1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
""" |
3
|
|
|
Module containing the definition of the AC grid to H2 links |
4
|
|
|
|
5
|
|
|
In this module the functions used to define and insert into the database |
6
|
|
|
the links between H2 and AC buses are to be found. |
7
|
|
|
These links are modelling: |
8
|
|
|
* Electrolysis (carrier name: 'power_to_H2'): technology to produce H2 |
9
|
|
|
from AC |
10
|
|
|
* Fuel cells (carrier name: 'H2_to_power'): techonology to produce |
11
|
|
|
power from H2 |
12
|
|
|
* Waste_heat usage (carrier name: 'PtH2_waste_heat'): Components to use |
13
|
|
|
waste heat as by-product from electrolysis |
14
|
|
|
* Oxygen usage (carrier name: 'PtH2_O2'): Components to use |
15
|
|
|
oxygen as by-product from elctrolysis |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
""" |
19
|
|
|
import pandas as pd |
20
|
|
|
import math |
21
|
|
|
import geopandas as gpd |
22
|
|
|
from itertools import count |
23
|
|
|
from sqlalchemy import text |
24
|
|
|
from shapely.geometry import MultiLineString, LineString, Point |
25
|
|
|
from shapely.wkb import dumps |
26
|
|
|
from egon.data import db, config |
27
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
28
|
|
|
from pathlib import Path |
29
|
|
|
import numpy as np |
30
|
|
|
from shapely.strtree import STRtree |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def insert_power_to_h2_to_power(): |
35
|
|
|
""" |
36
|
|
|
Insert electrolysis and fuel cells capacities into the database. |
37
|
|
|
For electrolysis potential waste_heat- and oxygen-utilisation is |
38
|
|
|
implemented if district_heating-/oxygen-demand is nearby electrolysis |
39
|
|
|
location |
40
|
|
|
|
41
|
|
|
The potentials for power-to-H2 in electrolysis and H2-to-power in |
42
|
|
|
fuel cells are created between each HVMV Substaion (or each AC_BUS related |
43
|
|
|
to setting SUBSTATION) and closest H2-Bus (H2 and H2_saltcaverns) inside |
44
|
|
|
buffer-range of 30km. |
45
|
|
|
For oxygen-usage all WWTP within MV-district and buffer-range of 10km |
46
|
|
|
is connected to relevant HVMV Substation |
47
|
|
|
For heat-usage closest central-heat-bus inner an dynamic buffer is connected |
48
|
|
|
to relevant HVMV-Substation. |
49
|
|
|
|
50
|
|
|
All links are extendable. |
51
|
|
|
|
52
|
|
|
This function inserts data into the database and has no return. |
53
|
|
|
|
54
|
|
|
Parameters |
55
|
|
|
---------- |
56
|
|
|
scn_name : str |
57
|
|
|
Name of the scenario |
58
|
|
|
|
59
|
|
|
Returns |
60
|
|
|
------- |
61
|
|
|
None |
62
|
|
|
|
63
|
|
|
""" |
64
|
|
|
scenarios = config.settings()["egon-data"]["--scenarios"] |
65
|
|
|
|
66
|
|
|
# General Constant Parameters |
67
|
|
|
DATA_CRS = 4326 # default CRS |
68
|
|
|
METRIC_CRS = 32632 # demanded CRS |
69
|
|
|
|
70
|
|
|
ELEC_COST = 60 # [EUR/MWh] |
71
|
|
|
O2_PRESSURE_ELZ = 13 # [bar] |
72
|
|
|
FACTOR_AERATION_EC = 0.6 # [%] aeration EC from total capacity of WWTP (PE) |
73
|
|
|
FACTOR_O2_EC = 0.8 # [%] Oxygen EC from total aeration EC |
74
|
|
|
O2_PRESSURE_MIN = 2 # [bar] |
75
|
|
|
MOLAR_MASS_O2 = 0.0319988 # [kg/mol] |
76
|
|
|
PIPELINE_DIAMETER_RANGE = [0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50] # [m] |
77
|
|
|
TEMPERATURE = 15 + 273.15 # [Kelvin] degree + 273.15 |
78
|
|
|
UNIVERSAL_GAS_CONSTANT = 8.3145 # [J/(mol·K)] |
79
|
|
|
|
80
|
|
|
# Power to O2 (Wastewater Treatment Plants) |
81
|
|
|
WWTP_SEC = { |
82
|
|
|
"c5": 29.6, |
83
|
|
|
"c4": 31.3, |
84
|
|
|
"c3": 39.8, |
85
|
|
|
"c2": 42.1, |
86
|
|
|
} # [kWh/year] Specific Energy Consumption |
87
|
|
|
|
88
|
|
|
H2 = "h2" |
89
|
|
|
WWTP = "wwtp" |
90
|
|
|
AC = "ac" |
91
|
|
|
H2GRID = "h2_grid" |
92
|
|
|
ACZONE_HVMV = "ac_zone_hvmv" |
93
|
|
|
ACZONE_EHV = "ac_zone_ehv" |
94
|
|
|
ACSUB_HVMV = "ac_sub_hvmv" |
95
|
|
|
ACSUB_EHV = "ac_sub_ehv" |
96
|
|
|
HEAT_BUS = "heat_point" |
97
|
|
|
HEAT_LOAD = "heat_load" |
98
|
|
|
HEAT_TIMESERIES = "heat_timeseries" |
99
|
|
|
H2_BUSES_CH4 = 'h2_buses_ch4' |
100
|
|
|
AC_LOAD = 'ac_load' |
101
|
|
|
HEAT_AREA = 'heat_area' |
102
|
|
|
|
103
|
|
|
#buffer_range |
104
|
|
|
buffer_heat_factor= 625 # [m/MW_th] 625/3125 for worstcase/bestcase-Szeanrio |
105
|
|
|
max_buffer_heat= 5000 #[m] 5000/30000 for worstcase/bestcase-Szenario |
106
|
|
|
Buffer = { |
107
|
|
|
"O2": 5000, # [m] |
108
|
|
|
"H2_HVMV": 5000, |
109
|
|
|
"H2_EHV": 20000, |
110
|
|
|
"HVMV": 10000, |
111
|
|
|
"EHV": 20000, |
112
|
|
|
"HEAT": 5000, |
113
|
|
|
} |
114
|
|
|
|
115
|
|
|
# connet to PostgreSQL database (to localhost) |
116
|
|
|
engine = db.engine() |
117
|
|
|
|
118
|
|
|
data_config = config.datasets() |
119
|
|
|
sources = data_config["PtH2_waste_heat_O2"]["sources"] |
120
|
|
|
targets = data_config["PtH2_waste_heat_O2"]["targets"] |
121
|
|
|
|
122
|
|
|
for SCENARIO_NAME in scenarios: |
123
|
|
|
|
124
|
|
|
if SCENARIO_NAME not in ["eGon100RE", "eGon2035"]: |
125
|
|
|
continue |
126
|
|
|
|
127
|
|
|
scn_params_gas = get_sector_parameters("gas", SCENARIO_NAME) |
128
|
|
|
scn_params_elec = get_sector_parameters("electricity", SCENARIO_NAME) |
129
|
|
|
|
130
|
|
|
AC_TRANS = scn_params_elec["capital_cost"]["transformer_220_110"] # [EUR/MW/YEAR] |
131
|
|
|
AC_COST_CABLE = scn_params_elec["capital_cost"]["ac_hv_cable"] #[EUR/MW/km/YEAR] |
132
|
|
|
ELZ_CAPEX_SYSTEM = scn_params_gas["capital_cost"]["power_to_H2_system"] # [EUR/MW/YEAR] |
133
|
|
|
ELZ_CAPEX_STACK = scn_params_gas["capital_cost"]["power_to_H2_stack"] # [EUR/MW/YEAR] |
134
|
|
|
ELZ_LIFETIME_Y = scn_params_gas["lifetime"]["power_to_H2_system"] # [Year] |
135
|
|
|
if SCENARIO_NAME == 'eGon2035': |
136
|
|
|
ELZ_OPEX = scn_params_gas["capital_cost"]["power_to_H2_OPEX"]# [EUR/MW/YEAR] |
137
|
|
|
else: |
138
|
|
|
ELZ_OPEX = 0 # [EUR/MW/YEAR] , for eGon100RE OPEX are already included in SYSTEM and STACK costs |
139
|
|
|
H2_COST_PIPELINE = scn_params_gas["capital_cost"]["H2_pipeline"] #[EUR/MW/km/YEAR] |
140
|
|
|
ELZ_EFF = scn_params_gas["efficiency"]["power_to_H2"] |
141
|
|
|
|
142
|
|
|
HEAT_COST_EXCHANGER = scn_params_gas["capital_cost"]["Heat_exchanger"] # [EUR/MW/YEAR] |
143
|
|
|
HEAT_COST_PIPELINE = scn_params_gas["capital_cost"]["Heat_pipeline"] # [EUR/MW/YEAR] |
144
|
|
|
|
145
|
|
|
O2_PIPELINE_COSTS = scn_params_gas["O2_capital_cost"] #[EUR/km/YEAR] |
146
|
|
|
O2_COST_EQUIPMENT = scn_params_gas["capital_cost"]["O2_components"] #[EUR/MW/YEAR] |
147
|
|
|
|
148
|
|
|
FUEL_CELL_COST = scn_params_gas["capital_cost"]["H2_to_power"] #[EUR/MW/YEAR] |
149
|
|
|
FUEL_CELL_EFF = scn_params_gas["efficiency"]["H2_to_power"] |
150
|
|
|
FUEL_CELL_LIFETIME = scn_params_gas["lifetime"]["H2_to_power"] |
151
|
|
|
|
152
|
|
|
|
153
|
|
|
|
154
|
|
|
def export_o2_buses_to_db(df): |
155
|
|
|
max_bus_id = db.next_etrago_id("bus") |
156
|
|
|
next_bus_id = count(start=max_bus_id, step=1) |
157
|
|
|
schema = targets['buses']['schema'] |
158
|
|
|
table_name = targets['buses']['table'] |
159
|
|
|
|
160
|
|
|
db.execute_sql( |
161
|
|
|
f"DELETE FROM {schema}.{table_name} WHERE carrier = 'O2' AND scn_name='{SCENARIO_NAME}'" |
162
|
|
|
) |
163
|
|
|
df = df.copy(deep=True) |
164
|
|
|
result = [] |
165
|
|
|
for _, row in df.iterrows(): |
166
|
|
|
bus_id = next(next_bus_id) |
167
|
|
|
result.append( |
168
|
|
|
{ |
169
|
|
|
"scn_name": SCENARIO_NAME, |
170
|
|
|
"bus_id": bus_id, |
171
|
|
|
"v_nom": "110", |
172
|
|
|
"type": row["KA_ID"], |
173
|
|
|
"carrier": "O2", |
174
|
|
|
"x": row["Koord_Kläranlage_rw"], |
175
|
|
|
"y": row["Koord_Kläranlage_hw"], |
176
|
|
|
"geom": dumps( |
177
|
|
|
Point( |
178
|
|
|
row["Koord_Kläranlage_rw"], row["Koord_Kläranlage_hw"] |
179
|
|
|
), |
180
|
|
|
srid=DATA_CRS, |
181
|
|
|
), |
182
|
|
|
"country": "DE", |
183
|
|
|
} |
184
|
|
|
) |
185
|
|
|
result_df = pd.DataFrame(result) |
186
|
|
|
result_df.to_sql(table_name, engine, schema=schema, if_exists="append", index=False) |
187
|
|
|
|
188
|
|
|
|
189
|
|
|
wwtp_spec = pd.read_csv(Path(".")/"WWTP_spec.csv") |
190
|
|
|
export_o2_buses_to_db(wwtp_spec) # Call the function with the dataframe |
191
|
|
|
|
192
|
|
|
# dictionary of SQL queries |
193
|
|
|
queries = { |
194
|
|
|
WWTP: f""" |
195
|
|
|
SELECT bus_id AS id, geom, type AS ka_id |
196
|
|
|
FROM {sources["buses"]["schema"]}.{sources["buses"]["table"]} |
197
|
|
|
WHERE carrier in ('O2') AND scn_name = '{SCENARIO_NAME}' |
198
|
|
|
""", |
199
|
|
|
H2: f""" |
200
|
|
|
SELECT bus_id AS id, geom |
201
|
|
|
FROM {sources["buses"]["schema"]}.{sources["buses"]["table"]} |
202
|
|
|
WHERE carrier in ('H2_grid', 'H2') |
203
|
|
|
AND scn_name = '{SCENARIO_NAME}' |
204
|
|
|
AND country = 'DE' |
205
|
|
|
""", |
206
|
|
|
H2GRID: f""" |
207
|
|
|
SELECT link_id, geom, bus0, bus1 |
208
|
|
|
FROM {sources["links"]["schema"]}.{sources["links"]["table"]} |
209
|
|
|
WHERE carrier in ('H2_grid') AND scn_name = '{SCENARIO_NAME}' |
210
|
|
|
""", |
211
|
|
|
AC: f""" |
212
|
|
|
SELECT bus_id AS id, geom |
213
|
|
|
FROM {sources["buses"]["schema"]}.{sources["buses"]["table"]} |
214
|
|
|
WHERE carrier in ('AC') |
215
|
|
|
AND scn_name = '{SCENARIO_NAME}' |
216
|
|
|
AND v_nom = '110' |
217
|
|
|
""", |
218
|
|
|
ACSUB_HVMV: f""" |
219
|
|
|
SELECT bus_id AS id, point AS geom |
220
|
|
|
FROM {sources["hvmv_substation"]["schema"]}.{sources["hvmv_substation"]["table"]} |
221
|
|
|
""", |
222
|
|
|
ACSUB_EHV:f""" |
223
|
|
|
SELECT bus_id AS id, point AS geom |
224
|
|
|
FROM {sources["ehv_substation"]["schema"]}.{sources["ehv_substation"]["table"]} |
225
|
|
|
""", |
226
|
|
|
ACZONE_HVMV: f""" |
227
|
|
|
SELECT bus_id AS id, ST_Transform(geom, 4326) as geom |
228
|
|
|
FROM {sources["mv_districts"]["schema"]}.{sources["mv_districts"]["table"]} |
229
|
|
|
""", |
230
|
|
|
ACZONE_EHV: f""" |
231
|
|
|
SELECT bus_id AS id, ST_Transform(geom, 4326) as geom |
232
|
|
|
FROM {sources["ehv_voronoi"]["schema"]}.{sources["ehv_voronoi"]["table"]} |
233
|
|
|
""", |
234
|
|
|
HEAT_BUS: f""" |
235
|
|
|
SELECT bus_id AS id, geom |
236
|
|
|
FROM {sources["buses"]["schema"]}.{sources["buses"]["table"]} |
237
|
|
|
WHERE carrier in ('central_heat') |
238
|
|
|
AND scn_name = '{SCENARIO_NAME}' |
239
|
|
|
AND country = 'DE' |
240
|
|
|
""", |
241
|
|
|
} |
242
|
|
|
|
243
|
|
|
dfs = { |
244
|
|
|
key: gpd.read_postgis(queries[key], engine, crs=DATA_CRS).to_crs(METRIC_CRS) |
245
|
|
|
for key in queries.keys() |
246
|
|
|
} |
247
|
|
|
|
248
|
|
|
with engine.connect() as conn: |
249
|
|
|
conn.execute( |
250
|
|
|
text( |
251
|
|
|
f"""DELETE FROM {targets["links"]["schema"]}.{targets["links"]["table"]} |
252
|
|
|
WHERE carrier IN ('power_to_H2', 'H2_to_power', 'PtH2_waste_heat', 'PtH2_O2') |
253
|
|
|
AND scn_name = '{SCENARIO_NAME}' AND bus0 IN ( |
254
|
|
|
SELECT bus_id |
255
|
|
|
FROM {targets["buses"]["schema"]}.{targets["buses"]["table"]} |
256
|
|
|
WHERE country = 'DE' |
257
|
|
|
) |
258
|
|
|
""" |
259
|
|
|
) |
260
|
|
|
) |
261
|
|
|
|
262
|
|
|
def prepare_dataframes_for_spartial_queries(): |
263
|
|
|
|
264
|
|
|
#filter_out_potential_methanisation_buses |
265
|
|
|
h2_grid_bus_ids=tuple(dfs[H2GRID]['bus1']) + tuple(dfs[H2GRID]['bus0']) |
266
|
|
|
dfs[H2_BUSES_CH4] = dfs[H2][~dfs[H2]['id'].isin(h2_grid_bus_ids)] |
267
|
|
|
|
268
|
|
|
#prepare h2_links for filtering: |
269
|
|
|
# extract geometric data for bus0 |
270
|
|
|
merged_link_with_bus0_geom = pd.merge(dfs[H2GRID], dfs[H2], left_on='bus0', right_on='id', how='left') |
271
|
|
|
merged_link_with_bus0_geom = merged_link_with_bus0_geom.rename(columns={'geom_y': 'geom_bus0'}).rename(columns={'geom_x': 'geom_link'}) |
272
|
|
|
|
273
|
|
|
# extract geometric data for bus1 |
274
|
|
|
merged_link_with_bus1_geom = pd.merge(merged_link_with_bus0_geom, dfs[H2], left_on='bus1', right_on='id', how='left') |
275
|
|
|
merged_link_with_bus1_geom = merged_link_with_bus1_geom.rename(columns={'geom': 'geom_bus1'}) |
276
|
|
|
merged_link_with_bus1_geom = merged_link_with_bus1_geom[merged_link_with_bus1_geom['geom_bus1'] != None] #delete all abroad_links |
277
|
|
|
|
278
|
|
|
#prepare heat_buses for filtering |
279
|
|
|
queries[HEAT_AREA]=f""" |
280
|
|
|
SELECT area_id, geom_polygon as geom |
281
|
|
|
FROM {sources["district_heating_area"]["schema"]}.{sources["district_heating_area"]["table"]} |
282
|
|
|
WHERE scenario = '{SCENARIO_NAME}' |
283
|
|
|
""" |
284
|
|
|
dfs[HEAT_AREA] = gpd.read_postgis(queries[HEAT_AREA], engine).to_crs(METRIC_CRS) |
285
|
|
|
|
286
|
|
|
heat_bus_geoms = dfs[HEAT_BUS]['geom'].tolist() |
287
|
|
|
heat_bus_index = STRtree(heat_bus_geoms) |
288
|
|
|
|
289
|
|
|
|
290
|
|
|
for _, heat_area_row in dfs[HEAT_AREA].iterrows(): |
291
|
|
|
heat_area_geom = heat_area_row['geom'] |
292
|
|
|
area_id = heat_area_row['area_id'] |
293
|
|
|
|
294
|
|
|
potential_matches = heat_bus_index.query(heat_area_geom) |
295
|
|
|
|
296
|
|
|
nearest_bus_idx = None |
297
|
|
|
nearest_distance = float('inf') |
298
|
|
|
|
299
|
|
|
for bus_idx in potential_matches: |
300
|
|
|
bus_geom = dfs[HEAT_BUS].at[bus_idx, 'geom'] |
301
|
|
|
|
302
|
|
|
distance = heat_area_geom.centroid.distance(bus_geom) |
303
|
|
|
if distance < nearest_distance: |
304
|
|
|
nearest_distance = distance |
305
|
|
|
nearest_bus_idx = bus_idx |
306
|
|
|
|
307
|
|
|
if nearest_bus_idx is not None: |
308
|
|
|
dfs[HEAT_BUS].at[nearest_bus_idx, 'area_id'] = area_id |
309
|
|
|
dfs[HEAT_BUS].at[nearest_bus_idx, 'area_geom'] = heat_area_geom |
310
|
|
|
|
311
|
|
|
|
312
|
|
|
|
313
|
|
|
dfs[HEAT_BUS]['area_geom'] = gpd.GeoSeries(dfs[HEAT_BUS]['area_geom']) |
314
|
|
|
|
315
|
|
|
queries[HEAT_LOAD] = f""" |
316
|
|
|
SELECT bus, load_id |
317
|
|
|
FROM {sources["loads"]["schema"]}.{sources["loads"]["table"]} |
318
|
|
|
WHERE carrier in ('central_heat') |
319
|
|
|
AND scn_name = '{SCENARIO_NAME}' |
320
|
|
|
""" |
321
|
|
|
dfs[HEAT_LOAD] = pd.read_sql(queries[HEAT_LOAD], engine) |
322
|
|
|
load_ids=tuple(dfs[HEAT_LOAD]['load_id']) |
323
|
|
|
|
324
|
|
|
queries[HEAT_TIMESERIES] = f""" |
325
|
|
|
SELECT load_id, p_set |
326
|
|
|
FROM {sources["load_timeseries"]["schema"]}.{sources["load_timeseries"]["table"]} |
327
|
|
|
WHERE load_id IN {load_ids} |
328
|
|
|
AND scn_name = '{SCENARIO_NAME}' |
329
|
|
|
""" |
330
|
|
|
dfs[HEAT_TIMESERIES] = pd.read_sql(queries[HEAT_TIMESERIES], engine) |
331
|
|
|
dfs[HEAT_TIMESERIES]['sum_of_p_set'] = dfs[HEAT_TIMESERIES]['p_set'].apply(sum) |
332
|
|
|
dfs[HEAT_TIMESERIES].drop('p_set', axis=1, inplace=True) |
333
|
|
|
dfs[HEAT_TIMESERIES].dropna(subset=['sum_of_p_set'], inplace=True) |
334
|
|
|
dfs[HEAT_LOAD] = pd.merge(dfs[HEAT_LOAD], dfs[HEAT_TIMESERIES], on='load_id') |
335
|
|
|
dfs[HEAT_BUS] = pd.merge(dfs[HEAT_BUS], dfs[HEAT_LOAD], left_on='id', right_on='bus', how='inner') |
336
|
|
|
dfs[HEAT_BUS]['p_mean'] = dfs[HEAT_BUS]['sum_of_p_set'].apply(lambda x: x / 8760) |
337
|
|
|
dfs[HEAT_BUS]['buffer'] = dfs[HEAT_BUS]['p_mean'].apply(lambda x: x*buffer_heat_factor) |
338
|
|
|
dfs[HEAT_BUS]['buffer'] = dfs[HEAT_BUS]['buffer'].apply(lambda x: x if x < max_buffer_heat else max_buffer_heat) |
339
|
|
|
|
340
|
|
|
return merged_link_with_bus1_geom, dfs[HEAT_BUS], dfs[H2_BUSES_CH4] |
341
|
|
|
|
342
|
|
|
|
343
|
|
|
|
344
|
|
|
def find_h2_grid_connection(df_AC, df_h2, buffer_h2, buffer_AC, sub_type): |
345
|
|
|
df_h2['buffer'] = df_h2['geom_link'].buffer(buffer_h2) |
346
|
|
|
df_AC['buffer'] = df_AC['geom'].buffer(buffer_AC) |
347
|
|
|
|
348
|
|
|
h2_index = STRtree(df_h2['buffer'].tolist()) |
349
|
|
|
|
350
|
|
|
results = [] |
351
|
|
|
|
352
|
|
|
for idx, row in df_AC.iterrows(): |
353
|
|
|
buffered_AC = row['buffer'] |
354
|
|
|
|
355
|
|
|
possible_matches_idx = h2_index.query(buffered_AC) |
356
|
|
|
|
357
|
|
|
nearest_match = None |
358
|
|
|
nearest_distance = float('inf') |
359
|
|
|
|
360
|
|
|
for match_idx in possible_matches_idx: |
361
|
|
|
h2_row = df_h2.iloc[match_idx] |
362
|
|
|
|
363
|
|
|
if buffered_AC.intersects(h2_row['buffer']): |
364
|
|
|
intersection = buffered_AC.intersection(h2_row['buffer']) |
365
|
|
|
|
366
|
|
|
if not intersection.is_empty: |
367
|
|
|
distance_AC = row['geom'].distance(intersection.centroid) |
368
|
|
|
distance_H2 = h2_row['geom_link'].distance(intersection.centroid) |
369
|
|
|
distance_to_0 = row['geom'].distance(h2_row['geom_bus0']) |
370
|
|
|
distance_to_1 = row['geom'].distance(h2_row['geom_bus1']) |
371
|
|
|
|
372
|
|
|
if distance_to_0 < distance_to_1: |
373
|
|
|
bus_H2 = h2_row['bus0'] |
374
|
|
|
point_H2 = h2_row['geom_bus0'] |
375
|
|
|
else: |
376
|
|
|
bus_H2 = h2_row['bus1'] |
377
|
|
|
point_H2 = h2_row['geom_bus1'] |
378
|
|
|
|
379
|
|
|
if distance_H2 < nearest_distance: |
380
|
|
|
nearest_distance = distance_H2 |
381
|
|
|
nearest_match = { |
382
|
|
|
'bus_h2': bus_H2, |
383
|
|
|
'bus_AC': row['id'], |
384
|
|
|
'geom_h2': point_H2, |
385
|
|
|
'geom_AC': row['geom'], |
386
|
|
|
'distance_h2': distance_H2, |
387
|
|
|
'distance_ac': distance_AC, |
388
|
|
|
'intersection': intersection, |
389
|
|
|
'sub_type': sub_type, |
390
|
|
|
} |
391
|
|
|
|
392
|
|
|
if nearest_match: |
393
|
|
|
results.append(nearest_match) |
394
|
|
|
|
395
|
|
|
if not results: |
396
|
|
|
return pd.DataFrame(columns=['bus_h2', 'bus_AC', 'geom_h2', 'geom_AC', 'distance_h2', 'distance_ac', 'intersection', 'sub_type']) |
397
|
|
|
else: |
398
|
|
|
return pd.DataFrame(results) |
399
|
|
|
|
400
|
|
|
|
401
|
|
|
def find_h2_bus_connection(df_H2, df_AC, buffer_h2, buffer_AC, sub_type): |
402
|
|
|
|
403
|
|
|
df_H2['buffer'] = df_H2['geom'].buffer(buffer_h2) |
404
|
|
|
df_AC['buffer'] = df_AC['geom'].buffer(buffer_AC) |
405
|
|
|
|
406
|
|
|
h2_index = STRtree(df_H2['buffer'].tolist()) |
407
|
|
|
|
408
|
|
|
results = [] |
409
|
|
|
for _, row in df_AC.iterrows(): |
410
|
|
|
possible_matches_idx = h2_index.query(row['buffer']) |
411
|
|
|
|
412
|
|
|
nearest_match = None |
413
|
|
|
nearest_distance = float('inf') |
414
|
|
|
|
415
|
|
|
for match_idx in possible_matches_idx: |
416
|
|
|
h2_row = df_H2.iloc[match_idx] |
417
|
|
|
|
418
|
|
|
if row['buffer'].intersects(h2_row['buffer']): |
419
|
|
|
intersection = row['buffer'].intersection(h2_row['buffer']) |
420
|
|
|
distance_AC = row['geom'].distance(intersection.centroid) |
421
|
|
|
distance_H2 = h2_row['geom'].distance(intersection.centroid) |
422
|
|
|
|
423
|
|
|
if (distance_AC + distance_H2) < nearest_distance: |
424
|
|
|
nearest_distance = distance_AC + distance_H2 |
425
|
|
|
nearest_match = { |
426
|
|
|
'bus_h2': h2_row['id'], |
427
|
|
|
'bus_AC': row['id'], |
428
|
|
|
'geom_h2': h2_row['geom'], |
429
|
|
|
'geom_AC': row['geom'], |
430
|
|
|
'distance_h2': distance_H2, |
431
|
|
|
'distance_ac': distance_AC, |
432
|
|
|
'intersection': intersection, |
433
|
|
|
'sub_type': sub_type, |
434
|
|
|
} |
435
|
|
|
|
436
|
|
|
if nearest_match: |
437
|
|
|
results.append(nearest_match) |
438
|
|
|
|
439
|
|
|
if not results: |
440
|
|
|
return pd.DataFrame(columns=['bus_h2', 'bus_AC', 'geom_h2', 'geom_AC', 'distance_h2', 'distance_ac', 'intersection', 'sub_type']) |
441
|
|
|
else: |
442
|
|
|
return pd.DataFrame(results) |
443
|
|
|
|
444
|
|
|
|
445
|
|
|
def find_h2_connection(df_h2): |
446
|
|
|
####find H2-HVMV connection: |
447
|
|
|
potential_location_grid = find_h2_grid_connection(dfs[ACSUB_HVMV], df_h2, Buffer['H2_HVMV'], Buffer['HVMV'],'HVMV') |
448
|
|
|
potential_location_grid = potential_location_grid.loc[potential_location_grid.groupby(['bus_h2', 'bus_AC'])['distance_h2'].idxmin()] |
449
|
|
|
|
450
|
|
|
filtered_df_hvmv = dfs[ACSUB_HVMV][~dfs[ACSUB_HVMV]['id'].isin(potential_location_grid['bus_AC'])].copy() |
451
|
|
|
potential_location_buses = find_h2_bus_connection(dfs[H2_BUSES_CH4], filtered_df_hvmv, Buffer['H2_HVMV'], Buffer['HVMV'], 'HVMV') |
452
|
|
|
potential_location_buses = potential_location_buses.loc[potential_location_buses.groupby(['bus_h2', 'bus_AC'])['distance_h2'].idxmin()] |
453
|
|
|
|
454
|
|
|
potential_location_hvmv = pd.concat([potential_location_grid, potential_location_buses], ignore_index = True) |
455
|
|
|
|
456
|
|
|
####find H2-EHV connection: |
457
|
|
|
potential_location_grid = find_h2_grid_connection(dfs[ACSUB_EHV], df_h2, Buffer['H2_EHV'], Buffer['EHV'],'EHV') |
458
|
|
|
potential_location_grid = potential_location_grid.loc[potential_location_grid.groupby(['bus_h2', 'bus_AC'])['distance_h2'].idxmin()] |
459
|
|
|
|
460
|
|
|
filtered_df_ehv = dfs[ACSUB_EHV][~dfs[ACSUB_EHV]['id'].isin(potential_location_grid['bus_AC'])].copy() |
461
|
|
|
potential_location_buses = find_h2_bus_connection(dfs[H2_BUSES_CH4], filtered_df_ehv, Buffer['H2_EHV'], Buffer['EHV'], 'EHV') |
462
|
|
|
potential_location_buses = potential_location_buses.loc[potential_location_buses.groupby(['bus_h2', 'bus_AC'])['distance_h2'].idxmin()] |
463
|
|
|
|
464
|
|
|
potential_location_ehv = pd.concat([potential_location_grid, potential_location_buses], ignore_index = True) |
465
|
|
|
|
466
|
|
|
### combined potential ehv- and hvmv-connections: |
467
|
|
|
return pd.concat([potential_location_hvmv, potential_location_ehv], ignore_index = True) |
468
|
|
|
|
469
|
|
|
|
470
|
|
|
|
471
|
|
|
def find_heat_connection(potential_locations): |
472
|
|
|
|
473
|
|
|
dfs[HEAT_BUS]['buffered_geom'] = dfs[HEAT_BUS]['area_geom'].buffer(dfs[HEAT_BUS]['buffer']) |
474
|
|
|
intersection_index = STRtree(potential_locations['intersection'].tolist()) |
475
|
|
|
|
476
|
|
|
potential_locations['bus_heat'] = None |
477
|
|
|
potential_locations['geom_heat'] = None |
478
|
|
|
potential_locations['distance_heat'] = None |
479
|
|
|
|
480
|
|
|
results= [] |
481
|
|
|
|
482
|
|
|
for _, heat_row in dfs[HEAT_BUS].iterrows(): |
483
|
|
|
buffered_geom = heat_row['buffered_geom'] |
484
|
|
|
|
485
|
|
|
potential_matches = intersection_index.query(buffered_geom) |
486
|
|
|
|
487
|
|
|
if len(potential_matches) > 0: |
488
|
|
|
nearest_distance = float('inf') |
489
|
|
|
nearest_ac_index = None |
490
|
|
|
|
491
|
|
|
for match_idx in potential_matches: |
492
|
|
|
ac_row = potential_locations.iloc[match_idx] # Hole die entsprechende Zeile |
493
|
|
|
|
494
|
|
|
if buffered_geom.intersects(ac_row['intersection']): |
495
|
|
|
distance = buffered_geom.centroid.distance(ac_row['intersection'].centroid) |
496
|
|
|
|
497
|
|
|
if distance < nearest_distance: |
498
|
|
|
nearest_distance = distance |
499
|
|
|
nearest_ac_index = match_idx |
500
|
|
|
|
501
|
|
|
if nearest_ac_index is not None: |
502
|
|
|
results.append({ |
503
|
|
|
'bus_AC': potential_locations.at[nearest_ac_index, 'bus_AC'], |
504
|
|
|
'bus_heat': heat_row['id'], |
505
|
|
|
'geom_AC': potential_locations.at[nearest_ac_index, 'geom_AC'], |
506
|
|
|
'geom_heat': heat_row['geom'], |
507
|
|
|
'distance_heat': distance |
508
|
|
|
}) |
509
|
|
|
potential_locations.at[nearest_ac_index, 'bus_heat'] = heat_row['id'] |
510
|
|
|
potential_locations.at[nearest_ac_index, 'geom_heat'] = heat_row['geom'] |
511
|
|
|
potential_locations.at[nearest_ac_index, 'distance_heat'] = nearest_distance |
512
|
|
|
|
513
|
|
|
return pd.DataFrame(results) |
514
|
|
|
|
515
|
|
|
|
516
|
|
|
|
517
|
|
|
|
518
|
|
|
def find_o2_connections(df_o2, potential_locations, sub_id): |
519
|
|
|
|
520
|
|
|
df_o2['hvmv_id'] = None |
521
|
|
|
for _, district_row in dfs[ACZONE_HVMV].iterrows(): |
522
|
|
|
district_geom = district_row['geom'] |
523
|
|
|
district_id = district_row['id'] |
524
|
|
|
|
525
|
|
|
mask = df_o2['geom'].apply(lambda x: x.within(district_geom)) |
526
|
|
|
df_o2.loc[mask, 'hvmv_id'] = district_id |
527
|
|
|
|
528
|
|
|
df_o2['ehv_id'] = None |
529
|
|
|
for _, district_row in dfs[ACZONE_EHV].iterrows(): |
530
|
|
|
district_geom = district_row['geom'] |
531
|
|
|
district_id = district_row['id'] |
532
|
|
|
|
533
|
|
|
mask = df_o2['geom'].apply(lambda x: x.within(district_geom)) |
534
|
|
|
df_o2.loc[mask, 'ehv_id'] = district_id |
535
|
|
|
|
536
|
|
|
intersection_geometries = potential_locations['intersection'].tolist() |
537
|
|
|
intersection_tree = STRtree(intersection_geometries) |
538
|
|
|
|
539
|
|
|
results = [] |
540
|
|
|
|
541
|
|
|
for _, o2_row in df_o2.iterrows(): |
542
|
|
|
o2_buffer = o2_row['geom'].buffer(Buffer['O2']) |
543
|
|
|
o2_id = o2_row['id'] |
544
|
|
|
o2_district_id = o2_row[sub_id] |
545
|
|
|
|
546
|
|
|
possible_matches = intersection_tree.query(o2_buffer) |
547
|
|
|
|
548
|
|
|
for match_idx in possible_matches: |
549
|
|
|
ac_row = potential_locations.iloc[match_idx] |
550
|
|
|
intersection_centroid = ac_row['intersection'].centroid |
551
|
|
|
|
552
|
|
|
|
553
|
|
|
|
554
|
|
|
if ac_row['bus_AC'] == o2_district_id and o2_buffer.intersects(ac_row['intersection']): |
555
|
|
|
distance = intersection_centroid.distance(o2_buffer.centroid) |
556
|
|
|
results.append({ |
557
|
|
|
'bus_AC': ac_row['bus_AC'], |
558
|
|
|
'bus_O2': o2_id, |
559
|
|
|
'geom_AC': ac_row['geom_AC'], |
560
|
|
|
'geom_O2': o2_row['geom'], |
561
|
|
|
'distance_O2': distance, |
562
|
|
|
'KA_ID': o2_row['ka_id'] |
563
|
|
|
}) |
564
|
|
|
|
565
|
|
|
return pd.DataFrame(results) |
566
|
|
|
|
567
|
|
|
|
568
|
|
|
|
569
|
|
|
def find_spec_for_ka_id(ka_id): |
570
|
|
|
found_spec = wwtp_spec[wwtp_spec["KA_ID"] == ka_id] |
571
|
|
|
if len(found_spec) > 1: |
572
|
|
|
raise Exception("multiple spec for a ka_id") |
573
|
|
|
found_spec = found_spec.iloc[0] |
574
|
|
|
return { |
575
|
|
|
"pe": found_spec["Nominalbelastung 2020 [EW]"], |
576
|
|
|
"demand_o2": found_spec["Sauerstoff 2035 gesamt [t/a]"], |
577
|
|
|
} |
578
|
|
|
|
579
|
|
|
|
580
|
|
|
def calculate_wwtp_capacity(pe): # [MWh/year] |
581
|
|
|
c = "c2" |
582
|
|
|
if pe > 100_000: |
583
|
|
|
c = "c5" |
584
|
|
|
elif pe > 10_000 and pe <= 100_000: |
585
|
|
|
c = "c4" |
586
|
|
|
elif pe > 2000 and pe <= 10_000: |
587
|
|
|
c = "c3" |
588
|
|
|
return pe * WWTP_SEC[c] / 1000 |
589
|
|
|
|
590
|
|
|
def gas_pipeline_size(gas_volume_y, distance, input_pressure, molar_mass, min_pressure): |
591
|
|
|
""" |
592
|
|
|
Parameters |
593
|
|
|
---------- |
594
|
|
|
gas_valume : kg/year |
595
|
|
|
distance : km |
596
|
|
|
input pressure : bar |
597
|
|
|
min pressure : bar |
598
|
|
|
molar mas : kg/mol |
599
|
|
|
Returns |
600
|
|
|
------- |
601
|
|
|
Final pressure drop [bar] & pipeline diameter [m] |
602
|
|
|
""" |
603
|
|
|
|
604
|
|
|
def _calculate_final_pressure(pipeline_diameter): |
605
|
|
|
flow_rate = ( |
606
|
|
|
(gas_volume_y / (8760 * molar_mass)) |
607
|
|
|
* UNIVERSAL_GAS_CONSTANT |
608
|
|
|
* TEMPERATURE |
609
|
|
|
/ (input_pressure * 100_000) |
610
|
|
|
) # m3/hour |
611
|
|
|
flow_rate_s = flow_rate / 3600 # m3/second |
612
|
|
|
pipeline_area = math.pi * (pipeline_diameter / 2) ** 2 # m2 |
613
|
|
|
gas_velocity = flow_rate_s / pipeline_area # m/s |
614
|
|
|
gas_density = (input_pressure * 1e5 * molar_mass) / ( |
615
|
|
|
UNIVERSAL_GAS_CONSTANT * TEMPERATURE |
616
|
|
|
) # kg/m3 |
617
|
|
|
reynolds_number = ( |
618
|
|
|
gas_density * gas_velocity * pipeline_diameter |
619
|
|
|
) / UNIVERSAL_GAS_CONSTANT |
620
|
|
|
# Estimate Darcy friction factor using Moody's approximation |
621
|
|
|
darcy_friction_factor = 0.0055 * ( |
622
|
|
|
1 + (2 * 1e4 * (2.51 / reynolds_number)) ** (1 / 3) |
623
|
|
|
) |
624
|
|
|
# Darcy-Weisbach equation |
625
|
|
|
pressure_drop = ( |
626
|
|
|
(4 * darcy_friction_factor * distance * 1000 * gas_velocity**2) |
627
|
|
|
/ (2 * pipeline_diameter) |
628
|
|
|
) / 1e5 # bar |
629
|
|
|
return input_pressure - pressure_drop # bar |
630
|
|
|
|
631
|
|
|
for diameter in PIPELINE_DIAMETER_RANGE: |
632
|
|
|
final_pressure = _calculate_final_pressure(diameter) |
633
|
|
|
if final_pressure > min_pressure: |
634
|
|
|
return (round(final_pressure, 4), round(diameter, 4)) |
635
|
|
|
raise Exception("couldn't find a final pressure < min_pressure") |
636
|
|
|
|
637
|
|
|
|
638
|
|
|
# O2 pipeline diameter cost range |
639
|
|
|
def get_o2_pipeline_cost(o2_pipeline_diameter): |
640
|
|
|
for diameter in sorted(O2_PIPELINE_COSTS.keys(), reverse=True): |
641
|
|
|
if o2_pipeline_diameter >= float(diameter): |
642
|
|
|
return O2_PIPELINE_COSTS[diameter] |
643
|
|
|
|
644
|
|
|
|
645
|
|
|
|
646
|
|
|
def create_link_dataframes(links_h2, links_heat, links_O2): |
647
|
|
|
|
648
|
|
|
etrago_columns = [ |
649
|
|
|
"scn_name", |
650
|
|
|
"link_id", |
651
|
|
|
"bus0", |
652
|
|
|
"bus1", |
653
|
|
|
"carrier", |
654
|
|
|
"efficiency", |
655
|
|
|
"lifetime", |
656
|
|
|
"p_nom", |
657
|
|
|
"p_nom_max", |
658
|
|
|
"p_nom_extendable", |
659
|
|
|
"capital_cost", |
660
|
|
|
"length", |
661
|
|
|
"geom", |
662
|
|
|
"topo", |
663
|
|
|
] |
664
|
|
|
|
665
|
|
|
power_to_H2 = pd.DataFrame(columns=etrago_columns) |
666
|
|
|
H2_to_power = pd.DataFrame(columns=etrago_columns) |
667
|
|
|
power_to_Heat = pd.DataFrame(columns=etrago_columns) |
668
|
|
|
power_to_O2 = pd.DataFrame(columns=etrago_columns) |
669
|
|
|
|
670
|
|
|
max_link_id = db.next_etrago_id("link") |
671
|
|
|
next_max_link_id = count(start=max_link_id, step=1) |
672
|
|
|
|
673
|
|
|
|
674
|
|
|
####poower_to_H2 |
675
|
|
|
for idx, row in links_h2.iterrows(): |
676
|
|
|
capital_cost_H2 = H2_COST_PIPELINE * row['distance_h2']/1000 + ELZ_CAPEX_STACK + ELZ_CAPEX_SYSTEM + ELZ_OPEX # [EUR/MW/YEAR] |
677
|
|
|
capital_cost_AC = AC_COST_CABLE * row['distance_ac']/1000 + AC_TRANS # [EUR/MW/YEAR] |
678
|
|
|
capital_cost_PtH2 = capital_cost_AC + capital_cost_H2 |
679
|
|
|
|
680
|
|
|
power_to_H2_entry = { |
681
|
|
|
"scn_name": SCENARIO_NAME, |
682
|
|
|
"link_id": next(next_max_link_id), |
683
|
|
|
"bus0": row["bus_AC"], |
684
|
|
|
"bus1": row["bus_h2"], |
685
|
|
|
"carrier": "power_to_H2", |
686
|
|
|
"efficiency": ELZ_EFF, |
687
|
|
|
"lifetime": ELZ_LIFETIME_Y, |
688
|
|
|
"p_nom": 0, |
689
|
|
|
"p_nom_max": 120 if row['sub_type'] == 'HVMV' else 5000, |
690
|
|
|
"p_nom_extendable": True, |
691
|
|
|
"capital_cost": capital_cost_PtH2, |
692
|
|
|
"geom": MultiLineString( |
693
|
|
|
[LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_h2'].x, row['geom_h2'].y)])] |
694
|
|
|
), |
695
|
|
|
"topo": LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_h2'].x, row['geom_h2'].y)] |
696
|
|
|
), |
697
|
|
|
} |
698
|
|
|
power_to_H2 = pd.concat([power_to_H2, pd.DataFrame([power_to_H2_entry])], ignore_index=True) |
699
|
|
|
|
700
|
|
|
####H2_to_power |
701
|
|
|
capital_cost_H2 = H2_COST_PIPELINE * row['distance_h2']/1000 + FUEL_CELL_COST # [EUR/MW/YEAR] |
702
|
|
|
capital_cost_AC = AC_COST_CABLE * row['distance_ac']/1000 + AC_TRANS # [EUR/MW/YEAR] |
703
|
|
|
capital_cost_H2tP = capital_cost_AC + capital_cost_H2 |
704
|
|
|
H2_to_power_entry = { |
705
|
|
|
"scn_name": SCENARIO_NAME, |
706
|
|
|
"link_id": next(next_max_link_id), |
707
|
|
|
"bus0": row["bus_h2"], |
708
|
|
|
"bus1": row["bus_AC"], |
709
|
|
|
"carrier": "H2_to_power", |
710
|
|
|
"efficiency": FUEL_CELL_EFF, |
711
|
|
|
"lifetime": FUEL_CELL_LIFETIME, |
712
|
|
|
"p_nom": 0, |
713
|
|
|
"p_nom_max": 120 if row['sub_type'] == 'HVMV' else 5000, |
714
|
|
|
"p_nom_extendable": True, |
715
|
|
|
"capital_cost": capital_cost_H2tP, |
716
|
|
|
"geom": MultiLineString( |
717
|
|
|
[LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_h2'].x, row['geom_h2'].y)])] |
718
|
|
|
), |
719
|
|
|
"topo": LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_h2'].x, row['geom_h2'].y)] |
720
|
|
|
), |
721
|
|
|
} |
722
|
|
|
H2_to_power = pd.concat([H2_to_power, pd.DataFrame([H2_to_power_entry])], ignore_index=True) |
723
|
|
|
|
724
|
|
|
###power_to_Heat |
725
|
|
|
for idx, row in links_heat.iterrows(): |
726
|
|
|
capital_cost = HEAT_COST_EXCHANGER + HEAT_COST_PIPELINE*row['distance_heat']/1000 #EUR/MW/YEAR |
727
|
|
|
|
728
|
|
|
power_to_heat_entry = { |
729
|
|
|
"scn_name": SCENARIO_NAME, |
730
|
|
|
"link_id": next(next_max_link_id), |
731
|
|
|
"bus0": row["bus_AC"], |
732
|
|
|
"bus1": row["bus_heat"], |
733
|
|
|
"carrier": "PtH2_waste_heat", |
734
|
|
|
"efficiency": 1, |
735
|
|
|
"lifetime": 25, |
736
|
|
|
"p_nom": 0, |
737
|
|
|
"p_nom_max": float('inf'), |
738
|
|
|
"p_nom_extendable": True, |
739
|
|
|
"capital_cost": capital_cost, |
740
|
|
|
"geom": MultiLineString( |
741
|
|
|
[LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_heat'].x, row['geom_heat'].y)])] |
742
|
|
|
), |
743
|
|
|
"topo": LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_heat'].x, row['geom_heat'].y)] |
744
|
|
|
), |
745
|
|
|
} |
746
|
|
|
power_to_Heat = pd.concat([power_to_Heat, pd.DataFrame([power_to_heat_entry])], ignore_index=True) |
747
|
|
|
|
748
|
|
|
|
749
|
|
|
####power_to_O2 |
750
|
|
|
for idx, row in links_O2.iterrows(): |
751
|
|
|
distance = row['distance_O2']/1000 #km |
752
|
|
|
ka_id = row["KA_ID"] |
753
|
|
|
spec = find_spec_for_ka_id(ka_id) |
754
|
|
|
wwtp_ec = calculate_wwtp_capacity(spec["pe"]) # [MWh/year] |
755
|
|
|
aeration_ec = wwtp_ec * FACTOR_AERATION_EC # [MWh/year] |
756
|
|
|
o2_ec = aeration_ec * FACTOR_O2_EC # [MWh/year] |
757
|
|
|
o2_ec_h = o2_ec / 8760 # [MWh/hour] |
758
|
|
|
total_o2_demand = spec["demand_o2"] * 1000 # kgO2/year pure O2 tonne* 1000 |
759
|
|
|
_, o2_pipeline_diameter = gas_pipeline_size( |
760
|
|
|
total_o2_demand, |
761
|
|
|
distance, |
762
|
|
|
O2_PRESSURE_ELZ, |
763
|
|
|
MOLAR_MASS_O2, |
764
|
|
|
O2_PRESSURE_MIN, |
765
|
|
|
) |
766
|
|
|
annualized_cost_o2_pipeline = get_o2_pipeline_cost(o2_pipeline_diameter) # [EUR/KM/YEAR] |
767
|
|
|
annualized_cost_o2_component = O2_COST_EQUIPMENT #EUR/MW/YEAR |
768
|
|
|
capital_costs=annualized_cost_o2_pipeline * distance/o2_ec_h + annualized_cost_o2_component |
769
|
|
|
|
770
|
|
|
power_to_o2_entry = { |
771
|
|
|
"scn_name": SCENARIO_NAME, |
772
|
|
|
"link_id": next(next_max_link_id), |
773
|
|
|
"bus0": row["bus_AC"], |
774
|
|
|
"bus1": row["bus_O2"], |
775
|
|
|
"carrier": "PtH2_O2", |
776
|
|
|
"efficiency": 1, |
777
|
|
|
"lifetime": 25, |
778
|
|
|
"p_nom": o2_ec_h, |
779
|
|
|
"p_nom_max": float('inf'), |
780
|
|
|
"p_nom_extendable": True, |
781
|
|
|
"capital_cost": capital_costs, |
782
|
|
|
"geom": MultiLineString( |
783
|
|
|
[LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_O2'].x, row['geom_O2'].y)])] |
784
|
|
|
), |
785
|
|
|
"topo": LineString([(row['geom_AC'].x, row['geom_AC'].y), (row['geom_O2'].x, row['geom_O2'].y)]), |
786
|
|
|
} |
787
|
|
|
power_to_O2 = pd.concat([power_to_O2, pd.DataFrame([power_to_o2_entry])], ignore_index=True) |
788
|
|
|
|
789
|
|
|
return power_to_H2, H2_to_power, power_to_Heat, power_to_O2 |
790
|
|
|
|
791
|
|
|
|
792
|
|
|
|
793
|
|
|
def export_links_to_db(df, carrier): |
794
|
|
|
schema=targets["links"]["schema"] |
795
|
|
|
table_name=targets["links"]["table"] |
796
|
|
|
|
797
|
|
|
gdf = gpd.GeoDataFrame(df, geometry="geom").set_crs(METRIC_CRS) |
798
|
|
|
gdf = gdf.to_crs(epsg=DATA_CRS) |
799
|
|
|
gdf.p_nom = 0 |
800
|
|
|
|
801
|
|
|
try: |
802
|
|
|
gdf.to_postgis( |
803
|
|
|
name=table_name, |
804
|
|
|
con=engine, |
805
|
|
|
schema=schema, |
806
|
|
|
if_exists="append", |
807
|
|
|
index=False, |
808
|
|
|
) |
809
|
|
|
print(f"Links have been exported to {schema}.{table_name}") |
810
|
|
|
except Exception as e: |
811
|
|
|
print(f"Error while exporting link data: {e}") |
812
|
|
|
|
813
|
|
|
|
814
|
|
|
|
815
|
|
|
def insert_o2_load_points(df): |
816
|
|
|
new_id = db.next_etrago_id('load') |
817
|
|
|
next_load_id = count(start=new_id, step=1) |
818
|
|
|
schema = targets["loads"]["schema"] |
819
|
|
|
table_name = targets["loads"]["table"] |
820
|
|
|
with engine.connect() as conn: |
821
|
|
|
conn.execute( |
822
|
|
|
f"DELETE FROM {schema}.{table_name} WHERE carrier = 'O2' AND scn_name = '{SCENARIO_NAME}'" |
823
|
|
|
) |
824
|
|
|
df = df.copy(deep=True) |
825
|
|
|
df = df.drop_duplicates(subset='bus1', keep='first') |
826
|
|
|
result = [] |
827
|
|
|
for _, row in df.iterrows(): |
828
|
|
|
load_id = next(next_load_id) |
829
|
|
|
result.append( |
830
|
|
|
{ |
831
|
|
|
"scn_name": SCENARIO_NAME, |
832
|
|
|
"load_id": load_id, |
833
|
|
|
"bus": row["bus1"], |
834
|
|
|
"carrier": "O2", |
835
|
|
|
"o2_load_el": row["p_nom"], |
836
|
|
|
} |
837
|
|
|
) |
838
|
|
|
df = pd.DataFrame(result) |
839
|
|
|
df[['scn_name', 'load_id', 'bus', 'carrier']].to_sql(table_name, engine, schema=schema, if_exists="append", index=False) |
840
|
|
|
print(f"O2 load data exported to: {table_name}") |
841
|
|
|
return df |
842
|
|
|
|
843
|
|
|
def insert_o2_load_timeseries(df): |
844
|
|
|
query_o2_timeseries = f""" |
845
|
|
|
SELECT load_curve |
846
|
|
|
FROM {sources["o2_load_profile"]["schema"]}.{sources["o2_load_profile"]["table"]} |
847
|
|
|
WHERE slp = 'G3' AND wz = 3 |
848
|
|
|
""" |
849
|
|
|
|
850
|
|
|
base_load_profile = pd.read_sql(query_o2_timeseries, engine)['load_curve'].values |
851
|
|
|
base_load_profile = np.array(base_load_profile[0]) |
852
|
|
|
|
853
|
|
|
with engine.connect() as conn: |
854
|
|
|
conn.execute(f""" |
855
|
|
|
DELETE FROM {targets["load_timeseries"]["schema"]}.{targets["load_timeseries"]["table"]} |
856
|
|
|
WHERE load_id IN {tuple(df.load_id.values)} |
857
|
|
|
AND scn_name = '{SCENARIO_NAME}' |
858
|
|
|
""" |
859
|
|
|
) |
860
|
|
|
|
861
|
|
|
timeseries_list = [] |
862
|
|
|
|
863
|
|
|
for index, row in df.iterrows(): |
864
|
|
|
load_id = row['load_id'] # ID aus der aktuellen Zeile |
865
|
|
|
o2_load_el = row['o2_load_el'] # Nennleistung aus der aktuellen Zeile |
866
|
|
|
|
867
|
|
|
modified_profile = base_load_profile * o2_load_el |
868
|
|
|
|
869
|
|
|
timeseries_list.append({ |
870
|
|
|
'scn_name': SCENARIO_NAME, |
871
|
|
|
'load_id': load_id, |
872
|
|
|
'temp_id': 1, |
873
|
|
|
'p_set': modified_profile, |
874
|
|
|
'bus': row['bus'] |
875
|
|
|
}) |
876
|
|
|
|
877
|
|
|
timeseries_df = pd.DataFrame(timeseries_list) |
878
|
|
|
timeseries_df['p_set'] = timeseries_df['p_set'].apply(lambda x: x.tolist() if isinstance(x, np.ndarray) else x) |
879
|
|
|
timeseries_df[['scn_name', 'load_id', 'temp_id', 'p_set']].to_sql( |
880
|
|
|
targets["load_timeseries"]["table"], |
881
|
|
|
engine, |
882
|
|
|
schema=targets["load_timeseries"]["schema"], |
883
|
|
|
if_exists="append", |
884
|
|
|
index=False) |
885
|
|
|
|
886
|
|
|
return timeseries_df |
887
|
|
|
|
888
|
|
|
|
889
|
|
|
def insert_o2_generators(df): |
890
|
|
|
new_id = db.next_etrago_id("generator") |
891
|
|
|
next_generator_id = count(start=new_id, step=1) |
892
|
|
|
|
893
|
|
|
grid = targets["generators"]["schema"] |
894
|
|
|
table_name = targets["generators"]["table"] |
895
|
|
|
with engine.connect() as conn: |
896
|
|
|
conn.execute( |
897
|
|
|
f"DELETE FROM {grid}.{table_name} WHERE carrier = 'O2' AND scn_name = '{SCENARIO_NAME}'" |
898
|
|
|
) |
899
|
|
|
df = df.copy(deep=True) |
900
|
|
|
df = df.drop_duplicates(subset='bus1', keep='first') |
901
|
|
|
result = [] |
902
|
|
|
for _, row in df.iterrows(): |
903
|
|
|
generator_id = next(next_generator_id) |
904
|
|
|
result.append( |
905
|
|
|
{ |
906
|
|
|
"scn_name": SCENARIO_NAME, |
907
|
|
|
"generator_id": generator_id, |
908
|
|
|
"bus": row["bus1"], |
909
|
|
|
"carrier": "O2", |
910
|
|
|
"p_nom_extendable": "true", |
911
|
|
|
"marginal_cost": ELEC_COST, |
912
|
|
|
} |
913
|
|
|
) |
914
|
|
|
df = pd.DataFrame(result) |
915
|
|
|
df.to_sql(table_name, engine, schema=grid, if_exists="append", index=False) |
916
|
|
|
|
917
|
|
|
print(f"generator data exported to: {table_name}") |
918
|
|
|
|
919
|
|
|
|
920
|
|
|
|
921
|
|
|
def adjust_ac_load_timeseries(df, o2_timeseries): |
922
|
|
|
#filter out affected ac_loads |
923
|
|
|
queries[AC_LOAD] = f""" |
924
|
|
|
SELECT bus, load_id |
925
|
|
|
FROM {sources["loads"]["schema"]}.{sources["loads"]["table"]} |
926
|
|
|
WHERE scn_name = '{SCENARIO_NAME}' |
927
|
|
|
""" |
928
|
|
|
dfs[AC_LOAD] = pd.read_sql(queries[AC_LOAD], engine) |
929
|
|
|
df = df.drop_duplicates(subset='bus1', keep='first') |
930
|
|
|
ac_loads = pd.merge(df, dfs[AC_LOAD], left_on='bus0', right_on='bus') |
931
|
|
|
|
932
|
|
|
#reduce each affected ac_load with o2_timeseries |
933
|
|
|
for _, row in ac_loads.iterrows(): |
934
|
|
|
with engine.connect() as conn: |
935
|
|
|
|
936
|
|
|
select_query = text(f""" |
937
|
|
|
SELECT p_set |
938
|
|
|
FROM {sources["load_timeseries"]["schema"]}.{sources["load_timeseries"]["table"]} |
939
|
|
|
WHERE load_id = :load_id and scn_name= :SCENARIO_NAME |
940
|
|
|
""") |
941
|
|
|
result = conn.execute(select_query, {"load_id": row["load_id"], "SCENARIO_NAME": SCENARIO_NAME}).fetchone() |
942
|
|
|
|
943
|
|
|
if result: |
944
|
|
|
original_p_set = result["p_set"] |
945
|
|
|
o2_timeseries_row = o2_timeseries.loc[o2_timeseries['bus'] == row['bus1']] |
946
|
|
|
|
947
|
|
|
if not o2_timeseries_row.empty: |
948
|
|
|
o2_p_set = o2_timeseries_row.iloc[0]['p_set'] |
949
|
|
|
|
950
|
|
|
if len(original_p_set) == len(o2_p_set): |
951
|
|
|
# reduce ac_load with o2_load_timeseries |
952
|
|
|
adjusted_p_set = (np.array(original_p_set) - np.array(o2_p_set)).tolist() |
953
|
|
|
update_query = text(f""" |
954
|
|
|
UPDATE {targets["load_timeseries"]["schema"]}.{targets["load_timeseries"]["table"]} |
955
|
|
|
SET p_set = :adjusted_p_set |
956
|
|
|
WHERE load_id = :load_id AND scn_name = :SCENARIO_NAME |
957
|
|
|
""") |
958
|
|
|
conn.execute(update_query, {"adjusted_p_set": adjusted_p_set, "load_id": row["load_id"], "SCENARIO_NAME": SCENARIO_NAME}) |
959
|
|
|
else: |
960
|
|
|
print(f"Length mismatch for load_id {row['load_id']}: original={len(original_p_set)}, o2={len(o2_p_set)}") |
961
|
|
|
else: |
962
|
|
|
print(f"No matching o2_timeseries entry for load_id {row['load_id']}") |
963
|
|
|
|
964
|
|
|
def delete_unconnected_o2_buses(): |
965
|
|
|
with engine.connect() as conn: |
966
|
|
|
conn.execute(f""" |
967
|
|
|
DELETE FROM {targets['buses']['schema']}.{targets['buses']['table']} |
968
|
|
|
WHERE carrier = 'O2' AND scn_name = '{SCENARIO_NAME}' |
969
|
|
|
AND bus_id NOT IN (SELECT bus1 FROM {targets['links']['schema']}.{targets['links']['table']} |
970
|
|
|
WHERE carrier = 'PtH2_O2') |
971
|
|
|
""" |
972
|
|
|
) |
973
|
|
|
|
974
|
|
|
|
975
|
|
|
def execute_PtH2_method(): |
976
|
|
|
|
977
|
|
|
h2_grid_geom_df, dfs[HEAT_BUS], dfs[H2_BUSES_CH4] = prepare_dataframes_for_spartial_queries() |
978
|
|
|
potential_locations=find_h2_connection(h2_grid_geom_df) |
979
|
|
|
heat_links = find_heat_connection(potential_locations) |
980
|
|
|
o2_links_hvmv = find_o2_connections(dfs[WWTP], potential_locations[potential_locations.sub_type=='HVMV'], 'hvmv_id') |
981
|
|
|
o2_links_ehv = find_o2_connections(dfs[WWTP], potential_locations[potential_locations.sub_type=='EHV'], 'ehv_id') |
982
|
|
|
o2_links=pd.concat([o2_links_hvmv, o2_links_ehv], ignore_index=True) |
983
|
|
|
power_to_H2, H2_to_power, power_to_Heat, power_to_O2 = create_link_dataframes(potential_locations, heat_links, o2_links) |
984
|
|
|
export_links_to_db(power_to_H2,'power_to_H2') |
985
|
|
|
export_links_to_db(power_to_Heat, 'PtH2_waste_heat') |
986
|
|
|
export_links_to_db(power_to_O2, 'PtH2_O2') |
987
|
|
|
export_links_to_db(H2_to_power, 'H2_to_power') |
988
|
|
|
o2_loads_df = insert_o2_load_points(power_to_O2) |
989
|
|
|
o2_timeseries = insert_o2_load_timeseries(o2_loads_df) |
990
|
|
|
insert_o2_generators(power_to_O2) |
991
|
|
|
adjust_ac_load_timeseries(power_to_O2, o2_timeseries) |
992
|
|
|
delete_unconnected_o2_buses() |
993
|
|
|
|
994
|
|
|
execute_PtH2_method() |
995
|
|
|
|
996
|
|
|
|
997
|
|
|
|