1
|
|
|
"""The module containing all parameters for the scenario table |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
import pandas as pd |
5
|
|
|
|
6
|
|
|
import egon.data.config |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
def read_csv(year): |
10
|
|
|
source = egon.data.config.datasets()["pypsa-technology-data"]["targets"][ |
11
|
|
|
"data_dir" |
12
|
|
|
] |
13
|
|
|
|
14
|
|
|
return pd.read_csv(f"{source}costs_{year}.csv") |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def read_costs(df, technology, parameter, value_only=True): |
18
|
|
|
result = df.loc[ |
19
|
|
|
(df.technology == technology) & (df.parameter == parameter) |
20
|
|
|
].squeeze() |
21
|
|
|
|
22
|
|
|
# Rescale costs to EUR/MW |
23
|
|
|
if "EUR/kW" in result.unit: |
24
|
|
|
result.value *= 1e3 |
25
|
|
|
result.unit = result.unit.replace("kW", "MW") |
26
|
|
|
|
27
|
|
|
if value_only: |
28
|
|
|
return result.value |
29
|
|
|
else: |
30
|
|
|
return result |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
def annualize_capital_costs(overnight_costs, lifetime, p): |
34
|
|
|
""" |
35
|
|
|
|
36
|
|
|
Parameters |
37
|
|
|
---------- |
38
|
|
|
overnight_costs : float |
39
|
|
|
Overnight investment costs in EUR/MW or EUR/MW/km |
40
|
|
|
lifetime : int |
41
|
|
|
Number of years in which payments will be made |
42
|
|
|
p : float |
43
|
|
|
Interest rate in p.u. |
44
|
|
|
|
45
|
|
|
Returns |
46
|
|
|
------- |
47
|
|
|
float |
48
|
|
|
Annualized capital costs in EUR/MW/a or EUR/MW/km/a |
49
|
|
|
|
50
|
|
|
""" |
51
|
|
|
|
52
|
|
|
# Calculate present value of an annuity (PVA) |
53
|
|
|
PVA = (1 / p) - (1 / (p * (1 + p) ** lifetime)) |
54
|
|
|
|
55
|
|
|
return overnight_costs / PVA |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def global_settings(scenario): |
59
|
|
|
"""Returns global paramaters for the selected scenario. |
60
|
|
|
|
61
|
|
|
Parameters |
62
|
|
|
---------- |
63
|
|
|
scenario : str |
64
|
|
|
Name of the scenario. |
65
|
|
|
|
66
|
|
|
Returns |
67
|
|
|
------- |
68
|
|
|
parameters : dict |
69
|
|
|
List of global parameters |
70
|
|
|
|
71
|
|
|
""" |
72
|
|
|
|
73
|
|
|
if scenario == "eGon2035": |
74
|
|
|
parameters = { |
75
|
|
|
"weather_year": 2011, |
76
|
|
|
"population_year": 2035, |
77
|
|
|
"fuel_costs": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 39, table 6 |
78
|
|
|
"oil": 73.8, # [EUR/MWh] |
79
|
|
|
"gas": 25.6, # [EUR/MWh] |
80
|
|
|
"coal": 20.2, # [EUR/MWh] |
81
|
|
|
"lignite": 4.0, # [EUR/MWh] |
82
|
|
|
"nuclear": 1.7, # [EUR/MWh] |
83
|
|
|
"biomass": 40, # Dummyvalue, ToDo: Find a suitable source |
84
|
|
|
}, |
85
|
|
|
"co2_costs": 76.5, # [EUR/t_CO2] |
86
|
|
|
"co2_emissions": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 40, table 8 |
87
|
|
|
"waste": 0.165, # [t_CO2/MW_th] |
88
|
|
|
"lignite": 0.393, # [t_CO2/MW_th] |
89
|
|
|
"gas": 0.201, # [t_CO2/MW_th] |
90
|
|
|
"nuclear": 0.0, # [t_CO2/MW_th] |
91
|
|
|
"oil": 0.288, # [t_CO2/MW_th] |
92
|
|
|
"coal": 0.335, # [t_CO2/MW_th] |
93
|
|
|
"other_non_renewable": 0.268, # [t_CO2/MW_th] |
94
|
|
|
}, |
95
|
|
|
"interest_rate": 0.05, # [p.u.] |
96
|
|
|
} |
97
|
|
|
|
98
|
|
|
elif scenario == "eGon100RE": |
99
|
|
|
parameters = { |
100
|
|
|
"weather_year": 2011, |
101
|
|
|
"population_year": 2050, |
102
|
|
|
"fuel_costs": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 39, table 6 |
103
|
|
|
"oil": 73.8, # [EUR/MWh] |
104
|
|
|
"gas": 25.6, # [EUR/MWh] |
105
|
|
|
"coal": 20.2, # [EUR/MWh] |
106
|
|
|
"lignite": 4.0, # [EUR/MWh] |
107
|
|
|
"nuclear": 1.7, # [EUR/MWh] |
108
|
|
|
}, |
109
|
|
|
"co2_costs": 76.5, # [EUR/t_CO2] |
110
|
|
|
"co2_emissions": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 40, table 8 |
111
|
|
|
"waste": 0.165, # [t_CO2/MW_th] |
112
|
|
|
"lignite": 0.393, # [t_CO2/MW_th] |
113
|
|
|
"gas": 0.201, # [t_CO2/MW_th] |
114
|
|
|
"nuclear": 0.0, # [t_CO2/MW_th] |
115
|
|
|
"oil": 0.288, # [t_CO2/MW_th] |
116
|
|
|
"coal": 0.335, # [t_CO2/MW_th] |
117
|
|
|
"other_non_renewable": 0.268, # [t_CO2/MW_th] |
118
|
|
|
}, |
119
|
|
|
"interest_rate": 0.05, # [p.u.] |
120
|
|
|
} |
121
|
|
|
|
122
|
|
|
elif scenario == "eGon2021": |
123
|
|
|
parameters = { |
124
|
|
|
"weather_year": 2011, |
125
|
|
|
"population_year": 2021, |
126
|
|
|
} |
127
|
|
|
|
128
|
|
|
elif scenario == "status2023": |
129
|
|
|
parameters = { |
130
|
|
|
"weather_year": 2023, |
131
|
|
|
"population_year": 2019, # TODO: check if possible for 2023 |
132
|
|
|
"fuel_costs": { |
133
|
|
|
# TYNDP 2020, data for 2023 (https://2020.entsos-tyndp-scenarios.eu/fuel-commodities-and-carbon-prices/) |
134
|
|
|
"oil": 16.4 * 3.6, # [EUR/MWh] |
135
|
|
|
"gas": 6.1 * 3.6, # [EUR/MWh] |
136
|
|
|
"coal": 3.4 * 3.6, # [EUR/MWh] |
137
|
|
|
"lignite": 1.1 * 3.6, # [EUR/MWh] |
138
|
|
|
"nuclear": 0.47 * 3.6, # [EUR/MWh] |
139
|
|
|
"biomass": read_costs(read_csv(2020), "biomass", "fuel"), |
140
|
|
|
}, |
141
|
|
|
"co2_costs": 83.66, # [EUR/t_CO2], source: |
142
|
|
|
# https://www.iwr.de/news/co2-emissionshandel-deutschland-erzielt-2023-rekordeinnahmen-von-ueber-18-mrd-euro-news38528 |
143
|
|
|
"co2_emissions": { |
144
|
|
|
# Netzentwicklungsplan Strom 2037, Genehmigtr Scenariorahmen, p. 66, table 21 |
145
|
|
|
# https://www.netzentwicklungsplan.de/sites/default/files/2023-01/Szenariorahmen_2037_Genehmigung.pdf |
146
|
|
|
"waste": 0.165, # [t_CO2/MW_th] |
147
|
|
|
"lignite": 0.393, # [t_CO2/MW_th] |
148
|
|
|
"gas": 0.201, # [t_CO2/MW_th] |
149
|
|
|
"nuclear": 0.0, # [t_CO2/MW_th] |
150
|
|
|
"oil": 0.288, # [t_CO2/MW_th] |
151
|
|
|
"coal": 0.337, # [t_CO2/MW_th] |
152
|
|
|
"other_non_renewable": 0.268, # [t_CO2/MW_th] |
153
|
|
|
}, |
154
|
|
|
"interest_rate": 0.05, # [p.u.] |
155
|
|
|
} |
156
|
|
|
|
157
|
|
|
elif scenario == "status2019": |
158
|
|
|
parameters = { |
159
|
|
|
"weather_year": 2011, |
160
|
|
|
"population_year": 2019, |
161
|
|
|
"fuel_costs": { # TYNDP 2020, data for 2020 (https://2020.entsos-tyndp-scenarios.eu/fuel-commodities-and-carbon-prices/) |
162
|
|
|
"oil": 12.9*3.6, # [EUR/MWh] |
163
|
|
|
"gas": 5.6*3.6, # [EUR/MWh] |
164
|
|
|
"coal": 3.0*3.6, # [EUR/MWh] |
165
|
|
|
"lignite": 1.1*3.6, # [EUR/MWh] |
166
|
|
|
"nuclear": 0.47*3.6, # [EUR/MWh] |
167
|
|
|
"biomass": read_costs(read_csv(2020), "biomass", "fuel"), |
168
|
|
|
}, |
169
|
|
|
"co2_costs": 24.7, # [EUR/t_CO2], source: |
170
|
|
|
#https://de.statista.com/statistik/daten/studie/1304069/umfrage/preisentwicklung-von-co2-emissionsrechten-in-eu/ |
171
|
|
|
"co2_emissions": { # Netzentwicklungsplan Strom 2035, Version 2021, 1. Entwurf, p. 40, table 8 |
172
|
|
|
"waste": 0.165, # [t_CO2/MW_th] |
173
|
|
|
"lignite": 0.393, # [t_CO2/MW_th] |
174
|
|
|
"gas": 0.201, # [t_CO2/MW_th] |
175
|
|
|
"nuclear": 0.0, # [t_CO2/MW_th] |
176
|
|
|
"oil": 0.288, # [t_CO2/MW_th] |
177
|
|
|
"coal": 0.335, # [t_CO2/MW_th] |
178
|
|
|
"other_non_renewable": 0.268, # [t_CO2/MW_th] |
179
|
|
|
}, |
180
|
|
|
"interest_rate": 0.05, # [p.u.] |
181
|
|
|
} |
182
|
|
|
|
183
|
|
|
else: |
184
|
|
|
print(f"Scenario name {scenario} is not valid.") |
185
|
|
|
|
186
|
|
|
return parameters |
187
|
|
|
|
188
|
|
|
|
189
|
|
|
def electricity(scenario): |
190
|
|
|
"""Returns paramaters of the electricity sector for the selected scenario. |
191
|
|
|
|
192
|
|
|
Parameters |
193
|
|
|
---------- |
194
|
|
|
scenario : str |
195
|
|
|
Name of the scenario. |
196
|
|
|
|
197
|
|
|
Returns |
198
|
|
|
------- |
199
|
|
|
parameters : dict |
200
|
|
|
List of parameters of electricity sector |
201
|
|
|
|
202
|
|
|
""" |
203
|
|
|
|
204
|
|
|
if scenario == "eGon2035": |
205
|
|
|
costs = read_csv(2035) |
206
|
|
|
|
207
|
|
|
parameters = {"grid_topology": "Status Quo"} |
208
|
|
|
# Insert effciencies in p.u. |
209
|
|
|
parameters["efficiency"] = { |
210
|
|
|
"oil": read_costs(costs, "oil", "efficiency"), |
211
|
|
|
"battery": { |
212
|
|
|
"store": read_costs(costs, "battery inverter", "efficiency") |
213
|
|
|
** 0.5, |
214
|
|
|
"dispatch": read_costs(costs, "battery inverter", "efficiency") |
215
|
|
|
** 0.5, |
216
|
|
|
"standing_loss": 0, |
217
|
|
|
"max_hours": 6, |
218
|
|
|
"cyclic_state_of_charge": True, |
219
|
|
|
}, |
220
|
|
|
"pumped_hydro": { |
221
|
|
|
"store": read_costs(costs, "PHS", "efficiency") ** 0.5, |
222
|
|
|
"dispatch": read_costs(costs, "PHS", "efficiency") ** 0.5, |
223
|
|
|
"standing_loss": 0, |
224
|
|
|
"max_hours": 6, |
225
|
|
|
"cyclic_state_of_charge": True, |
226
|
|
|
}, |
227
|
|
|
} |
228
|
|
|
# Warning: Electrical parameters are set in osmTGmod, editing these values will not change the data! |
229
|
|
|
parameters["electrical_parameters"] = { |
230
|
|
|
"ac_line_110kV": { |
231
|
|
|
"s_nom": 260, # [MVA] |
232
|
|
|
"R": 0.109, # [Ohm/km] |
233
|
|
|
"L": 1.2, # [mH/km] |
234
|
|
|
}, |
235
|
|
|
"ac_cable_110kV": { |
236
|
|
|
"s_nom": 280, # [MVA] |
237
|
|
|
"R": 0.0177, # [Ohm/km] |
238
|
|
|
"L": 0.3, # [mH/km] |
239
|
|
|
}, |
240
|
|
|
"ac_line_220kV": { |
241
|
|
|
"s_nom": 520, # [MVA] |
242
|
|
|
"R": 0.109, # [Ohm/km] |
243
|
|
|
"L": 1.0, # [mH/km] |
244
|
|
|
}, |
245
|
|
|
"ac_cable_220kV": { |
246
|
|
|
"s_nom": 550, # [MVA] |
247
|
|
|
"R": 0.0176, # [Ohm/km] |
248
|
|
|
"L": 0.3, # [mH/km] |
249
|
|
|
}, |
250
|
|
|
"ac_line_380kV": { |
251
|
|
|
"s_nom": 1790, # [MVA] |
252
|
|
|
"R": 0.028, # [Ohm/km] |
253
|
|
|
"L": 0.8, # [mH/km] |
254
|
|
|
}, |
255
|
|
|
"ac_cable_380kV": { |
256
|
|
|
"s_nom": 925, # [MVA] |
257
|
|
|
"R": 0.0175, # [Ohm/km] |
258
|
|
|
"L": 0.3, # [mH/km] |
259
|
|
|
}, |
260
|
|
|
} |
261
|
|
|
|
262
|
|
|
# Insert overnight investment costs |
263
|
|
|
# Source for eHV grid costs: Netzentwicklungsplan Strom 2035, Version 2021, 2. Entwurf |
264
|
|
|
# Source for HV lines and cables: Dena Verteilnetzstudie 2021, p. 146 |
265
|
|
|
parameters["overnight_cost"] = { |
266
|
|
|
"ac_ehv_overhead_line": 2.5e6 |
267
|
|
|
/ ( |
268
|
|
|
2 |
269
|
|
|
* parameters["electrical_parameters"]["ac_line_380kV"]["s_nom"] |
270
|
|
|
), # [EUR/km/MW] |
271
|
|
|
"ac_ehv_cable": 11.5e6 |
272
|
|
|
/ ( |
273
|
|
|
2 |
274
|
|
|
* parameters["electrical_parameters"]["ac_cable_380kV"][ |
275
|
|
|
"s_nom" |
276
|
|
|
] |
277
|
|
|
), # [EUR/km/MW] |
278
|
|
|
"ac_hv_overhead_line": 0.06e6 |
279
|
|
|
/ parameters["electrical_parameters"]["ac_line_110kV"][ |
280
|
|
|
"s_nom" |
281
|
|
|
], # [EUR/km/MW] |
282
|
|
|
"ac_hv_cable": 0.8e6 |
283
|
|
|
/ parameters["electrical_parameters"]["ac_cable_110kV"][ |
284
|
|
|
"s_nom" |
285
|
|
|
], # [EUR/km/MW] |
286
|
|
|
"dc_overhead_line": 0.5e3, # [EUR/km/MW] |
287
|
|
|
"dc_cable": 3.25e3, # [EUR/km/MW] |
288
|
|
|
"dc_inverter": 0.3e6, # [EUR/MW] |
289
|
|
|
"transformer_380_110": 17.33e3, # [EUR/MVA] |
290
|
|
|
"transformer_380_220": 13.33e3, # [EUR/MVA] |
291
|
|
|
"transformer_220_110": 17.5e3, # [EUR/MVA] |
292
|
|
|
"battery inverter": read_costs( |
293
|
|
|
costs, "battery inverter", "investment" |
294
|
|
|
), |
295
|
|
|
"battery storage": read_costs( |
296
|
|
|
costs, "battery storage", "investment" |
297
|
|
|
), |
298
|
|
|
} |
299
|
|
|
|
300
|
|
|
parameters["lifetime"] = { |
301
|
|
|
"ac_ehv_overhead_line": read_costs( |
302
|
|
|
costs, "HVAC overhead", "lifetime" |
303
|
|
|
), |
304
|
|
|
"ac_ehv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
305
|
|
|
"ac_hv_overhead_line": read_costs( |
306
|
|
|
costs, "HVAC overhead", "lifetime" |
307
|
|
|
), |
308
|
|
|
"ac_hv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
309
|
|
|
"dc_overhead_line": read_costs(costs, "HVDC overhead", "lifetime"), |
310
|
|
|
"dc_cable": read_costs(costs, "HVDC overhead", "lifetime"), |
311
|
|
|
"dc_inverter": read_costs(costs, "HVDC inverter pair", "lifetime"), |
312
|
|
|
"transformer_380_110": read_costs( |
313
|
|
|
costs, "HVAC overhead", "lifetime" |
314
|
|
|
), |
315
|
|
|
"transformer_380_220": read_costs( |
316
|
|
|
costs, "HVAC overhead", "lifetime" |
317
|
|
|
), |
318
|
|
|
"transformer_220_110": read_costs( |
319
|
|
|
costs, "HVAC overhead", "lifetime" |
320
|
|
|
), |
321
|
|
|
"battery inverter": read_costs( |
322
|
|
|
costs, "battery inverter", "lifetime" |
323
|
|
|
), |
324
|
|
|
"battery storage": read_costs( |
325
|
|
|
costs, "battery storage", "lifetime" |
326
|
|
|
), |
327
|
|
|
} |
328
|
|
|
# Insert annualized capital costs |
329
|
|
|
# lines in EUR/km/MW/a |
330
|
|
|
# transfermer, inverter, battery in EUR/MW/a |
331
|
|
|
parameters["capital_cost"] = {} |
332
|
|
|
|
333
|
|
|
for comp in parameters["overnight_cost"].keys(): |
334
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
335
|
|
|
parameters["overnight_cost"][comp], |
336
|
|
|
parameters["lifetime"][comp], |
337
|
|
|
global_settings("eGon2035")["interest_rate"], |
338
|
|
|
) |
339
|
|
|
|
340
|
|
|
parameters["capital_cost"]["battery"] = ( |
341
|
|
|
parameters["capital_cost"]["battery inverter"] |
342
|
|
|
+ parameters["efficiency"]["battery"]["max_hours"] |
343
|
|
|
* parameters["capital_cost"]["battery storage"] |
344
|
|
|
) |
345
|
|
|
|
346
|
|
|
# Insert marginal_costs in EUR/MWh |
347
|
|
|
# marginal cost can include fuel, C02 and operation and maintenance costs |
348
|
|
|
parameters["marginal_cost"] = { |
349
|
|
|
"oil": global_settings(scenario)["fuel_costs"]["oil"] |
350
|
|
|
/ read_costs(costs, "oil", "efficiency") |
351
|
|
|
+ read_costs(costs, "oil", "VOM") |
352
|
|
|
+ global_settings(scenario)["co2_costs"] |
353
|
|
|
* global_settings(scenario)["co2_emissions"]["oil"] |
354
|
|
|
/ read_costs(costs, "oil", "efficiency"), |
355
|
|
|
"other_non_renewable": global_settings(scenario)["fuel_costs"][ |
356
|
|
|
"gas" |
357
|
|
|
] / read_costs(costs, "OCGT", "efficiency") |
358
|
|
|
+ global_settings(scenario)["co2_costs"] |
359
|
|
|
* global_settings(scenario)["co2_emissions"][ |
360
|
|
|
"other_non_renewable" |
361
|
|
|
] / read_costs(costs, "OCGT", "efficiency"), |
362
|
|
|
"lignite": global_settings(scenario)["fuel_costs"]["lignite"] |
363
|
|
|
/ read_costs(costs, "lignite", "efficiency") |
364
|
|
|
+ read_costs(costs, "lignite", "VOM") |
365
|
|
|
+ global_settings(scenario)["co2_costs"] |
366
|
|
|
* global_settings(scenario)["co2_emissions"]["lignite"] |
367
|
|
|
/ read_costs(costs, "lignite", "efficiency"), |
368
|
|
|
"coal": global_settings(scenario)["fuel_costs"]["coal"] |
369
|
|
|
/ read_costs(costs, "coal", "efficiency") |
370
|
|
|
+ read_costs(costs, "coal", "VOM") |
371
|
|
|
+ global_settings(scenario)["co2_costs"] |
372
|
|
|
* global_settings(scenario)["co2_emissions"]["coal"] |
373
|
|
|
/ read_costs(costs, "coal", "efficiency"), |
374
|
|
|
"nuclear": global_settings(scenario)["fuel_costs"]["nuclear"] |
375
|
|
|
/ read_costs(costs, "nuclear", "efficiency") |
376
|
|
|
+ read_costs(costs, "nuclear", "VOM"), |
377
|
|
|
"biomass": global_settings(scenario)["fuel_costs"]["biomass"] |
378
|
|
|
/ read_costs(costs, "biomass", "efficiency") |
379
|
|
|
+ read_costs(costs, "biomass CHP", "VOM"), |
380
|
|
|
"wind_offshore": read_costs(costs, "offwind", "VOM"), |
381
|
|
|
"wind_onshore": read_costs(costs, "onwind", "VOM"), |
382
|
|
|
"solar": read_costs(costs, "solar", "VOM"), |
383
|
|
|
} |
384
|
|
|
|
385
|
|
|
elif scenario == "eGon100RE": |
386
|
|
|
costs = read_csv(2050) |
387
|
|
|
|
388
|
|
|
parameters = {"grid_topology": "Status Quo"} |
389
|
|
|
|
390
|
|
|
# Insert effciencies in p.u. |
391
|
|
|
parameters["efficiency"] = { |
392
|
|
|
"battery": { |
393
|
|
|
"store": read_costs(costs, "battery inverter", "efficiency") |
394
|
|
|
** 0.5, |
395
|
|
|
"dispatch": read_costs(costs, "battery inverter", "efficiency") |
396
|
|
|
** 0.5, |
397
|
|
|
"standing_loss": 0, |
398
|
|
|
"max_hours": 6, |
399
|
|
|
"cyclic_state_of_charge": True, |
400
|
|
|
}, |
401
|
|
|
"pumped_hydro": { |
402
|
|
|
"store": read_costs(costs, "PHS", "efficiency") ** 0.5, |
403
|
|
|
"dispatch": read_costs(costs, "PHS", "efficiency") ** 0.5, |
404
|
|
|
"standing_loss": 0, |
405
|
|
|
"max_hours": 6, |
406
|
|
|
"cyclic_state_of_charge": True, |
407
|
|
|
}, |
408
|
|
|
} |
409
|
|
|
# Warning: Electrical parameters are set in osmTGmod, editing these values will not change the data! |
410
|
|
|
parameters["electrical_parameters"] = { |
411
|
|
|
"ac_line_110kV": { |
412
|
|
|
"s_nom": 260, # [MVA] |
413
|
|
|
"R": 0.109, # [Ohm/km] |
414
|
|
|
"L": 1.2, # [mH/km] |
415
|
|
|
}, |
416
|
|
|
"ac_cable_110kV": { |
417
|
|
|
"s_nom": 280, # [MVA] |
418
|
|
|
"R": 0.0177, # [Ohm/km] |
419
|
|
|
"L": 0.3, # [mH/km] |
420
|
|
|
}, |
421
|
|
|
"ac_line_220kV": { |
422
|
|
|
"s_nom": 520, # [MVA] |
423
|
|
|
"R": 0.109, # [Ohm/km] |
424
|
|
|
"L": 1.0, # [mH/km] |
425
|
|
|
}, |
426
|
|
|
"ac_cable_220kV": { |
427
|
|
|
"s_nom": 550, # [MVA] |
428
|
|
|
"R": 0.0176, # [Ohm/km] |
429
|
|
|
"L": 0.3, # [mH/km] |
430
|
|
|
}, |
431
|
|
|
"ac_line_380kV": { |
432
|
|
|
"s_nom": 1790, # [MVA] |
433
|
|
|
"R": 0.028, # [Ohm/km] |
434
|
|
|
"L": 0.8, # [mH/km] |
435
|
|
|
}, |
436
|
|
|
"ac_cable_380kV": { |
437
|
|
|
"s_nom": 925, # [MVA] |
438
|
|
|
"R": 0.0175, # [Ohm/km] |
439
|
|
|
"L": 0.3, # [mH/km] |
440
|
|
|
}, |
441
|
|
|
} |
442
|
|
|
|
443
|
|
|
# Insert overnight investment costs |
444
|
|
|
# Source for transformer costs: Netzentwicklungsplan Strom 2035, Version 2021, 2. Entwurf |
445
|
|
|
# Source for HV lines and cables: Dena Verteilnetzstudie 2021, p. 146 |
446
|
|
|
parameters["overnight_cost"] = { |
447
|
|
|
"ac_ehv_overhead_line": read_costs( |
448
|
|
|
costs, "HVAC overhead", "investment" |
449
|
|
|
), # [EUR/km/MW] |
450
|
|
|
"ac_hv_overhead_line": 0.06e6 |
451
|
|
|
/ parameters["electrical_parameters"]["ac_line_110kV"][ |
452
|
|
|
"s_nom" |
453
|
|
|
], # [EUR/km/MW] |
454
|
|
|
"ac_hv_cable": 0.8e6 |
455
|
|
|
/ parameters["electrical_parameters"]["ac_cable_110kV"][ |
456
|
|
|
"s_nom" |
457
|
|
|
], # [EUR/km/MW] |
458
|
|
|
"dc_overhead_line": read_costs( |
459
|
|
|
costs, "HVDC overhead", "investment" |
460
|
|
|
), |
461
|
|
|
"dc_cable": read_costs(costs, "HVDC overhead", "investment"), |
462
|
|
|
"dc_inverter": read_costs( |
463
|
|
|
costs, "HVDC inverter pair", "investment" |
464
|
|
|
), |
465
|
|
|
"transformer_380_110": 17.33e3, # [EUR/MVA] |
466
|
|
|
"transformer_380_220": 13.33e3, # [EUR/MVA] |
467
|
|
|
"transformer_220_110": 17.5e3, # [EUR/MVA] |
468
|
|
|
"battery inverter": read_costs( |
469
|
|
|
costs, "battery inverter", "investment" |
470
|
|
|
), |
471
|
|
|
"battery storage": read_costs( |
472
|
|
|
costs, "battery storage", "investment" |
473
|
|
|
), |
474
|
|
|
} |
475
|
|
|
|
476
|
|
|
parameters["lifetime"] = { |
477
|
|
|
"ac_ehv_overhead_line": read_costs( |
478
|
|
|
costs, "HVAC overhead", "lifetime" |
479
|
|
|
), |
480
|
|
|
"ac_ehv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
481
|
|
|
"ac_hv_overhead_line": read_costs( |
482
|
|
|
costs, "HVAC overhead", "lifetime" |
483
|
|
|
), |
484
|
|
|
"ac_hv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
485
|
|
|
"dc_overhead_line": read_costs(costs, "HVDC overhead", "lifetime"), |
486
|
|
|
"dc_cable": read_costs(costs, "HVDC overhead", "lifetime"), |
487
|
|
|
"dc_inverter": read_costs(costs, "HVDC inverter pair", "lifetime"), |
488
|
|
|
"transformer_380_110": read_costs( |
489
|
|
|
costs, "HVAC overhead", "lifetime" |
490
|
|
|
), |
491
|
|
|
"transformer_380_220": read_costs( |
492
|
|
|
costs, "HVAC overhead", "lifetime" |
493
|
|
|
), |
494
|
|
|
"transformer_220_110": read_costs( |
495
|
|
|
costs, "HVAC overhead", "lifetime" |
496
|
|
|
), |
497
|
|
|
"battery inverter": read_costs( |
498
|
|
|
costs, "battery inverter", "lifetime" |
499
|
|
|
), |
500
|
|
|
"battery storage": read_costs( |
501
|
|
|
costs, "battery storage", "lifetime" |
502
|
|
|
), |
503
|
|
|
} |
504
|
|
|
# Insert annualized capital costs |
505
|
|
|
# lines in EUR/km/MW/a |
506
|
|
|
# transfermer, inverter, battery in EUR/MW/a |
507
|
|
|
parameters["capital_cost"] = {} |
508
|
|
|
|
509
|
|
|
for comp in parameters["overnight_cost"].keys(): |
510
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
511
|
|
|
parameters["overnight_cost"][comp], |
512
|
|
|
parameters["lifetime"][comp], |
513
|
|
|
global_settings("eGon2035")["interest_rate"], |
514
|
|
|
) |
515
|
|
|
|
516
|
|
|
parameters["capital_cost"]["battery"] = ( |
517
|
|
|
parameters["capital_cost"]["battery inverter"] |
518
|
|
|
+ parameters["efficiency"]["battery"]["max_hours"] |
519
|
|
|
* parameters["capital_cost"]["battery storage"] |
520
|
|
|
) |
521
|
|
|
|
522
|
|
|
# Insert marginal_costs in EUR/MWh |
523
|
|
|
# marginal cost can include fuel, C02 and operation and maintenance costs |
524
|
|
|
parameters["marginal_cost"] = { |
525
|
|
|
"wind_offshore": read_costs(costs, "offwind", "VOM"), |
526
|
|
|
"wind_onshore": read_costs(costs, "onwind", "VOM"), |
527
|
|
|
"solar": read_costs(costs, "solar", "VOM"), |
528
|
|
|
} |
529
|
|
|
|
530
|
|
|
elif scenario == "eGon2021": |
531
|
|
|
parameters = {} |
532
|
|
|
|
533
|
|
|
elif (scenario == "status2019") or (scenario == "status2023"): |
534
|
|
|
costs = read_csv(2020) |
535
|
|
|
|
536
|
|
|
parameters = {"grid_topology": "Status Quo"} |
537
|
|
|
# Insert effciencies in p.u. |
538
|
|
|
parameters["efficiency"] = { |
539
|
|
|
"oil": read_costs(costs, "oil", "efficiency"), |
540
|
|
|
"battery": { |
541
|
|
|
"store": read_costs(costs, "battery inverter", "efficiency") |
542
|
|
|
** 0.5, |
543
|
|
|
"dispatch": read_costs(costs, "battery inverter", "efficiency") |
544
|
|
|
** 0.5, |
545
|
|
|
"standing_loss": 0, |
546
|
|
|
"max_hours": 6, |
547
|
|
|
"cyclic_state_of_charge": True, |
548
|
|
|
}, |
549
|
|
|
"pumped_hydro": { |
550
|
|
|
"store": read_costs(costs, "PHS", "efficiency") ** 0.5, |
551
|
|
|
"dispatch": read_costs(costs, "PHS", "efficiency") ** 0.5, |
552
|
|
|
"standing_loss": 0, |
553
|
|
|
"max_hours": 6, |
554
|
|
|
"cyclic_state_of_charge": True, |
555
|
|
|
}, |
556
|
|
|
} |
557
|
|
|
# Warning: Electrical parameters are set in osmTGmod, editing these values will not change the data! |
558
|
|
|
parameters["electrical_parameters"] = { |
559
|
|
|
"ac_line_110kV": { |
560
|
|
|
"s_nom": 260, # [MVA] |
561
|
|
|
"R": 0.109, # [Ohm/km] |
562
|
|
|
"L": 1.2, # [mH/km] |
563
|
|
|
}, |
564
|
|
|
"ac_cable_110kV": { |
565
|
|
|
"s_nom": 280, # [MVA] |
566
|
|
|
"R": 0.0177, # [Ohm/km] |
567
|
|
|
"L": 0.3, # [mH/km] |
568
|
|
|
}, |
569
|
|
|
"ac_line_220kV": { |
570
|
|
|
"s_nom": 520, # [MVA] |
571
|
|
|
"R": 0.109, # [Ohm/km] |
572
|
|
|
"L": 1.0, # [mH/km] |
573
|
|
|
}, |
574
|
|
|
"ac_cable_220kV": { |
575
|
|
|
"s_nom": 550, # [MVA] |
576
|
|
|
"R": 0.0176, # [Ohm/km] |
577
|
|
|
"L": 0.3, # [mH/km] |
578
|
|
|
}, |
579
|
|
|
"ac_line_380kV": { |
580
|
|
|
"s_nom": 1790, # [MVA] |
581
|
|
|
"R": 0.028, # [Ohm/km] |
582
|
|
|
"L": 0.8, # [mH/km] |
583
|
|
|
}, |
584
|
|
|
"ac_cable_380kV": { |
585
|
|
|
"s_nom": 925, # [MVA] |
586
|
|
|
"R": 0.0175, # [Ohm/km] |
587
|
|
|
"L": 0.3, # [mH/km] |
588
|
|
|
}, |
589
|
|
|
} |
590
|
|
|
|
591
|
|
|
# Insert overnight investment costs |
592
|
|
|
# Source for eHV grid costs: Netzentwicklungsplan Strom 2035, Version 2021, 2. Entwurf |
593
|
|
|
# Source for HV lines and cables: Dena Verteilnetzstudie 2021, p. 146 |
594
|
|
|
parameters["overnight_cost"] = { |
595
|
|
|
"ac_ehv_overhead_line": 2.5e6 |
596
|
|
|
/ ( |
597
|
|
|
2 |
598
|
|
|
* parameters["electrical_parameters"]["ac_line_380kV"]["s_nom"] |
599
|
|
|
), # [EUR/km/MW] |
600
|
|
|
"ac_ehv_cable": 11.5e6 |
601
|
|
|
/ ( |
602
|
|
|
2 |
603
|
|
|
* parameters["electrical_parameters"]["ac_cable_380kV"][ |
604
|
|
|
"s_nom" |
605
|
|
|
] |
606
|
|
|
), # [EUR/km/MW] |
607
|
|
|
"ac_hv_overhead_line": 0.06e6 |
608
|
|
|
/ parameters["electrical_parameters"]["ac_line_110kV"][ |
609
|
|
|
"s_nom" |
610
|
|
|
], # [EUR/km/MW] |
611
|
|
|
"ac_hv_cable": 0.8e6 |
612
|
|
|
/ parameters["electrical_parameters"]["ac_cable_110kV"][ |
613
|
|
|
"s_nom" |
614
|
|
|
], # [EUR/km/MW] |
615
|
|
|
"dc_overhead_line": 0.5e3, # [EUR/km/MW] |
616
|
|
|
"dc_cable": 3.25e3, # [EUR/km/MW] |
617
|
|
|
"dc_inverter": 0.3e6, # [EUR/MW] |
618
|
|
|
"transformer_380_110": 17.33e3, # [EUR/MVA] |
619
|
|
|
"transformer_380_220": 13.33e3, # [EUR/MVA] |
620
|
|
|
"transformer_220_110": 17.5e3, # [EUR/MVA] |
621
|
|
|
"battery inverter": read_costs( |
622
|
|
|
costs, "battery inverter", "investment" |
623
|
|
|
), |
624
|
|
|
"battery storage": read_costs( |
625
|
|
|
costs, "battery storage", "investment" |
626
|
|
|
), |
627
|
|
|
} |
628
|
|
|
|
629
|
|
|
parameters["lifetime"] = { |
630
|
|
|
"ac_ehv_overhead_line": read_costs( |
631
|
|
|
costs, "HVAC overhead", "lifetime" |
632
|
|
|
), |
633
|
|
|
"ac_ehv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
634
|
|
|
"ac_hv_overhead_line": read_costs( |
635
|
|
|
costs, "HVAC overhead", "lifetime" |
636
|
|
|
), |
637
|
|
|
"ac_hv_cable": read_costs(costs, "HVAC overhead", "lifetime"), |
638
|
|
|
"dc_overhead_line": read_costs(costs, "HVDC overhead", "lifetime"), |
639
|
|
|
"dc_cable": read_costs(costs, "HVDC overhead", "lifetime"), |
640
|
|
|
"dc_inverter": read_costs(costs, "HVDC inverter pair", "lifetime"), |
641
|
|
|
"transformer_380_110": read_costs( |
642
|
|
|
costs, "HVAC overhead", "lifetime" |
643
|
|
|
), |
644
|
|
|
"transformer_380_220": read_costs( |
645
|
|
|
costs, "HVAC overhead", "lifetime" |
646
|
|
|
), |
647
|
|
|
"transformer_220_110": read_costs( |
648
|
|
|
costs, "HVAC overhead", "lifetime" |
649
|
|
|
), |
650
|
|
|
"battery inverter": read_costs( |
651
|
|
|
costs, "battery inverter", "lifetime" |
652
|
|
|
), |
653
|
|
|
"battery storage": read_costs( |
654
|
|
|
costs, "battery storage", "lifetime" |
655
|
|
|
), |
656
|
|
|
} |
657
|
|
|
# Insert annualized capital costs |
658
|
|
|
# lines in EUR/km/MW/a |
659
|
|
|
# transfermer, inverter, battery in EUR/MW/a |
660
|
|
|
parameters["capital_cost"] = {} |
661
|
|
|
|
662
|
|
|
for comp in parameters["overnight_cost"].keys(): |
663
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
664
|
|
|
parameters["overnight_cost"][comp], |
665
|
|
|
parameters["lifetime"][comp], |
666
|
|
|
global_settings("status2019")["interest_rate"], |
667
|
|
|
) |
668
|
|
|
|
669
|
|
|
parameters["capital_cost"]["battery"] = ( |
670
|
|
|
parameters["capital_cost"]["battery inverter"] |
671
|
|
|
+ parameters["efficiency"]["battery"]["max_hours"] |
672
|
|
|
* parameters["capital_cost"]["battery storage"] |
673
|
|
|
) |
674
|
|
|
|
675
|
|
|
parameters["marginal_cost"] = { |
676
|
|
|
"oil": global_settings(scenario)["fuel_costs"]["oil"] |
677
|
|
|
/ read_costs(costs, "oil", "efficiency") |
678
|
|
|
+ read_costs(costs, "oil", "VOM") |
679
|
|
|
+ global_settings(scenario)["co2_costs"] |
680
|
|
|
* global_settings(scenario)["co2_emissions"]["oil"] |
681
|
|
|
/ read_costs(costs, "oil", "efficiency"), |
682
|
|
|
"other_non_renewable": global_settings(scenario)["fuel_costs"][ |
683
|
|
|
"gas" |
684
|
|
|
] / read_costs(costs, "OCGT", "efficiency") |
685
|
|
|
+ global_settings(scenario)["co2_costs"] |
686
|
|
|
* global_settings(scenario)["co2_emissions"][ |
687
|
|
|
"other_non_renewable" |
688
|
|
|
] / read_costs(costs, "OCGT", "efficiency"), |
689
|
|
|
"lignite": global_settings(scenario)["fuel_costs"]["lignite"] |
690
|
|
|
/ read_costs(costs, "lignite", "efficiency") |
691
|
|
|
+ read_costs(costs, "lignite", "VOM") |
692
|
|
|
+ global_settings(scenario)["co2_costs"] |
693
|
|
|
* global_settings(scenario)["co2_emissions"]["lignite"] |
694
|
|
|
/ read_costs(costs, "lignite", "efficiency"), |
695
|
|
|
"coal": global_settings(scenario)["fuel_costs"]["coal"] |
696
|
|
|
/ read_costs(costs, "coal", "efficiency") |
697
|
|
|
+ read_costs(costs, "coal", "VOM") |
698
|
|
|
+ global_settings(scenario)["co2_costs"] |
699
|
|
|
* global_settings(scenario)["co2_emissions"]["coal"] |
700
|
|
|
/ read_costs(costs, "coal", "efficiency"), |
701
|
|
|
"OCGT": global_settings(scenario)["fuel_costs"]["gas"] |
702
|
|
|
/ read_costs(costs, "OCGT", "efficiency") |
703
|
|
|
+ read_costs(costs, "OCGT", "VOM") |
704
|
|
|
+ global_settings(scenario)["co2_costs"] |
705
|
|
|
* global_settings(scenario)["co2_emissions"]["gas"] |
706
|
|
|
/ read_costs(costs, "OCGT", "efficiency"), |
707
|
|
|
"nuclear": global_settings(scenario)["fuel_costs"]["nuclear"] |
708
|
|
|
/ read_costs(costs, "nuclear", "efficiency") |
709
|
|
|
+ read_costs(costs, "nuclear", "VOM"), |
710
|
|
|
"biomass": global_settings(scenario)["fuel_costs"]["biomass"] |
711
|
|
|
/ read_costs(costs, "biomass CHP", "efficiency") |
712
|
|
|
+ read_costs(costs, "biomass CHP", "VOM"), |
713
|
|
|
"wind_offshore": read_costs(costs, "offwind", "VOM"), |
714
|
|
|
"wind_onshore": read_costs(costs, "onwind", "VOM"), |
715
|
|
|
"solar": read_costs(costs, "solar", "VOM"), |
716
|
|
|
} |
717
|
|
|
|
718
|
|
|
else: |
719
|
|
|
print(f"Scenario name {scenario} is not valid.") |
720
|
|
|
|
721
|
|
|
return parameters |
722
|
|
|
|
723
|
|
|
|
724
|
|
|
def gas(scenario): |
725
|
|
|
"""Returns paramaters of the gas sector for the selected scenario. |
726
|
|
|
|
727
|
|
|
Parameters |
728
|
|
|
---------- |
729
|
|
|
scenario : str |
730
|
|
|
Name of the scenario. |
731
|
|
|
|
732
|
|
|
Returns |
733
|
|
|
------- |
734
|
|
|
parameters : dict |
735
|
|
|
List of parameters of gas sector |
736
|
|
|
|
737
|
|
|
""" |
738
|
|
|
|
739
|
|
|
if scenario == "eGon2035": |
740
|
|
|
costs = read_csv(2035) |
741
|
|
|
|
742
|
|
|
parameters = { |
743
|
|
|
"main_gas_carrier": "CH4", |
744
|
|
|
"H2_feedin_volumetric_fraction": 0.15, |
745
|
|
|
} |
746
|
|
|
|
747
|
|
|
# Insert effciencies in p.u. |
748
|
|
|
parameters["efficiency"] = { |
749
|
|
|
"power_to_H2": 0.6805, #source: project internal assumption Fraunhofer ISE |
750
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "efficiency"), |
751
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "efficiency"), |
752
|
|
|
"H2_feedin": 1, |
753
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "efficiency"), |
754
|
|
|
"OCGT": read_costs(costs, "OCGT", "efficiency"), |
755
|
|
|
"power_to_Heat": 0.2, #overall efficiency (20% electrical Input converted into waste-heat); source: project internal assumption Fraunhofer ISE |
756
|
|
|
"power_to_O2": 0.04, #O2-transfer efficiency; source: Sayed Sadat, Modeling Regional Utilization of the electrolysers Co-Products Oxygen and Heat in Germany, 2024 |
757
|
|
|
} |
758
|
|
|
|
759
|
|
|
# Insert overnight investment costs |
760
|
|
|
parameters["overnight_cost"] = { |
761
|
|
|
"power_to_H2_system": 452_000, #[EUR/MW] source: project internal assumption Fraunhofer ISE |
762
|
|
|
"power_to_H2_stack": 0.21 * 452_000, #[EUR/MW] source: project internal assumption Fraunhofer ISE |
763
|
|
|
"power_to_H2_OPEX": 0.03 * 452_000, #[EUR/MW/a] 3% of CAPEX, source: project internal assumption Fraunhofer ISE |
764
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "investment"), |
765
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "investment"), |
766
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "investment"), |
767
|
|
|
"H2_feedin": 0, |
768
|
|
|
"H2_underground": read_costs( |
769
|
|
|
costs, "hydrogen storage underground", "investment" |
770
|
|
|
), |
771
|
|
|
"H2_overground": read_costs( |
772
|
|
|
costs, "hydrogen storage tank incl. compressor", "investment" |
773
|
|
|
), |
774
|
|
|
"H2_pipeline": read_costs(costs, "H2 (g) pipeline", "investment"), # [EUR/MW/km] |
775
|
|
|
"Heat_exchanger": 25_000, # [EUR/MW_th] cost assumption for one additional heat_exchanger; source: project internal cost assumption by Fraunhofer ISE |
776
|
|
|
"Heat_pipeline": 400_000, # [EUR/MW/km]; average value for DN100-pipeline; source: L. Zimmermann, MODELLIERUNG DER ABWÄRMENUTZUNG VON ELEKTROLYSEUREN IN DEUTSCHLAND FÜR EINE TECHNO - ÖKONOMISCHE OPTIMIERUNG EINES SEKTOR - GEKOPPELTEN ENERGIESYSTEM, 2024 |
777
|
|
|
"O2_components": 5000, # [EUR] ; source: Sayed Sadat, Modeling Regional Utilization of the electrolysers Co-Products Oxygen and Heat in Germany, 2024 |
778
|
|
|
} |
779
|
|
|
|
780
|
|
|
#overnight_costs for O2_pipeinecosts related to pipeline_diameter |
781
|
|
|
parameters["O2_pipeline_costs"] = { |
782
|
|
|
0.5: 500_000, # EUR/km |
783
|
|
|
0.4: 450_000, # EUR/km |
784
|
|
|
0.3: 400_000, # EUR/km |
785
|
|
|
0.2: 350_000, # EUR/km |
786
|
|
|
0.0: 300_000, # EUR/km (costs for any other pipeline diameter) |
787
|
|
|
} |
788
|
|
|
|
789
|
|
|
# Insert lifetime |
790
|
|
|
parameters["lifetime"] = { |
791
|
|
|
"power_to_H2_system": 25, # source: project internal assumption Fraunhofer ISE |
792
|
|
|
"power_to_H2_stack": 15, #85000 hours ~ 15 years; source: project internal assumption Fraunhofer ISE |
793
|
|
|
"power_to_H2_OPEX": 1, #given as OPEX/year |
794
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "lifetime"), |
795
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "lifetime"), |
796
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "lifetime"), |
797
|
|
|
"H2_feedin": read_costs(costs, "CH4 (g) pipeline", "lifetime"), |
798
|
|
|
"H2_underground": read_costs( |
799
|
|
|
costs, "hydrogen storage underground", "lifetime" |
800
|
|
|
), |
801
|
|
|
"H2_overground": read_costs( |
802
|
|
|
costs, "hydrogen storage tank incl. compressor", "lifetime" |
803
|
|
|
), |
804
|
|
|
"H2_pipeline": read_costs(costs, "H2 (g) pipeline", "lifetime"), |
805
|
|
|
"Heat_exchanger": 20, # assumption based on lifetime heat_exchanger; source: E. van der Roest, R. Bol, T. Fens und A. van Wijk, „Utilisation of waste heat from PEM electrolysers - Unlocking local optimisation, 2023 |
806
|
|
|
"Heat_pipeline": 20, |
807
|
|
|
"O2_components": 25, # source: Sayed Sadat, Modeling Regional Utilization of the electrolysers Co-Products Oxygen and Heat in Germany, 2024 |
808
|
|
|
} |
809
|
|
|
|
810
|
|
|
# Insert annualized capital costs |
811
|
|
|
parameters["capital_cost"] = {} |
812
|
|
|
parameters["O2_capital_cost"]= {} |
813
|
|
|
|
814
|
|
|
for comp in parameters["overnight_cost"].keys(): |
815
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
816
|
|
|
parameters["overnight_cost"][comp], |
817
|
|
|
parameters["lifetime"][comp], |
818
|
|
|
global_settings("eGon2035")["interest_rate"], |
819
|
|
|
) |
820
|
|
|
|
821
|
|
|
for diameter in parameters["O2_pipeline_costs"].keys(): |
822
|
|
|
parameters["O2_capital_cost"][diameter] = annualize_capital_costs( |
823
|
|
|
parameters["O2_pipeline_costs"][diameter], |
824
|
|
|
parameters["lifetime"]["O2_components"], |
825
|
|
|
global_settings("eGon2035")["interest_rate"], |
826
|
|
|
) |
827
|
|
|
|
828
|
|
|
parameters["marginal_cost"] = { |
829
|
|
|
"CH4": global_settings(scenario)["fuel_costs"]["gas"] |
830
|
|
|
+ global_settings(scenario)["co2_costs"] |
831
|
|
|
* global_settings(scenario)["co2_emissions"]["gas"], |
832
|
|
|
"OCGT": read_costs(costs, "OCGT", "VOM"), |
833
|
|
|
"biogas": global_settings(scenario)["fuel_costs"]["gas"], |
834
|
|
|
"chp_gas": read_costs(costs, "central gas CHP", "VOM"), |
835
|
|
|
} |
836
|
|
|
|
837
|
|
|
# Insert max gas production (generator) over the year |
838
|
|
|
parameters["max_gas_generation_overtheyear"] = { |
839
|
|
|
"CH4": 36000000, # [MWh] Netzentwicklungsplan Gas 2020–2030 |
840
|
|
|
"biogas": 10000000, # [MWh] Netzentwicklungsplan Gas 2020–2030 |
841
|
|
|
} |
842
|
|
|
|
843
|
|
|
elif scenario == "eGon100RE": |
844
|
|
|
costs = read_csv(2050) |
845
|
|
|
interest_rate = 0.07 # [p.u.] |
846
|
|
|
|
847
|
|
|
parameters = { |
848
|
|
|
"main_gas_carrier": "H2", |
849
|
|
|
"retrofitted_CH4pipeline-to-H2pipeline_share": 0.23, |
850
|
|
|
# p-e-s result, this value is overwritten if p-e-s is run |
851
|
|
|
} |
852
|
|
|
# Insert effciencies in p.u. |
853
|
|
|
parameters["efficiency"] = { |
854
|
|
|
"power_to_H2": 0.709, |
855
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "efficiency"), |
856
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "efficiency"), |
857
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "efficiency"), |
858
|
|
|
"OCGT": read_costs(costs, "OCGT", "efficiency"), |
859
|
|
|
"power_to_Heat": 0.2, # source: project internal assumption Fraunhofer ISE |
860
|
|
|
"power_to_O2": 0.015, # source: Sayed Sadat, Modeling Regional Utilization of the electrolysers Co-Products Oxygen and Heat in Germany, 2024 |
861
|
|
|
} |
862
|
|
|
|
863
|
|
|
# Insert FOM in % |
864
|
|
|
parameters["FOM"] = { |
865
|
|
|
"H2_underground": read_costs( |
866
|
|
|
costs, "hydrogen storage underground", "FOM" |
867
|
|
|
), |
868
|
|
|
"H2_overground": read_costs( |
869
|
|
|
costs, "hydrogen storage tank incl. compressor", "FOM" |
870
|
|
|
), |
871
|
|
|
"power_to_H2_system": 3, #3% of CAPEX, source: project internal assumption Fraunhofer ISE |
872
|
|
|
"power_to_H2_stack": 3, #3% of CAPEX source: project internal assumption Fraunhofer ISE |
873
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "FOM"), |
874
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "FOM"), |
875
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "FOM"), |
876
|
|
|
"H2_pipeline": 3, # 3% of CAPEX |
877
|
|
|
"Heat_exchanger": 3, # 3% of CAPEX |
878
|
|
|
"Heat_pipeline": 3, # 3% of CAPEX |
879
|
|
|
"O2_components": 3, # 3% of CAPEX |
880
|
|
|
"H2_pipeline_retrofit": read_costs( |
881
|
|
|
costs, "H2 (g) pipeline repurposed", "FOM" |
882
|
|
|
), |
883
|
|
|
} |
884
|
|
|
|
885
|
|
|
# Insert overnight investment costs |
886
|
|
|
parameters["overnight_cost"] = { |
887
|
|
|
"power_to_H2_system": 357_000, #[EUR/MW] source: project internal assumption Fraunhofer ISE |
888
|
|
|
"power_to_H2_stack": 0.21 * 357_000, #[EUR/MW] source: project internal assumption Fraunhofer ISE |
889
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "investment"), |
890
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "investment"), |
891
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "investment"), |
892
|
|
|
"H2_underground": read_costs( |
893
|
|
|
costs, "hydrogen storage underground", "investment" |
894
|
|
|
), |
895
|
|
|
"H2_overground": read_costs( |
896
|
|
|
costs, "hydrogen storage tank incl. compressor", "investment" |
897
|
|
|
), |
898
|
|
|
"H2_pipeline": read_costs(costs, "H2 (g) pipeline", "investment"), # [EUR/MW/km] |
899
|
|
|
"H2_pipeline_retrofit": read_costs( |
900
|
|
|
costs, "H2 (g) pipeline repurposed", "FOM" |
901
|
|
|
), |
902
|
|
|
"Heat_exchanger": 25_000, # [EUR/MW_th] cost assumption for one additional heat_exchanger; source: project internal cost assumption by Fraunhofer ISE |
903
|
|
|
"Heat_pipeline": 400_000, # [EUR/MW/km]; average value for DN100-pipeline; source: L. Zimmermann, MODELLIERUNG DER ABWÄRMENUTZUNG VON ELEKTROLYSEUREN IN DEUTSCHLAND FÜR EINE TECHNO - ÖKONOMISCHE OPTIMIERUNG EINES SEKTOR - GEKOPPELTEN ENERGIESYSTEM, 2024 |
904
|
|
|
"O2_components": 5000, # [EUR] ; source toDO: ask sayed |
905
|
|
|
} |
906
|
|
|
|
907
|
|
|
#overnight_costs for O2_pipeinecosts related to pipeline_diameter |
908
|
|
|
parameters["O2_pipeline_costs"] = { |
909
|
|
|
0.5: 500_000, # EUR/km |
910
|
|
|
0.4: 450_000, # EUR/km |
911
|
|
|
0.3: 400_000, # EUR/km |
912
|
|
|
0.2: 350_000, # EUR/km |
913
|
|
|
0: 300_000, # EUR/km (costs for any other pipeline diameter) |
914
|
|
|
} |
915
|
|
|
|
916
|
|
|
# Insert lifetime |
917
|
|
|
parameters["lifetime"] = { |
918
|
|
|
"power_to_H2_system": 30, # source: project internal assumption Fraunhofer ISE |
919
|
|
|
"power_to_H2_stack": 20, #110_000 hours ~ 20 years; source: project internal assumption Fraunhofer ISE |
920
|
|
|
"H2_to_power": read_costs(costs, "fuel cell", "lifetime"), |
921
|
|
|
"CH4_to_H2": read_costs(costs, "SMR", "lifetime"), |
922
|
|
|
"H2_to_CH4": read_costs(costs, "methanation", "lifetime"), |
923
|
|
|
"H2_feedin": read_costs(costs, "CH4 (g) pipeline", "lifetime"), |
924
|
|
|
"H2_underground": read_costs( |
925
|
|
|
costs, "hydrogen storage underground", "lifetime" |
926
|
|
|
), |
927
|
|
|
"H2_overground": read_costs( |
928
|
|
|
costs, "hydrogen storage tank incl. compressor", "lifetime" |
929
|
|
|
), |
930
|
|
|
"H2_pipeline": read_costs(costs, "H2 (g) pipeline", "lifetime"), |
931
|
|
|
"H2_pipeline_retrofit": read_costs( |
932
|
|
|
costs, "H2 (g) pipeline repurposed", "lifetime" |
933
|
|
|
), |
934
|
|
|
"Heat_exchanger": 20, # assumption based on lifetime heat_exchanger; source: E. van der Roest, R. Bol, T. Fens und A. van Wijk, „Utilisation of waste heat from PEM electrolysers - Unlocking local optimisation, 2023 |
935
|
|
|
"Heat_pipeline": 20, |
936
|
|
|
"O2_components": 25, # source toDO: ask sayed |
937
|
|
|
} |
938
|
|
|
|
939
|
|
|
# Insert costs |
940
|
|
|
parameters["capital_cost"] = {} |
941
|
|
|
parameters["O2_capital_cost"] = {} |
942
|
|
|
|
943
|
|
|
for comp in parameters["overnight_cost"].keys(): |
944
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
945
|
|
|
parameters["overnight_cost"][comp], |
946
|
|
|
parameters["lifetime"][comp], |
947
|
|
|
interest_rate, |
948
|
|
|
) + parameters["overnight_cost"][comp] * ( |
949
|
|
|
parameters["FOM"][comp] / 100 |
950
|
|
|
) |
951
|
|
|
|
952
|
|
|
for comp in ["H2_to_power", "H2_to_CH4"]: |
953
|
|
|
parameters["capital_cost"][comp] = ( |
954
|
|
|
annualize_capital_costs( |
955
|
|
|
parameters["overnight_cost"][comp], |
956
|
|
|
parameters["lifetime"][comp], |
957
|
|
|
interest_rate, |
958
|
|
|
) |
959
|
|
|
+ parameters["overnight_cost"][comp] |
960
|
|
|
* (parameters["FOM"][comp] / 100) |
961
|
|
|
) * parameters["efficiency"][comp] |
962
|
|
|
|
963
|
|
|
for diameter in parameters["O2_pipeline_costs"].keys(): |
964
|
|
|
parameters["O2_capital_cost"][diameter] = annualize_capital_costs( |
965
|
|
|
parameters["O2_pipeline_costs"][diameter], |
966
|
|
|
parameters["lifetime"]["O2_components"], |
967
|
|
|
interest_rate, |
968
|
|
|
) |
969
|
|
|
|
970
|
|
|
parameters["marginal_cost"] = { |
971
|
|
|
"OCGT": read_costs(costs, "OCGT", "VOM"), |
972
|
|
|
"biogas": read_costs(costs, "biogas", "fuel"), |
973
|
|
|
"chp_gas": read_costs(costs, "central gas CHP", "VOM"), |
974
|
|
|
} |
975
|
|
|
|
976
|
|
|
elif scenario == "eGon2021": |
977
|
|
|
parameters = {} |
978
|
|
|
|
979
|
|
|
elif scenario == "status2019": |
980
|
|
|
costs = read_csv(2020) |
981
|
|
|
parameters = { |
982
|
|
|
"main_gas_carrier": "CH4", |
983
|
|
|
} |
984
|
|
|
|
985
|
|
|
parameters["marginal_cost"] = { |
986
|
|
|
"CH4": global_settings(scenario)["fuel_costs"]["gas"] |
987
|
|
|
+ global_settings(scenario)["co2_costs"] |
988
|
|
|
* global_settings(scenario)["co2_emissions"]["gas"], |
989
|
|
|
"OCGT": read_costs(costs, "OCGT", "VOM"), |
990
|
|
|
"biogas": global_settings(scenario)["fuel_costs"]["gas"], |
991
|
|
|
"chp_gas": read_costs(costs, "central gas CHP", "VOM"), |
992
|
|
|
} |
993
|
|
|
# Insert effciencies in p.u. |
994
|
|
|
parameters["efficiency"] = { |
995
|
|
|
"OCGT": read_costs(costs, "OCGT", "efficiency"), |
996
|
|
|
} |
997
|
|
|
|
998
|
|
|
else: |
999
|
|
|
print(f"Scenario name {scenario} is not valid.") |
1000
|
|
|
|
1001
|
|
|
return parameters |
1002
|
|
|
|
1003
|
|
|
|
1004
|
|
|
def mobility(scenario): |
1005
|
|
|
"""Returns parameters of the mobility sector for the selected scenario. |
1006
|
|
|
|
1007
|
|
|
Parameters |
1008
|
|
|
---------- |
1009
|
|
|
scenario : str |
1010
|
|
|
Name of the scenario. |
1011
|
|
|
|
1012
|
|
|
Returns |
1013
|
|
|
------- |
1014
|
|
|
parameters : dict |
1015
|
|
|
List of parameters of mobility sector |
1016
|
|
|
|
1017
|
|
|
Notes |
1018
|
|
|
----- |
1019
|
|
|
For a detailed description of the parameters see module |
1020
|
|
|
:mod:`egon.data.datasets.emobility.motorized_individual_travel`. |
1021
|
|
|
""" |
1022
|
|
|
|
1023
|
|
|
if scenario == "eGon2035": |
1024
|
|
|
parameters = { |
1025
|
|
|
"motorized_individual_travel": { |
1026
|
|
|
"NEP C 2035": { |
1027
|
|
|
"ev_count": 15100000, |
1028
|
|
|
"bev_mini_share": 0.1589, |
1029
|
|
|
"bev_medium_share": 0.3533, |
1030
|
|
|
"bev_luxury_share": 0.1053, |
1031
|
|
|
"phev_mini_share": 0.0984, |
1032
|
|
|
"phev_medium_share": 0.2189, |
1033
|
|
|
"phev_luxury_share": 0.0652, |
1034
|
|
|
"model_parameters": {}, |
1035
|
|
|
} |
1036
|
|
|
} |
1037
|
|
|
} |
1038
|
|
|
|
1039
|
|
|
elif scenario == "eGon100RE": |
1040
|
|
|
# eGon100RE has 3 Scenario variations |
1041
|
|
|
# * allocation will always be done for all scenarios |
1042
|
|
|
# * model data will be written to tables `egon_etrago_*` only |
1043
|
|
|
# for the variation as speciefied in `datasets.yml` |
1044
|
|
|
parameters = { |
1045
|
|
|
"motorized_individual_travel": { |
1046
|
|
|
"Reference 2050": { |
1047
|
|
|
"ev_count": 25065000, |
1048
|
|
|
"bev_mini_share": 0.1589, |
1049
|
|
|
"bev_medium_share": 0.3533, |
1050
|
|
|
"bev_luxury_share": 0.1053, |
1051
|
|
|
"phev_mini_share": 0.0984, |
1052
|
|
|
"phev_medium_share": 0.2189, |
1053
|
|
|
"phev_luxury_share": 0.0652, |
1054
|
|
|
"model_parameters": {}, |
1055
|
|
|
}, |
1056
|
|
|
"Mobility Transition 2050": { |
1057
|
|
|
"ev_count": 37745000, |
1058
|
|
|
"bev_mini_share": 0.1589, |
1059
|
|
|
"bev_medium_share": 0.3533, |
1060
|
|
|
"bev_luxury_share": 0.1053, |
1061
|
|
|
"phev_mini_share": 0.0984, |
1062
|
|
|
"phev_medium_share": 0.2189, |
1063
|
|
|
"phev_luxury_share": 0.0652, |
1064
|
|
|
"model_parameters": {}, |
1065
|
|
|
}, |
1066
|
|
|
"Electrification 2050": { |
1067
|
|
|
"ev_count": 47700000, |
1068
|
|
|
"bev_mini_share": 0.1589, |
1069
|
|
|
"bev_medium_share": 0.3533, |
1070
|
|
|
"bev_luxury_share": 0.1053, |
1071
|
|
|
"phev_mini_share": 0.0984, |
1072
|
|
|
"phev_medium_share": 0.2189, |
1073
|
|
|
"phev_luxury_share": 0.0652, |
1074
|
|
|
"model_parameters": {}, |
1075
|
|
|
}, |
1076
|
|
|
} |
1077
|
|
|
} |
1078
|
|
|
|
1079
|
|
|
elif scenario == "eGon2021": |
1080
|
|
|
parameters = {} |
1081
|
|
|
|
1082
|
|
|
elif scenario == "status2019": |
1083
|
|
|
parameters = { |
1084
|
|
|
"motorized_individual_travel": { |
1085
|
|
|
"status2019": { |
1086
|
|
|
"ev_count": 200000, |
1087
|
|
|
"bev_mini_share": 0.1589, |
1088
|
|
|
"bev_medium_share": 0.3533, |
1089
|
|
|
"bev_luxury_share": 0.1053, |
1090
|
|
|
"phev_mini_share": 0.0984, |
1091
|
|
|
"phev_medium_share": 0.2189, |
1092
|
|
|
"phev_luxury_share": 0.0652, |
1093
|
|
|
"model_parameters": {}, |
1094
|
|
|
} |
1095
|
|
|
} |
1096
|
|
|
} |
1097
|
|
|
|
1098
|
|
|
elif scenario == "status2023": |
1099
|
|
|
parameters = { |
1100
|
|
|
"motorized_individual_travel": { |
1101
|
|
|
"status2023": { |
1102
|
|
|
"ev_count": 2577664, |
1103
|
|
|
"bev_mini_share": 0.1535, |
1104
|
|
|
"bev_medium_share": 0.3412, |
1105
|
|
|
"bev_luxury_share": 0.1017, |
1106
|
|
|
"phev_mini_share": 0.1038, |
1107
|
|
|
"phev_medium_share": 0.2310, |
1108
|
|
|
"phev_luxury_share": 0.0688, |
1109
|
|
|
"model_parameters": {}, |
1110
|
|
|
} |
1111
|
|
|
} |
1112
|
|
|
} |
1113
|
|
|
|
1114
|
|
|
else: |
1115
|
|
|
print(f"Scenario name {scenario} is not valid.") |
1116
|
|
|
parameters = dict() |
1117
|
|
|
|
1118
|
|
|
return parameters |
1119
|
|
|
|
1120
|
|
|
|
1121
|
|
|
def heat(scenario): |
1122
|
|
|
"""Returns paramaters of the heat sector for the selected scenario. |
1123
|
|
|
|
1124
|
|
|
Parameters |
1125
|
|
|
---------- |
1126
|
|
|
scenario : str |
1127
|
|
|
Name of the scenario. |
1128
|
|
|
|
1129
|
|
|
Returns |
1130
|
|
|
------- |
1131
|
|
|
parameters : dict |
1132
|
|
|
List of parameters of heat sector |
1133
|
|
|
|
1134
|
|
|
""" |
1135
|
|
|
|
1136
|
|
|
if scenario == "eGon2035": |
1137
|
|
|
costs = read_csv(2035) |
1138
|
|
|
|
1139
|
|
|
parameters = { |
1140
|
|
|
"DE_demand_reduction_residential": 0.854314018923104, |
1141
|
|
|
"DE_demand_reduction_service": 0.498286864771128, |
1142
|
|
|
"DE_district_heating_share": 0.14, |
1143
|
|
|
} |
1144
|
|
|
|
1145
|
|
|
# Insert efficiency in p.u. |
1146
|
|
|
parameters["efficiency"] = { |
1147
|
|
|
"water_tank_charger": read_costs( |
1148
|
|
|
costs, "water tank charger", "efficiency" |
1149
|
|
|
), |
1150
|
|
|
"water_tank_discharger": read_costs( |
1151
|
|
|
costs, "water tank discharger", "efficiency" |
1152
|
|
|
), |
1153
|
|
|
"central_resistive_heater": read_costs( |
1154
|
|
|
costs, "central resistive heater", "efficiency" |
1155
|
|
|
), |
1156
|
|
|
"central_gas_boiler": read_costs( |
1157
|
|
|
costs, "central gas boiler", "efficiency" |
1158
|
|
|
), |
1159
|
|
|
"rural_resistive_heater": read_costs( |
1160
|
|
|
costs, "decentral resistive heater", "efficiency" |
1161
|
|
|
), |
1162
|
|
|
"rural_gas_boiler": read_costs( |
1163
|
|
|
costs, "decentral gas boiler", "efficiency" |
1164
|
|
|
), |
1165
|
|
|
} |
1166
|
|
|
|
1167
|
|
|
# Insert overnight investment costs, in EUR/MWh |
1168
|
|
|
parameters["overnight_cost"] = { |
1169
|
|
|
"central_water_tank": read_costs( |
1170
|
|
|
costs, "central water tank storage", "investment" |
1171
|
|
|
), |
1172
|
|
|
"rural_water_tank": read_costs( |
1173
|
|
|
costs, "decentral water tank storage", "investment" |
1174
|
|
|
), |
1175
|
|
|
} |
1176
|
|
|
|
1177
|
|
|
# Insert lifetime |
1178
|
|
|
parameters["lifetime"] = { |
1179
|
|
|
"central_water_tank": read_costs( |
1180
|
|
|
costs, "central water tank storage", "lifetime" |
1181
|
|
|
), |
1182
|
|
|
"rural_water_tank": read_costs( |
1183
|
|
|
costs, "decentral water tank storage", "lifetime" |
1184
|
|
|
), |
1185
|
|
|
} |
1186
|
|
|
|
1187
|
|
|
# Insert annualized capital costs |
1188
|
|
|
parameters["capital_cost"] = {} |
1189
|
|
|
|
1190
|
|
|
for comp in parameters["overnight_cost"].keys(): |
1191
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
1192
|
|
|
parameters["overnight_cost"][comp], |
1193
|
|
|
parameters["lifetime"][comp], |
1194
|
|
|
global_settings("eGon2035")["interest_rate"], |
1195
|
|
|
) |
1196
|
|
|
|
1197
|
|
|
# Insert marginal_costs in EUR/MWh |
1198
|
|
|
# marginal cost can include fuel, C02 and operation and maintenance costs |
1199
|
|
|
parameters["marginal_cost"] = { |
1200
|
|
|
"central_heat_pump": read_costs( |
1201
|
|
|
costs, "central air-sourced heat pump", "VOM" |
1202
|
|
|
), |
1203
|
|
|
"central_gas_chp": read_costs(costs, "central gas CHP", "VOM"), |
1204
|
|
|
"central_gas_boiler": read_costs( |
1205
|
|
|
costs, "central gas boiler", "VOM" |
1206
|
|
|
), |
1207
|
|
|
"central_resistive_heater": read_costs( |
1208
|
|
|
costs, "central resistive heater", "VOM" |
1209
|
|
|
), |
1210
|
|
|
"geo_thermal": 2.9, # Danish Energy Agency |
1211
|
|
|
"water_tank_charger": 0, # Danish Energy Agency |
1212
|
|
|
"water_tank_discharger": 0, # Danish Energy Agency |
1213
|
|
|
"rural_heat_pump": 0, # Danish Energy Agency, Technology Data for Individual Heating Plants |
1214
|
|
|
} |
1215
|
|
|
|
1216
|
|
|
elif scenario == "eGon100RE": |
1217
|
|
|
costs = read_csv(2050) |
1218
|
|
|
|
1219
|
|
|
parameters = { |
1220
|
|
|
"DE_demand_residential_MWh": 536692489.8152325 * 0.71542, |
1221
|
|
|
# [MWh], source: pypsa-eur run from 2024/12/23: |
1222
|
|
|
# total heat demand muliplied by residential share from resources/pop_weighted_heat_totals |
1223
|
|
|
"DE_demand_service_MWh": 536692489.8152325 * (1-0.71542), |
1224
|
|
|
# [MWh], source: pypsa-eur run from 2024/12/23: |
1225
|
|
|
# total heat demand muliplied by service share from resources/pop_weighted_heat_totals |
1226
|
|
|
"DE_district_heating_share": 0.42311285313808533, |
1227
|
|
|
# [%], source: pypsa-eur run from 2024/12/23 |
1228
|
|
|
} |
1229
|
|
|
|
1230
|
|
|
|
1231
|
|
|
parameters["marginal_cost"] = { |
1232
|
|
|
"central_heat_pump": read_costs( |
1233
|
|
|
costs, "central air-sourced heat pump", "VOM" |
1234
|
|
|
), |
1235
|
|
|
"central_gas_chp": read_costs(costs, "central gas CHP", "VOM"), |
1236
|
|
|
"central_gas_boiler": read_costs( |
1237
|
|
|
costs, "central gas boiler", "VOM" |
1238
|
|
|
), |
1239
|
|
|
"central_resistive_heater": read_costs( |
1240
|
|
|
costs, "central resistive heater", "VOM" |
1241
|
|
|
), |
1242
|
|
|
"geo_thermal": 2.7, # Danish Energy Agency |
1243
|
|
|
"water_tank_charger": 0, # Danish Energy Agency |
1244
|
|
|
"water_tank_discharger": 0, # Danish Energy Agency |
1245
|
|
|
"rural_heat_pump": 0, # Danish Energy Agency, Technology Data for Individual Heating Plants |
1246
|
|
|
} |
1247
|
|
|
|
1248
|
|
|
# Insert efficiency in p.u. |
1249
|
|
|
parameters["efficiency"] = { |
1250
|
|
|
"water_tank_charger": read_costs( |
1251
|
|
|
costs, "water tank charger", "efficiency" |
1252
|
|
|
), |
1253
|
|
|
"water_tank_discharger": read_costs( |
1254
|
|
|
costs, "water tank discharger", "efficiency" |
1255
|
|
|
), |
1256
|
|
|
"central_resistive_heater": read_costs( |
1257
|
|
|
costs, "central resistive heater", "efficiency" |
1258
|
|
|
), |
1259
|
|
|
"central_gas_boiler": read_costs( |
1260
|
|
|
costs, "central gas boiler", "efficiency" |
1261
|
|
|
), |
1262
|
|
|
"rural_resistive_heater": read_costs( |
1263
|
|
|
costs, "decentral resistive heater", "efficiency" |
1264
|
|
|
), |
1265
|
|
|
"rural_gas_boiler": read_costs( |
1266
|
|
|
costs, "decentral gas boiler", "efficiency" |
1267
|
|
|
), |
1268
|
|
|
} |
1269
|
|
|
|
1270
|
|
|
# Insert overnight investment costs, in EUR/MWh |
1271
|
|
|
parameters["overnight_cost"] = { |
1272
|
|
|
"central_water_tank": read_costs( |
1273
|
|
|
costs, "central water tank storage", "investment" |
1274
|
|
|
), |
1275
|
|
|
"rural_water_tank": read_costs( |
1276
|
|
|
costs, "decentral water tank storage", "investment" |
1277
|
|
|
), |
1278
|
|
|
} |
1279
|
|
|
|
1280
|
|
|
# Insert lifetime |
1281
|
|
|
parameters["lifetime"] = { |
1282
|
|
|
"central_water_tank": read_costs( |
1283
|
|
|
costs, "central water tank storage", "lifetime" |
1284
|
|
|
), |
1285
|
|
|
"rural_water_tank": read_costs( |
1286
|
|
|
costs, "decentral water tank storage", "lifetime" |
1287
|
|
|
), |
1288
|
|
|
} |
1289
|
|
|
|
1290
|
|
|
# Insert annualized capital costs |
1291
|
|
|
parameters["capital_cost"] = {} |
1292
|
|
|
|
1293
|
|
|
for comp in parameters["overnight_cost"].keys(): |
1294
|
|
|
parameters["capital_cost"][comp] = annualize_capital_costs( |
1295
|
|
|
parameters["overnight_cost"][comp], |
1296
|
|
|
parameters["lifetime"][comp], |
1297
|
|
|
global_settings("eGon100RE")["interest_rate"], |
1298
|
|
|
) |
1299
|
|
|
|
1300
|
|
|
elif scenario == "eGon2021": |
1301
|
|
|
parameters = {} |
1302
|
|
|
|
1303
|
|
|
elif scenario == "status2019": |
1304
|
|
|
parameters = { |
1305
|
|
|
"DE_demand_residential_TJ": 1658400 |
1306
|
|
|
+ 383300, # [TJ], space heating + hot water, source: AG Energiebilanzen 2019 (https://ag-energiebilanzen.de/wp-content/uploads/2020/10/ageb_20v_v1.pdf) |
1307
|
|
|
"DE_demand_service_TJ": 567300 |
1308
|
|
|
+ 71500, # [TJ], space heating + hot water, source: AG Energiebilanzen 2019 (https://ag-energiebilanzen.de/wp-content/uploads/2020/10/ageb_20v_v1.pdf) |
1309
|
|
|
"DE_district_heating_share": (189760 + 38248) |
1310
|
|
|
/ ( |
1311
|
|
|
1658400 + 383300 + 567300 + 71500 |
1312
|
|
|
), # [TJ], source: AG Energiebilanzen 2019 (https://ag-energiebilanzen.de/wp-content/uploads/2021/11/bilanz19d.xlsx) |
1313
|
|
|
} |
1314
|
|
|
|
1315
|
|
|
costs = read_csv(2020) |
1316
|
|
|
|
1317
|
|
|
# Insert marginal_costs in EUR/MWh |
1318
|
|
|
# marginal cost can include fuel, C02 and operation and maintenance costs |
1319
|
|
|
parameters["marginal_cost"] = { |
1320
|
|
|
"central_heat_pump": read_costs( |
1321
|
|
|
costs, "central air-sourced heat pump", "VOM" |
1322
|
|
|
), |
1323
|
|
|
"central_gas_chp": read_costs(costs, "central gas CHP", "VOM"), |
1324
|
|
|
"central_gas_boiler": read_costs( |
1325
|
|
|
costs, "central gas boiler", "VOM" |
1326
|
|
|
), |
1327
|
|
|
"central_resistive_heater": read_costs( |
1328
|
|
|
costs, "central resistive heater", "VOM" |
1329
|
|
|
), |
1330
|
|
|
"rural_heat_pump": 0, # Danish Energy Agency, Technology Data for Individual Heating Plants |
1331
|
|
|
} |
1332
|
|
|
|
1333
|
|
|
# Insert efficiency in p.u. |
1334
|
|
|
parameters["efficiency"] = { |
1335
|
|
|
"central_gas_boiler": read_costs( |
1336
|
|
|
costs, "central gas boiler", "efficiency" |
1337
|
|
|
), |
1338
|
|
|
} |
1339
|
|
|
|
1340
|
|
|
# elif scenario == "status2023": |
1341
|
|
|
# parameters = { |
1342
|
|
|
# # source: AG Energiebilanzen 2022 https://ag-energiebilanzen.de/wp-content/uploads/2023/01/AGEB_22p2_rev-1.pdf |
1343
|
|
|
# "DE_demand_residential_TJ": 1754.2 * 1e3 |
1344
|
|
|
# + 407.5 * 1e3, # [TJ], Endenergieverbrauch Haushalte 2.1 Raumwärme + Warmwasser |
1345
|
|
|
# "DE_demand_service_TJ": 668.4 * 1e3 |
1346
|
|
|
# + 44.3 * 1e3 , # [TJ], Endenergieverbrauch GHD 3.1 Raumwärme + Warmwasser |
1347
|
|
|
# "DE_district_heating_share": (189760 + 38248) |
1348
|
|
|
# / ( |
1349
|
|
|
# 1658400 + 383300 + 567300 + 71500 |
1350
|
|
|
# ), # [TJ], source: AG Energiebilanzen 2019 (https://ag-energiebilanzen.de/wp-content/uploads/2021/11/bilanz19d.xlsx) |
1351
|
|
|
# } # TODO status2023 needs update |
1352
|
|
|
# |
1353
|
|
|
# costs = read_csv(2020) |
1354
|
|
|
# |
1355
|
|
|
# # Insert marginal_costs in EUR/MWh |
1356
|
|
|
# # marginal cost can include fuel, C02 and operation and maintenance costs |
1357
|
|
|
# parameters["marginal_cost"] = { |
1358
|
|
|
# "central_heat_pump": read_costs( |
1359
|
|
|
# costs, "central air-sourced heat pump", "VOM" |
1360
|
|
|
# ), |
1361
|
|
|
# "central_gas_chp": read_costs(costs, "central gas CHP", "VOM"), |
1362
|
|
|
# "central_gas_boiler": read_costs( |
1363
|
|
|
# costs, "central gas boiler", "VOM" |
1364
|
|
|
# ), |
1365
|
|
|
# "central_resistive_heater": read_costs( |
1366
|
|
|
# costs, "central resistive heater", "VOM" |
1367
|
|
|
# ), |
1368
|
|
|
# "rural_heat_pump": 0, # Danish Energy Agency, Technology Data for Individual Heating Plants |
1369
|
|
|
# } |
1370
|
|
|
# |
1371
|
|
|
# # Insert efficiency in p.u. |
1372
|
|
|
# parameters["efficiency"] = { |
1373
|
|
|
# "central_gas_boiler": read_costs( |
1374
|
|
|
# costs, "central gas boiler", "efficiency" |
1375
|
|
|
# ), |
1376
|
|
|
# } |
1377
|
|
|
|
1378
|
|
|
else: |
1379
|
|
|
print(f"Scenario name {scenario} is not valid.") |
1380
|
|
|
|
1381
|
|
|
return parameters |
1382
|
|
|
|