1
|
|
|
from shapely.geometry import Point |
2
|
|
|
import geopandas as gpd |
3
|
|
|
import numpy as np |
4
|
|
|
import pandas as pd |
5
|
|
|
|
6
|
|
|
from egon.data import db |
7
|
|
|
|
8
|
|
|
engine = db.engine() |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
def random_point_in_square(geom, tol): |
12
|
|
|
""" |
13
|
|
|
Generate a random point within a square |
14
|
|
|
|
15
|
|
|
Parameters |
16
|
|
|
---------- |
17
|
|
|
geom: gpd.Series |
18
|
|
|
Geometries of square |
19
|
|
|
tol: float |
20
|
|
|
tolerance to square bounds |
21
|
|
|
|
22
|
|
|
Returns |
23
|
|
|
------- |
24
|
|
|
points: gpd.Series |
25
|
|
|
Series of random points |
26
|
|
|
""" |
27
|
|
|
# cell bounds - half edge_length to not build buildings on the cell border |
28
|
|
|
xmin = geom.bounds["minx"] + tol / 2 |
29
|
|
|
xmax = geom.bounds["maxx"] - tol / 2 |
30
|
|
|
ymin = geom.bounds["miny"] + tol / 2 |
31
|
|
|
ymax = geom.bounds["maxy"] - tol / 2 |
32
|
|
|
|
33
|
|
|
# generate random coordinates within bounds - half edge_length |
34
|
|
|
x = (xmax - xmin) * np.random.rand(geom.shape[0]) + xmin |
35
|
|
|
y = (ymax - ymin) * np.random.rand(geom.shape[0]) + ymin |
36
|
|
|
|
37
|
|
|
points = pd.Series([Point(cords) for cords in zip(x, y)]) |
38
|
|
|
points = gpd.GeoSeries(points, crs="epsg:3035") |
39
|
|
|
|
40
|
|
|
return points |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
# distribute amenities evenly |
44
|
|
|
def specific_int_until_sum(s_sum, i_int): |
45
|
|
|
""" |
46
|
|
|
Generate list `i_int` summing to `s_sum`. Last value will be <= `i_int` |
47
|
|
|
""" |
48
|
|
|
list_i = [] if [s_sum % i_int] == [0] else [s_sum % i_int] |
49
|
|
|
list_i += s_sum // i_int * [i_int] |
50
|
|
|
return list_i |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
def random_ints_until_sum(s_sum, m_max): |
54
|
|
|
""" |
55
|
|
|
Generate non-negative random integers < `m_max` summing to `s_sum`. |
56
|
|
|
""" |
57
|
|
|
list_r = [] |
58
|
|
|
while s_sum > 0: |
59
|
|
|
r = np.random.randint(1, m_max + 1) |
60
|
|
|
r = r if r <= m_max and r < s_sum else s_sum |
61
|
|
|
list_r.append(r) |
62
|
|
|
s_sum -= r |
63
|
|
|
return list_r |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
def write_table_to_postgis(df, table, drop=True): |
67
|
|
|
""" |
68
|
|
|
Append table |
69
|
|
|
""" |
70
|
|
|
|
71
|
|
|
# Only take in db table defined columns |
72
|
|
|
columns = [column.key for column in table.__table__.columns] |
73
|
|
|
df = df.loc[:, columns] |
74
|
|
|
|
75
|
|
|
if drop: |
76
|
|
|
table.__table__.drop(bind=engine, checkfirst=True) |
77
|
|
|
table.__table__.create(bind=engine) |
78
|
|
|
|
79
|
|
|
dtypes = { |
80
|
|
|
i: table.__table__.columns[i].type |
81
|
|
|
for i in table.__table__.columns.keys() |
82
|
|
|
} |
83
|
|
|
|
84
|
|
|
# Write new buildings incl coord into db |
85
|
|
|
df.to_postgis( |
86
|
|
|
name=table.__tablename__, |
87
|
|
|
con=engine, |
88
|
|
|
if_exists="append", |
89
|
|
|
schema=table.__table_args__["schema"], |
90
|
|
|
dtype=dtypes, |
91
|
|
|
) |
92
|
|
|
|
93
|
|
|
|
94
|
|
|
def write_table_to_postgres(df, table, drop=True): |
95
|
|
|
"""""" |
96
|
|
|
|
97
|
|
|
# Only take in db table defined columns |
98
|
|
|
columns = [column.key for column in table.__table__.columns] |
99
|
|
|
df = df.loc[:, columns] |
100
|
|
|
|
101
|
|
|
if drop: |
102
|
|
|
table.__table__.drop(bind=engine, checkfirst=True) |
103
|
|
|
table.__table__.create(bind=engine) |
104
|
|
|
|
105
|
|
|
# Write peak loads into db |
106
|
|
|
with db.session_scope() as session: |
107
|
|
|
session.bulk_insert_mappings( |
108
|
|
|
table, |
109
|
|
|
df.to_dict(orient="records"), |
110
|
|
|
) |
111
|
|
|
|