110
|
|
|
# Bring both dataframes together |
111
|
|
|
peak_bus = peak_hv_c.append(peak_hv_p, ignore_index=True) |
112
|
|
|
|
113
|
|
|
# Select ehv voronoi |
114
|
|
|
ehv_voronoi = db.select_geodataframe( |
115
|
|
|
f"""SELECT bus_id, geom FROM |
116
|
|
|
{sources['egon_mv_grid_district']['schema']}. |
117
|
|
|
{sources['egon_mv_grid_district']['table']}""", |
118
|
|
|
geom_col="geom", |
119
|
|
|
epsg=3035, |
120
|
|
|
) |
121
|
|
|
|
122
|
|
|
# Identify all demand areas connected to EHV buses |
123
|
|
|
peak_ehv = peak[peak["voltage_level"] == 1] |
124
|
|
|
|
125
|
|
|
# Perform a spatial join between the centroid of the demand area and ehv voronoi to identify grid connection point |
126
|
|
|
peak_ehv["centroid"] = peak_ehv["geom"].centroid |
127
|
|
|
peak_ehv = peak_ehv.set_geometry("centroid") |
128
|
|
|
peak_ehv = gpd.sjoin(peak_ehv, ehv_voronoi, how="inner", op="intersects") |
129
|
|
|
|
130
|
|
|
# Bring both dataframes together |
131
|
|
|
peak_bus = peak_bus.append(peak_ehv, ignore_index=True) |
132
|
|
|
|
133
|
|
|
# Combine dataframes to bring loadcurves and bus id together |
134
|
|
|
curves_da = pd.merge( |
135
|
|
|
load_curves.T, |
136
|
|
|
peak_bus[["bus_id", "id", "geom"]], |
137
|
|
|
left_index=True, |
138
|
|
|
right_on="id", |
139
|
|
|
) |
140
|
|
|
|
141
|
|
|
return curves_da |
142
|
|
|
|
143
|
|
|
|
144
|
|
|
def calc_load_curves_ind_osm(scenario): |
145
|
|
|
"""Temporal disaggregate electrical demand per osm industrial landuse area. |
146
|
|
|
|
147
|
|
|
|
148
|
|
|
Parameters |
149
|
|
|
---------- |
150
|
|
|
scenario : str |
151
|
|
|
Scenario name. |
152
|
|
|
|
153
|
|
|
Returns |
154
|
|
|
------- |
155
|
|
|
pandas.DataFrame |
156
|
|
|
Demand timeseries of industry allocated to osm landuse areas and aggregated |
157
|
|
|
per substation id |
158
|
|
|
|
159
|
|
|
""" |
160
|
|
|
|
161
|
|
|
sources = egon.data.config.datasets()["electrical_load_curves_industry"][ |
162
|
|
|
"sources" |
163
|
|
|
] |
164
|
|
|
|
165
|
|
|
# Select demands per industrial branch and osm landuse area |
166
|
|
|
demands_osm_area = db.select_dataframe( |
167
|
|
|
f"""SELECT osm_id, wz, demand |
168
|
|
|
FROM {sources['osm']['schema']}. |
169
|
|
|
{sources['osm']['table']} |
170
|
|
|
WHERE scenario = '{scenario}' |
171
|
|
|
AND demand > 0 |
172
|
|
|
""" |
173
|
|
|
).set_index(["osm_id", "wz"]) |
174
|
|
|
|
175
|
|
|
# Select industrial landuse polygons as demand area |
176
|
|
|
demand_area = db.select_geodataframe( |
177
|
|
|
f"""SELECT id, geom FROM |
178
|
|
|
{sources['osm_landuse']['schema']}. |
179
|
|
|
{sources['osm_landuse']['table']} |
180
|
|
|
WHERE sector = 3 """, |
181
|
|
|
index_col="id", |
182
|
|
|
geom_col="geom", |
183
|
|
|
epsg=3035, |
184
|
|
|
) |
185
|
|
|
|
186
|
|
|
# Calculate shares of industrial branches per osm area |
187
|
|
|
osm_share_wz = demands_osm_area.groupby("osm_id").apply( |
188
|
|
|
lambda grp: grp / grp.sum() |
189
|
|
|
) |
190
|
|
|
|
191
|
|
|
osm_share_wz.reset_index(inplace=True) |
192
|
|
|
|
193
|
|
|
share_wz_transpose = pd.DataFrame( |
194
|
|
|
index=osm_share_wz.osm_id.unique(), columns=osm_share_wz.wz.unique() |
195
|
|
|
) |
196
|
|
|
share_wz_transpose.index.rename("osm_id", inplace=True) |
197
|
|
|
|
198
|
|
|
for wz in share_wz_transpose.columns: |
199
|
|
|
share_wz_transpose[wz] = ( |
200
|
|
|
osm_share_wz[osm_share_wz.wz == wz].set_index("osm_id").demand |
201
|
|
|
) |
202
|
|
|
|
203
|
|
|
# Rename columns to bring it in line with demandregio data |
204
|
|
|
share_wz_transpose.rename(columns={1718: 17}, inplace=True) |
205
|
|
|
|
206
|
|
|
# Calculate industrial annual demand per osm area |
207
|
|
|
annual_demand_osm = demands_osm_area.groupby("osm_id").demand.sum() |
208
|
|
|
|
209
|
|
|
# Return electrical load curves per osm industrial landuse area |
210
|
|
|
load_curves = calc_load_curve(share_wz_transpose, annual_demand_osm) |
211
|
|
|
|
212
|
|
|
curves_da = identify_bus(load_curves, demand_area) |
213
|
|
|
|
214
|
|
|
# Group all load curves per bus |
215
|
|
|
curves_bus = ( |
216
|
|
|
curves_da.drop(["id"], axis=1).fillna(0).groupby("bus_id").sum() |
217
|
|
|
) |
218
|
|
|
|
219
|
|
|
# Initalize pandas.DataFrame for export to database |
220
|
|
|
load_ts_df = pd.DataFrame(index=curves_bus.index, columns=["p_set"]) |
221
|
|
|
|
222
|
|
|
# Insert time series data to df as an array |
223
|
|
|
load_ts_df.p_set = curves_bus.values.tolist() |
224
|
|
|
|
225
|
|
|
# Create Dataframe to store time series individually |
226
|
|
|
curves_individual_interim = ( |
227
|
|
|
curves_da.drop(["bus_id", "geom"], axis=1).fillna(0) |
228
|
|
|
).set_index("id") |
229
|
|
|
curves_individual = curves_da[["id", "bus_id"]] |
230
|
|
|
curves_individual["p_set"] = curves_individual_interim.values.tolist() |
231
|
|
|
curves_individual["scn_name"] = scenario |
232
|
|
|
curves_individual = curves_individual.rename( |
233
|
|
|
columns={"id": "osm_id"} |
234
|
|
|
).set_index(["osm_id", "scn_name"]) |
235
|
|
|
|
236
|
|
|
return load_ts_df, curves_individual |
237
|
|
|
|
238
|
|
|
|
239
|
|
View Code Duplication |
def insert_osm_ind_load(): |
|
|
|
|
240
|
|
|
"""Inserts electrical industry loads assigned to osm landuse areas to the database |
241
|
|
|
|
242
|
|
|
Returns |
243
|
|
|
------- |
244
|
|
|
None. |
245
|
|
|
|
246
|
|
|
""" |
247
|
|
|
|
248
|
|
|
targets = egon.data.config.datasets()["electrical_load_curves_industry"][ |
249
|
|
|
"targets" |
250
|
|
|
] |
251
|
|
|
|
252
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
253
|
|
|
|
254
|
|
|
# Delete existing data from database |
255
|
|
|
db.execute_sql( |
256
|
|
|
f""" |
257
|
|
|
DELETE FROM |
258
|
|
|
{targets['osm_load']['schema']}.{targets['osm_load']['table']} |
259
|
|
|
WHERE scn_name = '{scenario}' |
260
|
|
|
""" |
261
|
|
|
) |
262
|
|
|
|
263
|
|
|
db.execute_sql( |
264
|
|
|
f""" |
265
|
|
|
DELETE FROM |
266
|
|
|
{targets['osm_load_individual']['schema']}.{targets['osm_load_individual']['table']} |
267
|
|
|
WHERE scn_name = '{scenario}' |
268
|
|
|
""" |
269
|
|
|
) |
270
|
|
|
|
271
|
|
|
# Calculate cts load curves per mv substation (hvmv bus) |
272
|
|
|
data, curves_individual = calc_load_curves_ind_osm(scenario) |
273
|
|
|
data.index = data.index.rename("bus") |
274
|
|
|
data["scn_name"] = scenario |
275
|
|
|
|
276
|
|
|
data.set_index(["scn_name"], inplace=True, append=True) |
277
|
|
|
|
278
|
|
|
# Insert into database |
279
|
|
|
data.to_sql( |
280
|
|
|
targets["osm_load"]["table"], |
281
|
|
|
schema=targets["osm_load"]["schema"], |
282
|
|
|
con=db.engine(), |
283
|
|
|
if_exists="append", |
284
|
|
|
) |
285
|
|
|
|
286
|
|
|
curves_individual["peak_load"] = np.array( |
287
|
|
|
curves_individual["p_set"].values.tolist() |
288
|
|
|
).max(axis=1) |
289
|
|
|
curves_individual["demand"] = np.array( |
290
|
|
|
curves_individual["p_set"].values.tolist() |
291
|
|
|
).sum(axis=1) |
292
|
|
|
curves_individual = identify_voltage_level(curves_individual) |
293
|
|
|
|
294
|
|
|
curves_individual.to_sql( |
295
|
|
|
targets["osm_load_individual"]["table"], |
296
|
|
|
schema=targets["osm_load_individual"]["schema"], |
297
|
|
|
con=db.engine(), |
298
|
|
|
if_exists="append", |
299
|
|
|
) |
300
|
|
|
|
301
|
|
|
|
302
|
|
|
def calc_load_curves_ind_sites(scenario): |
303
|
|
|
"""Temporal disaggregation of load curves per industrial site and industrial subsector. |
304
|
|
|
|
305
|
|
|
|
306
|
|
|
Parameters |
307
|
|
|
---------- |
308
|
|
|
scenario : str |
309
|
|
|
Scenario name. |
310
|
|
|
|
311
|
|
|
Returns |
312
|
|
|
------- |
313
|
|
|
pandas.DataFrame |
314
|
|
|
Demand timeseries of industry allocated to industrial sites and aggregated |
315
|
|
|
per substation id and industrial subsector |
316
|
|
|
|
317
|
|
|
""" |
318
|
|
|
sources = egon.data.config.datasets()["electrical_load_curves_industry"][ |
319
|
|
|
"sources" |
320
|
|
|
] |
321
|
|
|
|
322
|
|
|
# Select demands per industrial site including the subsector information |
323
|
|
|
demands_ind_sites = db.select_dataframe( |
324
|
|
|
f"""SELECT industrial_sites_id, wz, demand |
325
|
|
|
FROM {sources['sites']['schema']}. |
326
|
|
|
{sources['sites']['table']} |
327
|
|
|
WHERE scenario = '{scenario}' |
328
|
|
|
AND demand > 0 |
329
|
|
|
""" |
330
|
|
|
).set_index(["industrial_sites_id"]) |
331
|
|
|
|
332
|
|
|
# Select industrial sites as demand_areas from database |
333
|
|
|
|
334
|
|
|
demand_area = db.select_geodataframe( |
335
|
|
|
f"""SELECT id, geom FROM |
336
|
|
|
{sources['sites_geom']['schema']}. |
337
|
|
|
{sources['sites_geom']['table']}""", |
338
|
|
|
index_col="id", |
339
|
|
|
geom_col="geom", |
340
|
|
|
epsg=3035, |
341
|
|
|
) |
342
|
|
|
|
343
|
|
|
# Replace entries to bring it in line with demandregio's subsector definitions |
344
|
|
|
demands_ind_sites.replace(1718, 17, inplace=True) |
345
|
|
|
share_wz_sites = demands_ind_sites.copy() |
346
|
|
|
|
347
|
|
|
# Create additional df on wz_share per industrial site, which is always set to one |
348
|
|
|
# as the industrial demand per site is subsector specific |
349
|
|
|
|
350
|
|
|
share_wz_sites.demand = 1 |
351
|
|
|
share_wz_sites.reset_index(inplace=True) |
352
|
|
|
|
353
|
|
|
share_transpose = pd.DataFrame( |
354
|
|
|
index=share_wz_sites.industrial_sites_id.unique(), |
355
|
|
|
columns=share_wz_sites.wz.unique(), |
356
|
|
|
) |
357
|
|
|
share_transpose.index.rename("industrial_sites_id", inplace=True) |
358
|
|
|
for wz in share_transpose.columns: |
359
|
|
|
share_transpose[wz] = ( |
360
|
|
|
share_wz_sites[share_wz_sites.wz == wz] |
361
|
|
|
.set_index("industrial_sites_id") |
362
|
|
|
.demand |
363
|
|
|
) |
364
|
|
|
|
365
|
|
|
load_curves = calc_load_curve(share_transpose, demands_ind_sites["demand"]) |
366
|
|
|
|
367
|
|
|
curves_da = identify_bus(load_curves, demand_area) |
368
|
|
|
|
369
|
|
|
curves_da = pd.merge( |
370
|
|
|
curves_da, demands_ind_sites.wz, left_on="id", right_index=True |
371
|
|
|
) |
372
|
|
|
|
373
|
|
|
# Group all load curves per bus and wz |
374
|
|
|
curves_bus = ( |
375
|
|
|
curves_da.fillna(0) |
376
|
|
|
.groupby(["bus_id", "wz"]) |
377
|
|
|
.sum() |
378
|
|
|
.drop(["id"], axis=1) |
379
|
|
|
) |
380
|
|
|
|
381
|
|
|
# Initalize pandas.DataFrame for pf table load timeseries |
382
|
|
|
load_ts_df = pd.DataFrame(index=curves_bus.index, columns=["p_set"]) |
383
|
|
|
|
384
|
|
|
# Insert data for pf load timeseries table |
385
|
|
|
load_ts_df.p_set = curves_bus.values.tolist() |
386
|
|
|
|
387
|
|
|
# Create Dataframe to store time series individually |
388
|
|
|
curves_individual_interim = ( |
389
|
|
|
curves_da.drop(["bus_id", "geom", "wz"], axis=1).fillna(0) |
390
|
|
|
).set_index("id") |
391
|
|
|
curves_individual = curves_da[["id", "bus_id"]] |
392
|
|
|
curves_individual["p_set"] = curves_individual_interim.values.tolist() |
393
|
|
|
curves_individual["scn_name"] = scenario |
394
|
|
|
curves_individual = curves_individual.merge( |
395
|
|
|
curves_da[["wz", "id"]], left_on="id", right_on="id" |
396
|
|
|
) |
397
|
|
|
curves_individual = curves_individual.rename( |
398
|
|
|
columns={"id": "site_id"} |
399
|
|
|
).set_index(["site_id", "scn_name"]) |
400
|
|
|
|
401
|
|
|
return load_ts_df, curves_individual |
402
|
|
|
|
403
|
|
|
|
404
|
|
View Code Duplication |
def insert_sites_ind_load(): |
|
|
|
|
405
|
|
|
"""Inserts electrical industry loads assigned to osm landuse areas to the database |
406
|
|
|
|
407
|
|
|
Returns |
408
|
|
|
------- |
409
|
|
|
None. |
410
|
|
|
|
411
|
|
|
""" |
412
|
|
|
|
413
|
|
|
targets = egon.data.config.datasets()["electrical_load_curves_industry"][ |
414
|
|
|
"targets" |
415
|
|
|
] |
416
|
|
|
|
417
|
|
|
for scenario in ["eGon2035", "eGon100RE"]: |
418
|
|
|
|
419
|
|
|
# Delete existing data from database |
420
|
|
|
db.execute_sql( |
421
|
|
|
f""" |
422
|
|
|
DELETE FROM |
423
|
|
|
{targets['sites_load']['schema']}.{targets['sites_load']['table']} |
424
|
|
|
WHERE scn_name = '{scenario}' |
425
|
|
|
""" |
426
|
|
|
) |
427
|
|
|
|
428
|
|
|
# Delete existing data from database |
429
|
|
|
db.execute_sql( |
430
|
|
|
f""" |
431
|
|
|
DELETE FROM |
432
|
|
|
{targets['sites_load_individual']['schema']}. |
433
|
|
|
{targets['sites_load_individual']['table']} |
434
|
|
|
WHERE scn_name = '{scenario}' |
435
|
|
|
""" |
436
|
|
|
) |
437
|
|
|
|
438
|
|
|
# Calculate industrial load curves per bus |
439
|
|
|
data, curves_individual = calc_load_curves_ind_sites(scenario) |
440
|
|
|
data.index = data.index.rename(["bus", "wz"]) |
441
|
|
|
data["scn_name"] = scenario |
442
|
|
|
|
443
|
|
|
data.set_index(["scn_name"], inplace=True, append=True) |
444
|
|
|
|
445
|
|
|
# Insert into database |
446
|
|
|
data.to_sql( |
447
|
|
|
targets["sites_load"]["table"], |
448
|
|
|
schema=targets["sites_load"]["schema"], |
449
|
|
|
con=db.engine(), |
450
|
|
|
if_exists="append", |
451
|
|
|
) |
452
|
|
|
|
453
|
|
|
curves_individual["peak_load"] = np.array( |
454
|
|
|
curves_individual["p_set"].values.tolist() |
455
|
|
|
).max(axis=1) |
456
|
|
|
curves_individual["demand"] = np.array( |
457
|
|
|
curves_individual["p_set"].values.tolist() |
458
|
|
|
).sum(axis=1) |
459
|
|
|
curves_individual = identify_voltage_level(curves_individual) |
460
|
|
|
|
461
|
|
|
curves_individual.to_sql( |
462
|
|
|
targets["sites_load_individual"]["table"], |
463
|
|
|
schema=targets["sites_load_individual"]["schema"], |
464
|
|
|
con=db.engine(), |
465
|
|
|
if_exists="append", |
466
|
|
|
) |
467
|
|
|
|