Total Complexity | 113 |
Total Lines | 2240 |
Duplicated Lines | 5.36 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like data.datasets.electrical_neighbours often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | """The central module containing all code dealing with electrical neighbours |
||
2 | """ |
||
3 | |||
4 | from os import path |
||
5 | from pathlib import Path |
||
6 | import datetime |
||
7 | import logging |
||
8 | import os.path |
||
9 | import zipfile |
||
10 | |||
11 | from shapely.geometry import LineString |
||
12 | from sqlalchemy.orm import sessionmaker |
||
13 | import entsoe |
||
14 | import requests |
||
15 | |||
16 | import geopandas as gpd |
||
17 | import pandas as pd |
||
18 | |||
19 | from egon.data import config, db, logger |
||
20 | from egon.data.db import session_scope |
||
21 | from egon.data.datasets import Dataset, wrapped_partial |
||
22 | from egon.data.datasets.fill_etrago_gen import add_marginal_costs |
||
23 | from egon.data.datasets.fix_ehv_subnetworks import select_bus_id |
||
24 | from egon.data.datasets.scenario_parameters import get_sector_parameters |
||
25 | import egon.data.datasets.etrago_setup as etrago |
||
26 | import egon.data.datasets.scenario_parameters.parameters as scenario_parameters |
||
27 | from egon.data.datasets.pypsaeur import prepared_network |
||
28 | |||
29 | |||
30 | def get_cross_border_buses(scenario, sources): |
||
31 | """Returns buses from osmTGmod which are outside of Germany. |
||
32 | |||
33 | Parameters |
||
34 | ---------- |
||
35 | sources : dict |
||
36 | List of sources |
||
37 | |||
38 | Returns |
||
39 | ------- |
||
40 | geopandas.GeoDataFrame |
||
41 | Electricity buses outside of Germany |
||
42 | |||
43 | """ |
||
44 | return db.select_geodataframe( |
||
45 | f""" |
||
46 | SELECT * |
||
47 | FROM {sources['electricity_buses']['schema']}. |
||
48 | {sources['electricity_buses']['table']} |
||
49 | WHERE |
||
50 | NOT ST_INTERSECTS ( |
||
51 | geom, |
||
52 | (SELECT ST_Transform(ST_Buffer(geometry, 5), 4326) FROM |
||
53 | {sources['german_borders']['schema']}. |
||
54 | {sources['german_borders']['table']})) |
||
55 | AND (bus_id IN ( |
||
56 | SELECT bus0 FROM |
||
57 | {sources['lines']['schema']}.{sources['lines']['table']}) |
||
58 | OR bus_id IN ( |
||
59 | SELECT bus1 FROM |
||
60 | {sources['lines']['schema']}.{sources['lines']['table']})) |
||
61 | AND scn_name = '{scenario}'; |
||
62 | """, |
||
63 | epsg=4326, |
||
64 | ) |
||
65 | |||
66 | |||
67 | def get_cross_border_lines(scenario, sources): |
||
68 | """Returns lines from osmTGmod which end or start outside of Germany. |
||
69 | |||
70 | Parameters |
||
71 | ---------- |
||
72 | sources : dict |
||
73 | List of sources |
||
74 | |||
75 | Returns |
||
76 | ------- |
||
77 | geopandas.GeoDataFrame |
||
78 | AC-lines outside of Germany |
||
79 | |||
80 | """ |
||
81 | return db.select_geodataframe( |
||
82 | f""" |
||
83 | SELECT * |
||
84 | FROM {sources['lines']['schema']}.{sources['lines']['table']} a |
||
85 | WHERE |
||
86 | ST_INTERSECTS ( |
||
87 | a.topo, |
||
88 | (SELECT ST_Transform(ST_boundary(geometry), 4326) |
||
89 | FROM {sources['german_borders']['schema']}. |
||
90 | {sources['german_borders']['table']})) |
||
91 | AND scn_name = '{scenario}'; |
||
92 | """, |
||
93 | epsg=4326, |
||
94 | ) |
||
95 | |||
96 | |||
97 | def central_buses_pypsaeur(sources, scenario): |
||
98 | """Returns buses in the middle of foreign countries based on prepared pypsa-eur network |
||
99 | |||
100 | Parameters |
||
101 | ---------- |
||
102 | sources : dict |
||
103 | List of sources |
||
104 | |||
105 | Returns |
||
106 | ------- |
||
107 | pandas.DataFrame |
||
108 | Buses in the center of foreign countries |
||
109 | |||
110 | """ |
||
111 | |||
112 | wanted_countries = [ |
||
113 | "AT", |
||
114 | "CH", |
||
115 | "CZ", |
||
116 | "PL", |
||
117 | "SE", |
||
118 | "NO", |
||
119 | "DK", |
||
120 | "GB", |
||
121 | "NL", |
||
122 | "BE", |
||
123 | "FR", |
||
124 | "LU", |
||
125 | ] |
||
126 | network = prepared_network() |
||
127 | |||
128 | df = network.buses[ |
||
129 | (network.buses.carrier == "AC") |
||
130 | & (network.buses.country.isin(wanted_countries)) |
||
131 | ] |
||
132 | |||
133 | return df |
||
134 | |||
135 | |||
136 | def buses(scenario, sources, targets): |
||
137 | """Insert central buses in foreign countries per scenario |
||
138 | |||
139 | Parameters |
||
140 | ---------- |
||
141 | sources : dict |
||
142 | List of dataset sources |
||
143 | targets : dict |
||
144 | List of dataset targets |
||
145 | |||
146 | Returns |
||
147 | ------- |
||
148 | central_buses : geoapndas.GeoDataFrame |
||
149 | Buses in the center of foreign countries |
||
150 | |||
151 | """ |
||
152 | sql_delete = f""" |
||
153 | DELETE FROM {sources['electricity_buses']['schema']}. |
||
154 | {sources['electricity_buses']['table']} |
||
155 | WHERE country != 'DE' AND scn_name = '{scenario}' |
||
156 | AND carrier = 'AC' |
||
157 | AND bus_id NOT IN ( |
||
158 | SELECT bus_i |
||
159 | FROM {sources['osmtgmod_bus']['schema']}. |
||
160 | {sources['osmtgmod_bus']['table']}) |
||
161 | """ |
||
162 | |||
163 | # Delete existing buses |
||
164 | db.execute_sql(sql_delete) |
||
165 | |||
166 | central_buses = central_buses_pypsaeur(sources, scenario) |
||
167 | |||
168 | next_bus_id = db.next_etrago_id("bus") + 1 |
||
169 | |||
170 | central_buses["bus_id"] = central_buses.reset_index().index + next_bus_id |
||
171 | |||
172 | next_bus_id += len(central_buses) |
||
173 | |||
174 | # if in test mode, add bus in center of Germany |
||
175 | if config.settings()["egon-data"]["--dataset-boundary"] != "Everything": |
||
176 | central_buses = pd.concat( |
||
177 | [ |
||
178 | central_buses, |
||
179 | pd.DataFrame( |
||
180 | index=[central_buses.bus_id.max() + 1], |
||
181 | data={ |
||
182 | "scn_name": scenario, |
||
183 | "bus_id": next_bus_id, |
||
184 | "x": 10.4234469, |
||
185 | "y": 51.0834196, |
||
186 | "country": "DE", |
||
187 | "carrier": "AC", |
||
188 | "v_nom": 380.0, |
||
189 | }, |
||
190 | ), |
||
191 | ], |
||
192 | ignore_index=True, |
||
193 | ) |
||
194 | next_bus_id += 1 |
||
195 | |||
196 | # Add buses for other voltage levels |
||
197 | foreign_buses = get_cross_border_buses(scenario, sources) |
||
198 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
199 | foreign_buses = foreign_buses[foreign_buses.country != "DE"] |
||
200 | vnom_per_country = foreign_buses.groupby("country").v_nom.unique().copy() |
||
201 | for cntr in vnom_per_country.index: |
||
202 | print(cntr) |
||
203 | View Code Duplication | if 110.0 in vnom_per_country[cntr]: |
|
|
|||
204 | central_buses = pd.concat( |
||
205 | [ |
||
206 | central_buses, |
||
207 | pd.DataFrame( |
||
208 | index=[next_bus_id], |
||
209 | data={ |
||
210 | "scn_name": scenario, |
||
211 | "bus_id": next_bus_id, |
||
212 | "x": central_buses[ |
||
213 | central_buses.country == cntr |
||
214 | ].x.unique()[0], |
||
215 | "y": central_buses[ |
||
216 | central_buses.country == cntr |
||
217 | ].y.unique()[0], |
||
218 | "country": cntr, |
||
219 | "carrier": "AC", |
||
220 | "v_nom": 110.0, |
||
221 | }, |
||
222 | ), |
||
223 | ], |
||
224 | ignore_index=True, |
||
225 | ) |
||
226 | next_bus_id += 1 |
||
227 | |||
228 | View Code Duplication | if 220.0 in vnom_per_country[cntr]: |
|
229 | central_buses = pd.concat( |
||
230 | [ |
||
231 | central_buses, |
||
232 | pd.DataFrame( |
||
233 | index=[next_bus_id], |
||
234 | data={ |
||
235 | "scn_name": scenario, |
||
236 | "bus_id": next_bus_id, |
||
237 | "x": central_buses[ |
||
238 | central_buses.country == cntr |
||
239 | ].x.unique()[0], |
||
240 | "y": central_buses[ |
||
241 | central_buses.country == cntr |
||
242 | ].y.unique()[0], |
||
243 | "country": cntr, |
||
244 | "carrier": "AC", |
||
245 | "v_nom": 220.0, |
||
246 | }, |
||
247 | ), |
||
248 | ], |
||
249 | ignore_index=True, |
||
250 | ) |
||
251 | next_bus_id += 1 |
||
252 | |||
253 | # Add geometry column |
||
254 | central_buses = gpd.GeoDataFrame( |
||
255 | central_buses, |
||
256 | geometry=gpd.points_from_xy(central_buses.x, central_buses.y), |
||
257 | crs="EPSG:4326", |
||
258 | ) |
||
259 | central_buses["geom"] = central_buses.geometry.copy() |
||
260 | central_buses = central_buses.set_geometry("geom").drop( |
||
261 | "geometry", axis="columns" |
||
262 | ) |
||
263 | central_buses.scn_name = scenario |
||
264 | |||
265 | central_buses.drop( |
||
266 | ["control", "generator", "location", "unit", "sub_network", "substation_off", "substation_lv"], |
||
267 | axis="columns", |
||
268 | inplace=True, |
||
269 | errors="ignore" |
||
270 | ) |
||
271 | |||
272 | # Insert all central buses for eGon2035 |
||
273 | if scenario in [ |
||
274 | "eGon2035", |
||
275 | "status2019", |
||
276 | "status2023", |
||
277 | ]: # TODO: status2023 this is hardcoded shit |
||
278 | central_buses.to_postgis( |
||
279 | targets["buses"]["table"], |
||
280 | schema=targets["buses"]["schema"], |
||
281 | if_exists="append", |
||
282 | con=db.engine(), |
||
283 | index=False, |
||
284 | ) |
||
285 | # Insert only buses for eGon100RE that are not coming from pypsa-eur-sec |
||
286 | # (buses with another voltage_level or inside Germany in test mode) |
||
287 | else: |
||
288 | central_buses[central_buses.carrier=="AC"].to_postgis( |
||
289 | targets["buses"]["table"], |
||
290 | schema=targets["buses"]["schema"], |
||
291 | if_exists="append", |
||
292 | con=db.engine(), |
||
293 | index=False, |
||
294 | ) |
||
295 | |||
296 | return central_buses |
||
297 | |||
298 | |||
299 | def lines_between_foreign_countries(scenario, sorces, targets, central_buses): |
||
300 | # import network from pypsa-eur |
||
301 | network = prepared_network() |
||
302 | |||
303 | gdf_buses = gpd.GeoDataFrame( |
||
304 | network.buses, |
||
305 | geometry=gpd.points_from_xy(network.buses.x, network.buses.y), |
||
306 | ) |
||
307 | |||
308 | central_buses_pypsaeur = gpd.sjoin( |
||
309 | gdf_buses[gdf_buses.carrier == "AC"], central_buses |
||
310 | ) |
||
311 | |||
312 | central_buses_pypsaeur = central_buses_pypsaeur[ |
||
313 | central_buses_pypsaeur.v_nom_right == 380 |
||
314 | ] |
||
315 | |||
316 | lines_to_add = network.lines[ |
||
317 | (network.lines.bus0.isin(central_buses_pypsaeur.index)) |
||
318 | & (network.lines.bus1.isin(central_buses_pypsaeur.index)) |
||
319 | ] |
||
320 | |||
321 | lines_to_add.loc[:, "lifetime"] = get_sector_parameters( |
||
322 | "electricity", scenario |
||
323 | )["lifetime"]["ac_ehv_overhead_line"] |
||
324 | lines_to_add.loc[:, "line_id"] = ( |
||
325 | lines_to_add.reset_index().index.astype(int) |
||
326 | + db.next_etrago_id("line") |
||
327 | + 1 |
||
328 | ) |
||
329 | |||
330 | links_to_add = network.links[ |
||
331 | (network.links.bus0.isin(central_buses_pypsaeur.index)) |
||
332 | & (network.links.bus1.isin(central_buses_pypsaeur.index)) |
||
333 | ] |
||
334 | |||
335 | links_to_add.loc[:, "lifetime"] = get_sector_parameters( |
||
336 | "electricity", scenario |
||
337 | )["lifetime"]["dc_overhead_line"] |
||
338 | links_to_add.loc[:, "link_id"] = ( |
||
339 | links_to_add.reset_index().index.astype(int) |
||
340 | + db.next_etrago_id("link") |
||
341 | + 1 |
||
342 | ) |
||
343 | |||
344 | for df in [lines_to_add, links_to_add]: |
||
345 | df.loc[:, "scn_name"] = scenario |
||
346 | gdf = gpd.GeoDataFrame(df) |
||
347 | gdf["geom_bus0"] = gdf_buses.geometry[df.bus0].values |
||
348 | gdf["geom_bus1"] = gdf_buses.geometry[df.bus1].values |
||
349 | gdf["geometry"] = gdf.apply( |
||
350 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), |
||
351 | axis=1, |
||
352 | ) |
||
353 | |||
354 | gdf = gdf.set_geometry("geometry") |
||
355 | gdf = gdf.set_crs(4326) |
||
356 | |||
357 | gdf = gdf.rename_geometry("topo") |
||
358 | |||
359 | gdf.loc[:, "bus0"] = central_buses_pypsaeur.bus_id.loc[df.bus0].values |
||
360 | gdf.loc[:, "bus1"] = central_buses_pypsaeur.bus_id.loc[df.bus1].values |
||
361 | |||
362 | gdf.drop(["geom_bus0", "geom_bus1"], inplace=True, axis="columns") |
||
363 | if "link_id" in df.columns: |
||
364 | table_name = "link" |
||
365 | gdf.drop( |
||
366 | [ |
||
367 | "tags", |
||
368 | "under_construction", |
||
369 | "underground", |
||
370 | "underwater_fraction", |
||
371 | "bus2", |
||
372 | "efficiency2", |
||
373 | "length_original", |
||
374 | "bus4", |
||
375 | "efficiency4", |
||
376 | "reversed", |
||
377 | "ramp_limit_up", |
||
378 | "ramp_limit_down", |
||
379 | "p_nom_opt", |
||
380 | "bus3", |
||
381 | "efficiency3", |
||
382 | "location", |
||
383 | "project_status", |
||
384 | "dc", |
||
385 | "voltage", |
||
386 | ], |
||
387 | axis="columns", |
||
388 | inplace=True, |
||
389 | ) |
||
390 | else: |
||
391 | table_name = "line" |
||
392 | gdf.drop( |
||
393 | [ |
||
394 | "i_nom", |
||
395 | "sub_network", |
||
396 | "x_pu", |
||
397 | "r_pu", |
||
398 | "g_pu", |
||
399 | "b_pu", |
||
400 | "x_pu_eff", |
||
401 | "r_pu_eff", |
||
402 | "s_nom_opt", |
||
403 | "dc", |
||
404 | ], |
||
405 | axis="columns", |
||
406 | inplace=True, |
||
407 | ) |
||
408 | |||
409 | gdf = gdf.set_index(f"{table_name}_id") |
||
410 | gdf.to_postgis( |
||
411 | f"egon_etrago_{table_name}", |
||
412 | db.engine(), |
||
413 | schema="grid", |
||
414 | if_exists="append", |
||
415 | index=True, |
||
416 | index_label=f"{table_name}_id", |
||
417 | ) |
||
418 | |||
419 | |||
420 | def cross_border_lines(scenario, sources, targets, central_buses): |
||
421 | """Adds lines which connect border-crossing lines from osmtgmod |
||
422 | to the central buses in the corresponding neigbouring country |
||
423 | |||
424 | Parameters |
||
425 | ---------- |
||
426 | sources : dict |
||
427 | List of dataset sources |
||
428 | targets : dict |
||
429 | List of dataset targets |
||
430 | central_buses : geopandas.GeoDataFrame |
||
431 | Buses in the center of foreign countries |
||
432 | |||
433 | Returns |
||
434 | ------- |
||
435 | new_lines : geopandas.GeoDataFrame |
||
436 | Lines that connect cross-border lines to central bus per country |
||
437 | |||
438 | """ |
||
439 | # Delete existing data |
||
440 | db.execute_sql( |
||
441 | f""" |
||
442 | DELETE FROM {targets['lines']['schema']}. |
||
443 | {targets['lines']['table']} |
||
444 | WHERE scn_name = '{scenario}' |
||
445 | AND line_id NOT IN ( |
||
446 | SELECT branch_id |
||
447 | FROM {sources['osmtgmod_branch']['schema']}. |
||
448 | {sources['osmtgmod_branch']['table']} |
||
449 | WHERE result_id = 1 and (link_type = 'line' or |
||
450 | link_type = 'cable')) |
||
451 | AND bus0 IN ( |
||
452 | SELECT bus_i |
||
453 | FROM {sources['osmtgmod_bus']['schema']}. |
||
454 | {sources['osmtgmod_bus']['table']}) |
||
455 | AND bus1 NOT IN ( |
||
456 | SELECT bus_i |
||
457 | FROM {sources['osmtgmod_bus']['schema']}. |
||
458 | {sources['osmtgmod_bus']['table']}) |
||
459 | """ |
||
460 | ) |
||
461 | |||
462 | # Calculate cross-border busses and lines from osmtgmod |
||
463 | foreign_buses = get_cross_border_buses(scenario, sources) |
||
464 | foreign_buses.dropna(subset="country", inplace=True) |
||
465 | |||
466 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
467 | foreign_buses = foreign_buses[foreign_buses.country != "DE"] |
||
468 | lines = get_cross_border_lines(scenario, sources) |
||
469 | |||
470 | # Select bus outside of Germany from border-crossing lines |
||
471 | lines.loc[ |
||
472 | lines[lines.bus0.isin(foreign_buses.bus_id)].index, "foreign_bus" |
||
473 | ] = lines.loc[lines[lines.bus0.isin(foreign_buses.bus_id)].index, "bus0"] |
||
474 | lines.loc[ |
||
475 | lines[lines.bus1.isin(foreign_buses.bus_id)].index, "foreign_bus" |
||
476 | ] = lines.loc[lines[lines.bus1.isin(foreign_buses.bus_id)].index, "bus1"] |
||
477 | |||
478 | # Drop lines with start and endpoint in Germany |
||
479 | lines = lines[lines.foreign_bus.notnull()] |
||
480 | lines.loc[:, "foreign_bus"] = lines.loc[:, "foreign_bus"].astype(int) |
||
481 | |||
482 | # Copy all parameters from border-crossing lines |
||
483 | new_lines = lines.copy().set_crs(4326) |
||
484 | |||
485 | # Set bus0 as foreign_bus from osmtgmod |
||
486 | new_lines.bus0 = new_lines.foreign_bus.copy() |
||
487 | new_lines.bus0 = new_lines.bus0.astype(int) |
||
488 | |||
489 | # Add country tag and set index |
||
490 | new_lines["country"] = ( |
||
491 | foreign_buses.set_index("bus_id") |
||
492 | .loc[lines.foreign_bus, "country"] |
||
493 | .values |
||
494 | ) |
||
495 | |||
496 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
497 | new_lines = new_lines[~new_lines.country.isnull()] |
||
498 | new_lines.line_id = range( |
||
499 | db.next_etrago_id("line"), db.next_etrago_id("line") + len(new_lines) |
||
500 | ) |
||
501 | |||
502 | # Set bus in center of foreign countries as bus1 |
||
503 | for i, row in new_lines.iterrows(): |
||
504 | print(row) |
||
505 | new_lines.loc[i, "bus1"] = central_buses.bus_id[ |
||
506 | (central_buses.country == row.country) |
||
507 | & (central_buses.v_nom == row.v_nom) |
||
508 | ].values[0] |
||
509 | |||
510 | # Create geometry for new lines |
||
511 | new_lines["geom_bus0"] = ( |
||
512 | foreign_buses.set_index("bus_id").geom[new_lines.bus0].values |
||
513 | ) |
||
514 | new_lines["geom_bus1"] = ( |
||
515 | central_buses.set_index("bus_id").geom[new_lines.bus1].values |
||
516 | ) |
||
517 | new_lines["topo"] = new_lines.apply( |
||
518 | lambda x: LineString([x["geom_bus0"], x["geom_bus1"]]), axis=1 |
||
519 | ) |
||
520 | |||
521 | # Set topo as geometry column |
||
522 | new_lines = new_lines.set_geometry("topo").set_crs(4326) |
||
523 | # Calcultae length of lines based on topology |
||
524 | old_length = new_lines["length"].copy() |
||
525 | new_lines["length"] = new_lines.to_crs(3035).length / 1000 |
||
526 | |||
527 | if (new_lines["length"] == 0).any(): |
||
528 | print("WARNING! THERE ARE LINES WITH LENGTH = 0") |
||
529 | condition = new_lines["length"] != 0 |
||
530 | new_lines["length"] = new_lines["length"].where(condition, 1) |
||
531 | |||
532 | |||
533 | # Set electrical parameters based on lines from osmtgmod |
||
534 | for parameter in ["x", "r"]: |
||
535 | new_lines[parameter] = ( |
||
536 | new_lines[parameter] / old_length * new_lines["length"] |
||
537 | ) |
||
538 | for parameter in ["b", "g"]: |
||
539 | new_lines[parameter] = ( |
||
540 | new_lines[parameter] * old_length / new_lines["length"] |
||
541 | ) |
||
542 | |||
543 | |||
544 | # Drop intermediate columns |
||
545 | new_lines.drop( |
||
546 | ["foreign_bus", "country", "geom_bus0", "geom_bus1", "geom"], |
||
547 | axis="columns", |
||
548 | inplace=True, |
||
549 | ) |
||
550 | |||
551 | new_lines = new_lines[new_lines.bus0 != new_lines.bus1] |
||
552 | |||
553 | new_lines["cables"] = new_lines["cables"].apply(int) |
||
554 | |||
555 | # Insert lines to the database |
||
556 | new_lines.to_postgis( |
||
557 | targets["lines"]["table"], |
||
558 | schema=targets["lines"]["schema"], |
||
559 | if_exists="append", |
||
560 | con=db.engine(), |
||
561 | index=False, |
||
562 | ) |
||
563 | |||
564 | return new_lines |
||
565 | |||
566 | |||
567 | def choose_transformer(s_nom): |
||
568 | """Select transformer and parameters from existing data in the grid model |
||
569 | |||
570 | It is assumed that transformers in the foreign countries are not limiting |
||
571 | the electricity flow, so the capacitiy s_nom is set to the minimum sum |
||
572 | of attached AC-lines. |
||
573 | The electrical parameters are set according to already inserted |
||
574 | transformers in the grid model for Germany. |
||
575 | |||
576 | Parameters |
||
577 | ---------- |
||
578 | s_nom : float |
||
579 | Minimal sum of nominal power of lines at one side |
||
580 | |||
581 | Returns |
||
582 | ------- |
||
583 | int |
||
584 | Selected transformer nominal power |
||
585 | float |
||
586 | Selected transformer nominal impedance |
||
587 | |||
588 | """ |
||
589 | |||
590 | if s_nom <= 600: |
||
591 | return 600, 0.0002 |
||
592 | elif (s_nom > 600) & (s_nom <= 1200): |
||
593 | return 1200, 0.0001 |
||
594 | elif (s_nom > 1200) & (s_nom <= 1600): |
||
595 | return 1600, 0.000075 |
||
596 | elif (s_nom > 1600) & (s_nom <= 2100): |
||
597 | return 2100, 0.00006667 |
||
598 | elif (s_nom > 2100) & (s_nom <= 2600): |
||
599 | return 2600, 0.0000461538 |
||
600 | elif (s_nom > 2600) & (s_nom <= 4800): |
||
601 | return 4800, 0.000025 |
||
602 | elif (s_nom > 4800) & (s_nom <= 6000): |
||
603 | return 6000, 0.0000225 |
||
604 | elif (s_nom > 6000) & (s_nom <= 7200): |
||
605 | return 7200, 0.0000194444 |
||
606 | elif (s_nom > 7200) & (s_nom <= 8000): |
||
607 | return 8000, 0.000016875 |
||
608 | elif (s_nom > 8000) & (s_nom <= 9000): |
||
609 | return 9000, 0.000015 |
||
610 | elif (s_nom > 9000) & (s_nom <= 13000): |
||
611 | return 13000, 0.0000103846 |
||
612 | elif (s_nom > 13000) & (s_nom <= 20000): |
||
613 | return 20000, 0.00000675 |
||
614 | elif (s_nom > 20000) & (s_nom <= 33000): |
||
615 | return 33000, 0.00000409091 |
||
616 | |||
617 | |||
618 | def central_transformer(scenario, sources, targets, central_buses, new_lines): |
||
619 | """Connect central foreign buses with different voltage levels |
||
620 | |||
621 | Parameters |
||
622 | ---------- |
||
623 | sources : dict |
||
624 | List of dataset sources |
||
625 | targets : dict |
||
626 | List of dataset targets |
||
627 | central_buses : geopandas.GeoDataFrame |
||
628 | Buses in the center of foreign countries |
||
629 | new_lines : geopandas.GeoDataFrame |
||
630 | Lines that connect cross-border lines to central bus per country |
||
631 | |||
632 | Returns |
||
633 | ------- |
||
634 | None. |
||
635 | |||
636 | """ |
||
637 | # Delete existing transformers in foreign countries |
||
638 | db.execute_sql( |
||
639 | f""" |
||
640 | DELETE FROM {targets['transformers']['schema']}. |
||
641 | {targets['transformers']['table']} |
||
642 | WHERE scn_name = '{scenario}' |
||
643 | AND trafo_id NOT IN ( |
||
644 | SELECT branch_id |
||
645 | FROM {sources['osmtgmod_branch']['schema']}. |
||
646 | {sources['osmtgmod_branch']['table']} |
||
647 | WHERE result_id = 1 and link_type = 'transformer') |
||
648 | """ |
||
649 | ) |
||
650 | |||
651 | # Initalize the dataframe for transformers |
||
652 | trafo = gpd.GeoDataFrame( |
||
653 | columns=["trafo_id", "bus0", "bus1", "s_nom"], dtype=int |
||
654 | ) |
||
655 | trafo_id = db.next_etrago_id("transformer") |
||
656 | |||
657 | # Add one transformer per central foreign bus with v_nom != 380 |
||
658 | for i, row in central_buses[central_buses.v_nom != 380].iterrows(): |
||
659 | s_nom_0 = new_lines[new_lines.bus0 == row.bus_id].s_nom.sum() |
||
660 | s_nom_1 = new_lines[new_lines.bus1 == row.bus_id].s_nom.sum() |
||
661 | if s_nom_0 == 0.0: |
||
662 | s_nom = s_nom_1 |
||
663 | elif s_nom_1 == 0.0: |
||
664 | s_nom = s_nom_0 |
||
665 | else: |
||
666 | s_nom = min([s_nom_0, s_nom_1]) |
||
667 | |||
668 | s_nom, x = choose_transformer(s_nom) |
||
669 | |||
670 | trafo = pd.concat( |
||
671 | [ |
||
672 | trafo, |
||
673 | pd.DataFrame( |
||
674 | index=[trafo.index.max() + 1], |
||
675 | data={ |
||
676 | "trafo_id": trafo_id, |
||
677 | "bus0": row.bus_id, |
||
678 | "bus1": central_buses[ |
||
679 | (central_buses.v_nom == 380) |
||
680 | & (central_buses.country == row.country) |
||
681 | ].bus_id.values[0], |
||
682 | "s_nom": s_nom, |
||
683 | "x": x, |
||
684 | }, |
||
685 | ), |
||
686 | ], |
||
687 | ignore_index=True, |
||
688 | ) |
||
689 | trafo_id += 1 |
||
690 | |||
691 | # Set data type |
||
692 | trafo = trafo.astype({"trafo_id": "int", "bus0": "int", "bus1": "int"}) |
||
693 | trafo["scn_name"] = scenario |
||
694 | |||
695 | # Insert transformers to the database |
||
696 | trafo.to_sql( |
||
697 | targets["transformers"]["table"], |
||
698 | schema=targets["transformers"]["schema"], |
||
699 | if_exists="append", |
||
700 | con=db.engine(), |
||
701 | index=False, |
||
702 | ) |
||
703 | |||
704 | |||
705 | def foreign_dc_lines(scenario, sources, targets, central_buses): |
||
706 | """Insert DC lines to foreign countries manually |
||
707 | |||
708 | Parameters |
||
709 | ---------- |
||
710 | sources : dict |
||
711 | List of dataset sources |
||
712 | targets : dict |
||
713 | List of dataset targets |
||
714 | central_buses : geopandas.GeoDataFrame |
||
715 | Buses in the center of foreign countries |
||
716 | |||
717 | Returns |
||
718 | ------- |
||
719 | None. |
||
720 | |||
721 | """ |
||
722 | # Delete existing dc lines to foreign countries |
||
723 | db.execute_sql( |
||
724 | f""" |
||
725 | DELETE FROM {targets['links']['schema']}. |
||
726 | {targets['links']['table']} |
||
727 | WHERE scn_name = '{scenario}' |
||
728 | AND carrier = 'DC' |
||
729 | AND bus0 IN ( |
||
730 | SELECT bus_id |
||
731 | FROM {sources['electricity_buses']['schema']}. |
||
732 | {sources['electricity_buses']['table']} |
||
733 | WHERE scn_name = '{scenario}' |
||
734 | AND carrier = 'AC' |
||
735 | AND country = 'DE') |
||
736 | AND bus1 IN ( |
||
737 | SELECT bus_id |
||
738 | FROM {sources['electricity_buses']['schema']}. |
||
739 | {sources['electricity_buses']['table']} |
||
740 | WHERE scn_name = '{scenario}' |
||
741 | AND carrier = 'AC' |
||
742 | AND country != 'DE') |
||
743 | """ |
||
744 | ) |
||
745 | capital_cost = get_sector_parameters("electricity", scenario)[ |
||
746 | "capital_cost" |
||
747 | ] |
||
748 | |||
749 | # Add DC line from Lübeck to Sweden |
||
750 | converter_luebeck = select_bus_id( |
||
751 | 10.802358024202768, |
||
752 | 53.897547401787, |
||
753 | 380, |
||
754 | scenario, |
||
755 | "AC", |
||
756 | find_closest=True, |
||
757 | ) |
||
758 | |||
759 | foreign_links = pd.DataFrame( |
||
760 | index=[0], |
||
761 | data={ |
||
762 | "link_id": db.next_etrago_id("link"), |
||
763 | "bus0": converter_luebeck, |
||
764 | "bus1": central_buses[ |
||
765 | (central_buses.country == "SE") & (central_buses.v_nom == 380) |
||
766 | ].iloc[0] |
||
767 | .squeeze() |
||
768 | .bus_id, |
||
769 | "p_nom": 600, |
||
770 | "length": 262, |
||
771 | }, |
||
772 | ) |
||
773 | |||
774 | # When not in test-mode, add DC line from Bentwisch to Denmark |
||
775 | if config.settings()["egon-data"]["--dataset-boundary"] == "Everything": |
||
776 | converter_bentwisch = select_bus_id( |
||
777 | 12.213671694775988, |
||
778 | 54.09974494662279, |
||
779 | 380, |
||
780 | scenario, |
||
781 | "AC", |
||
782 | find_closest=True, |
||
783 | ) |
||
784 | |||
785 | foreign_links = pd.concat( |
||
786 | [ |
||
787 | foreign_links, |
||
788 | pd.DataFrame( |
||
789 | index=[1], |
||
790 | data={ |
||
791 | "link_id": db.next_etrago_id("link") + 1, |
||
792 | "bus0": converter_bentwisch, |
||
793 | "bus1": central_buses[ |
||
794 | (central_buses.country == "DK") |
||
795 | & (central_buses.v_nom == 380) |
||
796 | & (central_buses.x > 10) |
||
797 | ].iloc[0] |
||
798 | .squeeze() |
||
799 | .bus_id, |
||
800 | "p_nom": 600, |
||
801 | "length": 170, |
||
802 | }, |
||
803 | ), |
||
804 | ] |
||
805 | ) |
||
806 | |||
807 | # Set parameters for all DC lines |
||
808 | foreign_links["capital_cost"] = ( |
||
809 | capital_cost["dc_cable"] * foreign_links.length |
||
810 | + 2 * capital_cost["dc_inverter"] |
||
811 | ) |
||
812 | foreign_links["p_min_pu"] = -1 |
||
813 | foreign_links["p_nom_extendable"] = True |
||
814 | foreign_links["p_nom_min"] = foreign_links["p_nom"] |
||
815 | foreign_links["scn_name"] = scenario |
||
816 | foreign_links["carrier"] = "DC" |
||
817 | foreign_links["efficiency"] = 1 |
||
818 | |||
819 | # Add topology |
||
820 | foreign_links = etrago.link_geom_from_buses(foreign_links, scenario) |
||
821 | |||
822 | # Insert DC lines to the database |
||
823 | foreign_links.to_postgis( |
||
824 | targets["links"]["table"], |
||
825 | schema=targets["links"]["schema"], |
||
826 | if_exists="append", |
||
827 | con=db.engine(), |
||
828 | index=False, |
||
829 | ) |
||
830 | |||
831 | |||
832 | def grid(): |
||
833 | """Insert electrical grid compoenents for neighbouring countries |
||
834 | |||
835 | Returns |
||
836 | ------- |
||
837 | None. |
||
838 | |||
839 | """ |
||
840 | # Select sources and targets from dataset configuration |
||
841 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
842 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
843 | |||
844 | for scenario in config.settings()["egon-data"]["--scenarios"]: |
||
845 | central_buses = buses(scenario, sources, targets) |
||
846 | |||
847 | foreign_lines = cross_border_lines( |
||
848 | scenario, sources, targets, central_buses |
||
849 | ) |
||
850 | |||
851 | central_transformer( |
||
852 | scenario, sources, targets, central_buses, foreign_lines |
||
853 | ) |
||
854 | |||
855 | foreign_dc_lines(scenario, sources, targets, central_buses) |
||
856 | |||
857 | if scenario != "eGon100RE": |
||
858 | lines_between_foreign_countries( |
||
859 | scenario, sources, targets, central_buses |
||
860 | ) |
||
861 | |||
862 | |||
863 | def map_carriers_tyndp(): |
||
864 | """Map carriers from TYNDP-data to carriers used in eGon |
||
865 | Returns |
||
866 | ------- |
||
867 | dict |
||
868 | Carrier from TYNDP and eGon |
||
869 | """ |
||
870 | return { |
||
871 | "Battery": "battery", |
||
872 | "DSR": "demand_side_response", |
||
873 | "Gas CCGT new": "gas", |
||
874 | "Gas CCGT old 2": "gas", |
||
875 | "Gas CCGT present 1": "gas", |
||
876 | "Gas CCGT present 2": "gas", |
||
877 | "Gas conventional old 1": "gas", |
||
878 | "Gas conventional old 2": "gas", |
||
879 | "Gas OCGT new": "gas", |
||
880 | "Gas OCGT old": "gas", |
||
881 | "Gas CCGT old 1": "gas", |
||
882 | "Gas CCGT old 2 Bio": "biogas", |
||
883 | "Gas conventional old 2 Bio": "biogas", |
||
884 | "Hard coal new": "coal", |
||
885 | "Hard coal old 1": "coal", |
||
886 | "Hard coal old 2": "coal", |
||
887 | "Hard coal old 2 Bio": "coal", |
||
888 | "Heavy oil old 1": "oil", |
||
889 | "Heavy oil old 1 Bio": "oil", |
||
890 | "Heavy oil old 2": "oil", |
||
891 | "Light oil": "oil", |
||
892 | "Lignite new": "lignite", |
||
893 | "Lignite old 1": "lignite", |
||
894 | "Lignite old 2": "lignite", |
||
895 | "Lignite old 1 Bio": "lignite", |
||
896 | "Lignite old 2 Bio": "lignite", |
||
897 | "Nuclear": "nuclear", |
||
898 | "Offshore Wind": "wind_offshore", |
||
899 | "Onshore Wind": "wind_onshore", |
||
900 | "Other non-RES": "others", |
||
901 | "Other RES": "others", |
||
902 | "P2G": "power_to_gas", |
||
903 | "PS Closed": "pumped_hydro", |
||
904 | "PS Open": "reservoir", |
||
905 | "Reservoir": "reservoir", |
||
906 | "Run-of-River": "run_of_river", |
||
907 | "Solar PV": "solar", |
||
908 | "Solar Thermal": "others", |
||
909 | "Waste": "Other RES", |
||
910 | } |
||
911 | |||
912 | |||
913 | View Code Duplication | def get_foreign_bus_id(scenario): |
|
914 | """Calculte the etrago bus id from Nodes of TYNDP based on the geometry |
||
915 | |||
916 | Returns |
||
917 | ------- |
||
918 | pandas.Series |
||
919 | List of mapped node_ids from TYNDP and etragos bus_id |
||
920 | |||
921 | """ |
||
922 | |||
923 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
924 | |||
925 | bus_id = db.select_geodataframe( |
||
926 | f"""SELECT bus_id, ST_Buffer(geom, 1) as geom, country |
||
927 | FROM grid.egon_etrago_bus |
||
928 | WHERE scn_name = '{scenario}' |
||
929 | AND carrier = 'AC' |
||
930 | AND v_nom = 380. |
||
931 | AND country != 'DE' |
||
932 | AND bus_id NOT IN ( |
||
933 | SELECT bus_i |
||
934 | FROM osmtgmod_results.bus_data) |
||
935 | """, |
||
936 | epsg=3035, |
||
937 | ) |
||
938 | |||
939 | # insert installed capacities |
||
940 | file = zipfile.ZipFile(f"tyndp/{sources['tyndp_capacities']}") |
||
941 | |||
942 | # Select buses in neighbouring countries as geodataframe |
||
943 | buses = pd.read_excel( |
||
944 | file.open("TYNDP-2020-Scenario-Datafile.xlsx").read(), |
||
945 | sheet_name="Nodes - Dict", |
||
946 | ).query("longitude==longitude") |
||
947 | buses = gpd.GeoDataFrame( |
||
948 | buses, |
||
949 | crs=4326, |
||
950 | geometry=gpd.points_from_xy(buses.longitude, buses.latitude), |
||
951 | ).to_crs(3035) |
||
952 | |||
953 | buses["bus_id"] = 0 |
||
954 | |||
955 | # Select bus_id from etrago with shortest distance to TYNDP node |
||
956 | for i, row in buses.iterrows(): |
||
957 | distance = bus_id.set_index("bus_id").geom.distance(row.geometry) |
||
958 | buses.loc[i, "bus_id"] = distance[ |
||
959 | distance == distance.min() |
||
960 | ].index.values[0] |
||
961 | |||
962 | return buses.set_index("node_id").bus_id |
||
963 | |||
964 | |||
965 | def calc_capacities(): |
||
966 | """Calculates installed capacities from TYNDP data |
||
967 | |||
968 | Returns |
||
969 | ------- |
||
970 | pandas.DataFrame |
||
971 | Installed capacities per foreign node and energy carrier |
||
972 | |||
973 | """ |
||
974 | |||
975 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
976 | |||
977 | countries = [ |
||
978 | "AT", |
||
979 | "BE", |
||
980 | "CH", |
||
981 | "CZ", |
||
982 | "DK", |
||
983 | "FR", |
||
984 | "NL", |
||
985 | "NO", |
||
986 | "SE", |
||
987 | "PL", |
||
988 | "UK", |
||
989 | ] |
||
990 | |||
991 | # insert installed capacities |
||
992 | file = zipfile.ZipFile(f"tyndp/{sources['tyndp_capacities']}") |
||
993 | df = pd.read_excel( |
||
994 | file.open("TYNDP-2020-Scenario-Datafile.xlsx").read(), |
||
995 | sheet_name="Capacity", |
||
996 | ) |
||
997 | |||
998 | # differneces between different climate years are very small (<1MW) |
||
999 | # choose 1984 because it is the mean value |
||
1000 | df_2030 = ( |
||
1001 | df.rename({"Climate Year": "Climate_Year"}, axis="columns") |
||
1002 | .query( |
||
1003 | 'Scenario == "Distributed Energy" & Year == 2030 & ' |
||
1004 | "Climate_Year == 1984" |
||
1005 | ) |
||
1006 | .set_index(["Node/Line", "Generator_ID"]) |
||
1007 | ) |
||
1008 | |||
1009 | df_2040 = ( |
||
1010 | df.rename({"Climate Year": "Climate_Year"}, axis="columns") |
||
1011 | .query( |
||
1012 | 'Scenario == "Distributed Energy" & Year == 2040 & ' |
||
1013 | "Climate_Year == 1984" |
||
1014 | ) |
||
1015 | .set_index(["Node/Line", "Generator_ID"]) |
||
1016 | ) |
||
1017 | |||
1018 | # interpolate linear between 2030 and 2040 for 2035 accordning to |
||
1019 | # scenario report of TSO's and the approval by BNetzA |
||
1020 | df_2035 = pd.DataFrame(index=df_2030.index) |
||
1021 | df_2035["cap_2030"] = df_2030.Value |
||
1022 | df_2035["cap_2040"] = df_2040.Value |
||
1023 | df_2035.fillna(0.0, inplace=True) |
||
1024 | df_2035["cap_2035"] = ( |
||
1025 | df_2035["cap_2030"] + (df_2035["cap_2040"] - df_2035["cap_2030"]) / 2 |
||
1026 | ) |
||
1027 | df_2035 = df_2035.reset_index() |
||
1028 | df_2035["carrier"] = df_2035.Generator_ID.map(map_carriers_tyndp()) |
||
1029 | |||
1030 | # group capacities by new carriers |
||
1031 | grouped_capacities = ( |
||
1032 | df_2035.groupby(["carrier", "Node/Line"]).cap_2035.sum().reset_index() |
||
1033 | ) |
||
1034 | |||
1035 | # choose capacities for considered countries |
||
1036 | return grouped_capacities[ |
||
1037 | grouped_capacities["Node/Line"].str[:2].isin(countries) |
||
1038 | ] |
||
1039 | |||
1040 | |||
1041 | def insert_generators_tyndp(capacities): |
||
1042 | """Insert generators for foreign countries based on TYNDP-data |
||
1043 | |||
1044 | Parameters |
||
1045 | ---------- |
||
1046 | capacities : pandas.DataFrame |
||
1047 | Installed capacities per foreign node and energy carrier |
||
1048 | |||
1049 | Returns |
||
1050 | ------- |
||
1051 | None. |
||
1052 | |||
1053 | """ |
||
1054 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1055 | map_buses = get_map_buses() |
||
1056 | |||
1057 | # Delete existing data |
||
1058 | db.execute_sql( |
||
1059 | f""" |
||
1060 | DELETE FROM |
||
1061 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1062 | WHERE bus IN ( |
||
1063 | SELECT bus_id FROM |
||
1064 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1065 | WHERE country != 'DE' |
||
1066 | AND scn_name = 'eGon2035') |
||
1067 | AND scn_name = 'eGon2035' |
||
1068 | AND carrier != 'CH4' |
||
1069 | """ |
||
1070 | ) |
||
1071 | |||
1072 | db.execute_sql( |
||
1073 | f""" |
||
1074 | DELETE FROM |
||
1075 | {targets['generators_timeseries']['schema']}. |
||
1076 | {targets['generators_timeseries']['table']} |
||
1077 | WHERE generator_id NOT IN ( |
||
1078 | SELECT generator_id FROM |
||
1079 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1080 | ) |
||
1081 | AND scn_name = 'eGon2035' |
||
1082 | """ |
||
1083 | ) |
||
1084 | |||
1085 | # Select generators from TYNDP capacities |
||
1086 | gen = capacities[ |
||
1087 | capacities.carrier.isin( |
||
1088 | [ |
||
1089 | "others", |
||
1090 | "wind_offshore", |
||
1091 | "wind_onshore", |
||
1092 | "solar", |
||
1093 | "reservoir", |
||
1094 | "run_of_river", |
||
1095 | "lignite", |
||
1096 | "coal", |
||
1097 | "oil", |
||
1098 | "nuclear", |
||
1099 | ] |
||
1100 | ) |
||
1101 | ] |
||
1102 | |||
1103 | # Set bus_id |
||
1104 | gen.loc[ |
||
1105 | gen[gen["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1106 | ] = gen.loc[ |
||
1107 | gen[gen["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1108 | ].map( |
||
1109 | map_buses |
||
1110 | ) |
||
1111 | |||
1112 | gen.loc[:, "bus"] = ( |
||
1113 | get_foreign_bus_id(scenario="eGon2035") |
||
1114 | .loc[gen.loc[:, "Node/Line"]] |
||
1115 | .values |
||
1116 | ) |
||
1117 | |||
1118 | # Add scenario column |
||
1119 | gen["scenario"] = "eGon2035" |
||
1120 | |||
1121 | # Add marginal costs |
||
1122 | gen = add_marginal_costs(gen) |
||
1123 | |||
1124 | # insert generators data |
||
1125 | session = sessionmaker(bind=db.engine())() |
||
1126 | for i, row in gen.iterrows(): |
||
1127 | entry = etrago.EgonPfHvGenerator( |
||
1128 | scn_name=row.scenario, |
||
1129 | generator_id=int(db.next_etrago_id("generator")), |
||
1130 | bus=row.bus, |
||
1131 | carrier=row.carrier, |
||
1132 | p_nom=row.cap_2035, |
||
1133 | marginal_cost=row.marginal_cost, |
||
1134 | ) |
||
1135 | |||
1136 | session.add(entry) |
||
1137 | session.commit() |
||
1138 | |||
1139 | # assign generators time-series data |
||
1140 | |||
1141 | renewable_timeseries_pypsaeur("eGon2035") |
||
1142 | |||
1143 | |||
1144 | def insert_storage_tyndp(capacities): |
||
1145 | """Insert storage units for foreign countries based on TYNDP-data |
||
1146 | |||
1147 | Parameters |
||
1148 | ---------- |
||
1149 | capacities : pandas.DataFrame |
||
1150 | Installed capacities per foreign node and energy carrier |
||
1151 | |||
1152 | |||
1153 | Returns |
||
1154 | ------- |
||
1155 | None. |
||
1156 | |||
1157 | """ |
||
1158 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1159 | map_buses = get_map_buses() |
||
1160 | |||
1161 | # Delete existing data |
||
1162 | db.execute_sql( |
||
1163 | f""" |
||
1164 | DELETE FROM {targets['storage']['schema']}.{targets['storage']['table']} |
||
1165 | WHERE bus IN ( |
||
1166 | SELECT bus_id FROM |
||
1167 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1168 | WHERE country != 'DE' |
||
1169 | AND scn_name = 'eGon2035') |
||
1170 | AND scn_name = 'eGon2035' |
||
1171 | """ |
||
1172 | ) |
||
1173 | |||
1174 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
1175 | parameters_pumped_hydro = scenario_parameters.electricity("eGon2035")[ |
||
1176 | "efficiency" |
||
1177 | ]["pumped_hydro"] |
||
1178 | |||
1179 | parameters_battery = scenario_parameters.electricity("eGon2035")[ |
||
1180 | "efficiency" |
||
1181 | ]["battery"] |
||
1182 | |||
1183 | # Select storage capacities from TYNDP-data |
||
1184 | store = capacities[capacities.carrier.isin(["battery", "pumped_hydro"])] |
||
1185 | |||
1186 | # Set bus_id |
||
1187 | store.loc[ |
||
1188 | store[store["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1189 | ] = store.loc[ |
||
1190 | store[store["Node/Line"].isin(map_buses.keys())].index, "Node/Line" |
||
1191 | ].map( |
||
1192 | map_buses |
||
1193 | ) |
||
1194 | |||
1195 | store.loc[:, "bus"] = ( |
||
1196 | get_foreign_bus_id(scenario="eGon2035") |
||
1197 | .loc[store.loc[:, "Node/Line"]] |
||
1198 | .values |
||
1199 | ) |
||
1200 | |||
1201 | # Add columns for additional parameters to df |
||
1202 | ( |
||
1203 | store["dispatch"], |
||
1204 | store["store"], |
||
1205 | store["standing_loss"], |
||
1206 | store["max_hours"], |
||
1207 | ) = (None, None, None, None) |
||
1208 | |||
1209 | # Insert carrier specific parameters |
||
1210 | |||
1211 | parameters = ["dispatch", "store", "standing_loss", "max_hours"] |
||
1212 | |||
1213 | for x in parameters: |
||
1214 | store.loc[store["carrier"] == "battery", x] = parameters_battery[x] |
||
1215 | store.loc[store["carrier"] == "pumped_hydro", x] = ( |
||
1216 | parameters_pumped_hydro[x] |
||
1217 | ) |
||
1218 | |||
1219 | # insert data |
||
1220 | session = sessionmaker(bind=db.engine())() |
||
1221 | for i, row in store.iterrows(): |
||
1222 | entry = etrago.EgonPfHvStorage( |
||
1223 | scn_name="eGon2035", |
||
1224 | storage_id=int(db.next_etrago_id("storage")), |
||
1225 | bus=row.bus, |
||
1226 | max_hours=row.max_hours, |
||
1227 | efficiency_store=row.store, |
||
1228 | efficiency_dispatch=row.dispatch, |
||
1229 | standing_loss=row.standing_loss, |
||
1230 | carrier=row.carrier, |
||
1231 | p_nom=row.cap_2035, |
||
1232 | ) |
||
1233 | |||
1234 | session.add(entry) |
||
1235 | session.commit() |
||
1236 | |||
1237 | |||
1238 | def get_map_buses(): |
||
1239 | """Returns a dictonary of foreign regions which are aggregated to another |
||
1240 | |||
1241 | Returns |
||
1242 | ------- |
||
1243 | Combination of aggregated regions |
||
1244 | |||
1245 | |||
1246 | """ |
||
1247 | return { |
||
1248 | "DK00": "DKW1", |
||
1249 | "DKKF": "DKE1", |
||
1250 | "FR15": "FR00", |
||
1251 | "NON1": "NOM1", |
||
1252 | "NOS0": "NOM1", |
||
1253 | "NOS1": "NOM1", |
||
1254 | "PLE0": "PL00", |
||
1255 | "PLI0": "PL00", |
||
1256 | "SE00": "SE02", |
||
1257 | "SE01": "SE02", |
||
1258 | "SE03": "SE02", |
||
1259 | "SE04": "SE02", |
||
1260 | "RU": "RU00", |
||
1261 | } |
||
1262 | |||
1263 | |||
1264 | def tyndp_generation(): |
||
1265 | """Insert data from TYNDP 2020 accordning to NEP 2021 |
||
1266 | Scenario 'Distributed Energy', linear interpolate between 2030 and 2040 |
||
1267 | |||
1268 | Returns |
||
1269 | ------- |
||
1270 | None. |
||
1271 | """ |
||
1272 | |||
1273 | capacities = calc_capacities() |
||
1274 | |||
1275 | insert_generators_tyndp(capacities) |
||
1276 | |||
1277 | insert_storage_tyndp(capacities) |
||
1278 | |||
1279 | |||
1280 | def tyndp_demand(): |
||
1281 | """Copy load timeseries data from TYNDP 2020. |
||
1282 | According to NEP 2021, the data for 2030 and 2040 is interpolated linearly. |
||
1283 | |||
1284 | Returns |
||
1285 | ------- |
||
1286 | None. |
||
1287 | |||
1288 | """ |
||
1289 | map_buses = get_map_buses() |
||
1290 | |||
1291 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
1292 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1293 | |||
1294 | # Delete existing data |
||
1295 | db.execute_sql( |
||
1296 | f""" |
||
1297 | DELETE FROM {targets['loads']['schema']}. |
||
1298 | {targets['loads']['table']} |
||
1299 | WHERE |
||
1300 | scn_name = 'eGon2035' |
||
1301 | AND carrier = 'AC' |
||
1302 | AND bus NOT IN ( |
||
1303 | SELECT bus_i |
||
1304 | FROM {sources['osmtgmod_bus']['schema']}. |
||
1305 | {sources['osmtgmod_bus']['table']}) |
||
1306 | """ |
||
1307 | ) |
||
1308 | |||
1309 | # Connect to database |
||
1310 | engine = db.engine() |
||
1311 | session = sessionmaker(bind=engine)() |
||
1312 | |||
1313 | nodes = [ |
||
1314 | "AT00", |
||
1315 | "BE00", |
||
1316 | "CH00", |
||
1317 | "CZ00", |
||
1318 | "DKE1", |
||
1319 | "DKW1", |
||
1320 | "FR00", |
||
1321 | "NL00", |
||
1322 | "LUB1", |
||
1323 | "LUF1", |
||
1324 | "LUG1", |
||
1325 | "NOM1", |
||
1326 | "NON1", |
||
1327 | "NOS0", |
||
1328 | "SE01", |
||
1329 | "SE02", |
||
1330 | "SE03", |
||
1331 | "SE04", |
||
1332 | "PL00", |
||
1333 | "UK00", |
||
1334 | "UKNI", |
||
1335 | ] |
||
1336 | # Assign etrago bus_id to TYNDP nodes |
||
1337 | buses = pd.DataFrame({"nodes": nodes}) |
||
1338 | buses.loc[buses[buses.nodes.isin(map_buses.keys())].index, "nodes"] = ( |
||
1339 | buses[buses.nodes.isin(map_buses.keys())].nodes.map(map_buses) |
||
1340 | ) |
||
1341 | buses.loc[:, "bus"] = ( |
||
1342 | get_foreign_bus_id(scenario="eGon2035") |
||
1343 | .loc[buses.loc[:, "nodes"]] |
||
1344 | .values |
||
1345 | ) |
||
1346 | buses.set_index("nodes", inplace=True) |
||
1347 | buses = buses[~buses.index.duplicated(keep="first")] |
||
1348 | |||
1349 | # Read in data from TYNDP for 2030 and 2040 |
||
1350 | dataset_2030 = pd.read_excel( |
||
1351 | f"tyndp/{sources['tyndp_demand_2030']}", sheet_name=nodes, skiprows=10 |
||
1352 | ) |
||
1353 | |||
1354 | dataset_2040 = pd.read_excel( |
||
1355 | f"tyndp/{sources['tyndp_demand_2040']}", sheet_name=None, skiprows=10 |
||
1356 | ) |
||
1357 | |||
1358 | # Transform map_buses to pandas.Series and select only used values |
||
1359 | map_series = pd.Series(map_buses) |
||
1360 | map_series = map_series[map_series.index.isin(nodes)] |
||
1361 | |||
1362 | # Calculate and insert demand timeseries per etrago bus_id |
||
1363 | for bus in buses.index: |
||
1364 | nodes = [bus] |
||
1365 | |||
1366 | if bus in map_series.values: |
||
1367 | nodes.extend(list(map_series[map_series == bus].index.values)) |
||
1368 | |||
1369 | load_id = db.next_etrago_id("load") |
||
1370 | |||
1371 | # Some etrago bus_ids represent multiple TYNDP nodes, |
||
1372 | # in this cases the loads are summed |
||
1373 | data_2030 = pd.Series(index=range(8760), data=0.0) |
||
1374 | for node in nodes: |
||
1375 | data_2030 = dataset_2030[node][2011] + data_2030 |
||
1376 | |||
1377 | try: |
||
1378 | data_2040 = pd.Series(index=range(8760), data=0.0) |
||
1379 | |||
1380 | for node in nodes: |
||
1381 | data_2040 = dataset_2040[node][2011] + data_2040 |
||
1382 | except: |
||
1383 | data_2040 = data_2030 |
||
1384 | |||
1385 | # According to the NEP, data for 2030 and 2040 is linear interpolated |
||
1386 | data_2035 = ((data_2030 + data_2040) / 2)[:8760] |
||
1387 | |||
1388 | entry = etrago.EgonPfHvLoad( |
||
1389 | scn_name="eGon2035", |
||
1390 | load_id=int(load_id), |
||
1391 | carrier="AC", |
||
1392 | bus=int(buses.bus[bus]), |
||
1393 | ) |
||
1394 | |||
1395 | entry_ts = etrago.EgonPfHvLoadTimeseries( |
||
1396 | scn_name="eGon2035", |
||
1397 | load_id=int(load_id), |
||
1398 | temp_id=1, |
||
1399 | p_set=list(data_2035.values), |
||
1400 | ) |
||
1401 | |||
1402 | session.add(entry) |
||
1403 | session.add(entry_ts) |
||
1404 | session.commit() |
||
1405 | |||
1406 | |||
1407 | def get_entsoe_token(): |
||
1408 | """Check for token in home dir. If not exists, check in working dir""" |
||
1409 | token_path = path.join(path.expanduser("~"), ".entsoe-token") |
||
1410 | if not os.path.isfile(token_path): |
||
1411 | logger.info( |
||
1412 | f"Token file not found at {token_path}. Will check in working directory." |
||
1413 | ) |
||
1414 | token_path = Path(".entsoe-token") |
||
1415 | if os.path.isfile(token_path): |
||
1416 | logger.info(f"Token found at {token_path}") |
||
1417 | entsoe_token = open(token_path, "r").read(36) |
||
1418 | if entsoe_token is None: |
||
1419 | raise FileNotFoundError("No entsoe-token found.") |
||
1420 | return entsoe_token |
||
1421 | |||
1422 | |||
1423 | def entsoe_historic_generation_capacities( |
||
1424 | year_start="20190101", year_end="20200101" |
||
1425 | ): |
||
1426 | entsoe_token = get_entsoe_token() |
||
1427 | client = entsoe.EntsoePandasClient(api_key=entsoe_token) |
||
1428 | |||
1429 | start = pd.Timestamp(year_start, tz="Europe/Brussels") |
||
1430 | end = pd.Timestamp(year_end, tz="Europe/Brussels") |
||
1431 | start_gb = pd.Timestamp(year_start, tz="Europe/London") |
||
1432 | end_gb = pd.Timestamp(year_end, tz="Europe/London") |
||
1433 | countries = [ |
||
1434 | "LU", |
||
1435 | "AT", |
||
1436 | "FR", |
||
1437 | "NL", |
||
1438 | "CZ", |
||
1439 | "DK_1", |
||
1440 | "DK_2", |
||
1441 | "PL", |
||
1442 | "CH", |
||
1443 | "NO", |
||
1444 | "BE", |
||
1445 | "SE", |
||
1446 | "GB", |
||
1447 | ] |
||
1448 | # No GB data after Brexit |
||
1449 | if int(year_start[:4]) > 2021: |
||
1450 | logger.warning( |
||
1451 | "No GB data after Brexit. GB is dropped from entsoe query!" |
||
1452 | ) |
||
1453 | countries = [c for c in countries if c != "GB"] |
||
1454 | # todo: define wanted countries |
||
1455 | |||
1456 | not_retrieved = [] |
||
1457 | dfs = [] |
||
1458 | for country in countries: |
||
1459 | if country == "GB": |
||
1460 | kwargs = dict(start=start_gb, end=end_gb) |
||
1461 | else: |
||
1462 | kwargs = dict(start=start, end=end) |
||
1463 | try: |
||
1464 | country_data = client.query_installed_generation_capacity( |
||
1465 | country, **kwargs |
||
1466 | ) |
||
1467 | dfs.append(country_data) |
||
1468 | except (entsoe.exceptions.NoMatchingDataError, requests.HTTPError): |
||
1469 | logger.warning( |
||
1470 | f"Data for country: {country} could not be retrieved." |
||
1471 | ) |
||
1472 | not_retrieved.append(country) |
||
1473 | pass |
||
1474 | |||
1475 | if dfs: |
||
1476 | df = pd.concat(dfs) |
||
1477 | df["country"] = [c for c in countries if c not in not_retrieved] |
||
1478 | df.set_index("country", inplace=True) |
||
1479 | if int(year_start[:4]) == 2023: |
||
1480 | # https://www.bmreports.com/bmrs/?q=foregeneration/capacityaggregated |
||
1481 | # could probably somehow be automised |
||
1482 | # https://www.elexonportal.co.uk/category/view/178 |
||
1483 | # in MW |
||
1484 | installed_capacity_gb = pd.Series( |
||
1485 | { |
||
1486 | "Biomass": 4438, |
||
1487 | "Fossil Gas": 37047, |
||
1488 | "Fossil Hard coal": 1491, |
||
1489 | "Hydro Pumped Storage": 5603, |
||
1490 | "Hydro Run-of-river and poundage": 2063, |
||
1491 | "Nuclear": 4950, |
||
1492 | "Other": 3313, |
||
1493 | "Other renewable": 1462, |
||
1494 | "Solar": 14518, |
||
1495 | "Wind Offshore": 13038, |
||
1496 | "Wind Onshore": 13907, |
||
1497 | }, |
||
1498 | name="GB", |
||
1499 | ) |
||
1500 | df = pd.concat([df.T, installed_capacity_gb], axis=1).T |
||
1501 | logger.info("Manually added generation capacities for GB 2023.") |
||
1502 | not_retrieved = [c for c in not_retrieved if c != "GB"] |
||
1503 | df.fillna(0, inplace=True) |
||
1504 | else: |
||
1505 | df = pd.DataFrame() |
||
1506 | return df, not_retrieved |
||
1507 | |||
1508 | |||
1509 | def entsoe_historic_demand(year_start="20190101", year_end="20200101"): |
||
1510 | entsoe_token = get_entsoe_token() |
||
1511 | client = entsoe.EntsoePandasClient(api_key=entsoe_token) |
||
1512 | |||
1513 | start = pd.Timestamp(year_start, tz="Europe/Brussels") |
||
1514 | end = pd.Timestamp(year_end, tz="Europe/Brussels") |
||
1515 | start_gb = start.tz_convert("Europe/London") |
||
1516 | end_gb = end.tz_convert("Europe/London") |
||
1517 | |||
1518 | countries = [ |
||
1519 | "LU", |
||
1520 | "AT", |
||
1521 | "FR", |
||
1522 | "NL", |
||
1523 | "CZ", |
||
1524 | "DK_1", |
||
1525 | "DK_2", |
||
1526 | "PL", |
||
1527 | "CH", |
||
1528 | "NO", |
||
1529 | "BE", |
||
1530 | "SE", |
||
1531 | "GB", |
||
1532 | ] |
||
1533 | |||
1534 | # todo: define wanted countries |
||
1535 | |||
1536 | not_retrieved = [] |
||
1537 | dfs = [] |
||
1538 | |||
1539 | for country in countries: |
||
1540 | if country == "GB": |
||
1541 | kwargs = dict(start=start_gb, end=end_gb) |
||
1542 | else: |
||
1543 | kwargs = dict(start=start, end=end) |
||
1544 | try: |
||
1545 | country_data = ( |
||
1546 | client.query_load(country, **kwargs) |
||
1547 | .resample("H")["Actual Load"] |
||
1548 | .mean() |
||
1549 | ) |
||
1550 | if country == "GB": |
||
1551 | country_data.index = country_data.index.tz_convert( |
||
1552 | "Europe/Brussels" |
||
1553 | ) |
||
1554 | dfs.append(country_data) |
||
1555 | except (entsoe.exceptions.NoMatchingDataError, requests.HTTPError): |
||
1556 | not_retrieved.append(country) |
||
1557 | logger.warning( |
||
1558 | f"Data for country: {country} could not be retrieved." |
||
1559 | ) |
||
1560 | pass |
||
1561 | |||
1562 | if dfs: |
||
1563 | df = pd.concat(dfs, axis=1) |
||
1564 | df.columns = [c for c in countries if c not in not_retrieved] |
||
1565 | df.index = pd.date_range(year_start, periods=8760, freq="H") |
||
1566 | else: |
||
1567 | df = pd.DataFrame() |
||
1568 | return df, not_retrieved |
||
1569 | |||
1570 | |||
1571 | def map_carriers_entsoe(): |
||
1572 | """Map carriers from entsoe-data to carriers used in eGon |
||
1573 | Returns |
||
1574 | ------- |
||
1575 | dict |
||
1576 | Carrier from entsoe to eGon |
||
1577 | """ |
||
1578 | return { |
||
1579 | "Biomass": "biomass", |
||
1580 | "Fossil Brown coal/Lignite": "lignite", |
||
1581 | "Fossil Coal-derived gas": "coal", |
||
1582 | "Fossil Gas": "OCGT", |
||
1583 | "Fossil Hard coal": "coal", |
||
1584 | "Fossil Oil": "oil", |
||
1585 | "Fossil Oil shale": "oil", |
||
1586 | "Fossil Peat": "others", |
||
1587 | "Geothermal": "geo_thermal", |
||
1588 | "Hydro Pumped Storage": "Hydro Pumped Storage", |
||
1589 | "Hydro Run-of-river and poundage": "run_of_river", |
||
1590 | "Hydro Water Reservoir": "reservoir", |
||
1591 | "Marine": "others", |
||
1592 | "Nuclear": "nuclear", |
||
1593 | "Other": "others", |
||
1594 | "Other renewable": "others", |
||
1595 | "Solar": "solar", |
||
1596 | "Waste": "others", |
||
1597 | "Wind Offshore": "wind_offshore", |
||
1598 | "Wind Onshore": "wind_onshore", |
||
1599 | } |
||
1600 | |||
1601 | |||
1602 | def entsoe_to_bus_etrago(scenario="status2019"): |
||
1603 | map_entsoe = pd.Series( |
||
1604 | { |
||
1605 | "LU": "LU00", |
||
1606 | "AT": "AT00", |
||
1607 | "FR": "FR00", |
||
1608 | "NL": "NL00", |
||
1609 | "DK_1": "DK00", |
||
1610 | "DK_2": "DKE1", |
||
1611 | "PL": "PL00", |
||
1612 | "CH": "CH00", |
||
1613 | "NO": "NO00", |
||
1614 | "BE": "BE00", |
||
1615 | "SE": "SE00", |
||
1616 | "GB": "UK00", |
||
1617 | "CZ": "CZ00", |
||
1618 | } |
||
1619 | ) |
||
1620 | |||
1621 | for_bus = get_foreign_bus_id(scenario=scenario) |
||
1622 | |||
1623 | return map_entsoe.map(for_bus) |
||
1624 | |||
1625 | |||
1626 | def save_entsoe_data(df: pd.DataFrame, file_path: Path): |
||
1627 | os.makedirs(file_path.parent, exist_ok=True) |
||
1628 | if not df.empty: |
||
1629 | df.to_csv(file_path, index_label="Index") |
||
1630 | logger.info( |
||
1631 | f"Saved entsoe data for {file_path.stem} " |
||
1632 | f"to {file_path.parent} for countries: {df.index}" |
||
1633 | ) |
||
1634 | |||
1635 | |||
1636 | def fill_by_backup_data_from_former_runs(df_sq, file_path, not_retrieved): |
||
1637 | """ |
||
1638 | Fills missing data from former runs |
||
1639 | Parameters |
||
1640 | ---------- |
||
1641 | df_sq: pd.DataFrame |
||
1642 | file_path: str, Path |
||
1643 | not_retrieved: list |
||
1644 | |||
1645 | Returns |
||
1646 | ------- |
||
1647 | df_sq, not_retrieved |
||
1648 | |||
1649 | """ |
||
1650 | sq_backup = pd.read_csv(file_path, index_col="Index") |
||
1651 | # check for missing columns in backup (former runs) |
||
1652 | c_backup = [c for c in sq_backup.columns if c in not_retrieved] |
||
1653 | # remove columns, if found in backup |
||
1654 | not_retrieved = [c for c in not_retrieved if c not in c_backup] |
||
1655 | if c_backup: |
||
1656 | df_sq = pd.concat([df_sq, sq_backup.loc[:, c_backup]], axis=1) |
||
1657 | logger.info(f"Appended data from former runs for {c_backup}") |
||
1658 | return df_sq, not_retrieved |
||
1659 | |||
1660 | |||
1661 | def insert_storage_units_sq(scn_name="status2019"): |
||
1662 | """ |
||
1663 | Insert storage_units for foreign countries based on ENTSO-E data |
||
1664 | |||
1665 | Parameters |
||
1666 | ---------- |
||
1667 | scn_name : str |
||
1668 | Scenario to which the foreign storage units will be assigned. |
||
1669 | The default is "status2019". |
||
1670 | |||
1671 | Returns |
||
1672 | ------- |
||
1673 | None. |
||
1674 | |||
1675 | """ |
||
1676 | if "status" in scn_name: |
||
1677 | year = int(scn_name.split("status")[-1]) |
||
1678 | year_start_end = { |
||
1679 | "year_start": f"{year}0101", |
||
1680 | "year_end": f"{year+1}0101", |
||
1681 | } |
||
1682 | else: |
||
1683 | raise ValueError("No valid scenario name!") |
||
1684 | |||
1685 | df_gen_sq, not_retrieved = entsoe_historic_generation_capacities( |
||
1686 | **year_start_end |
||
1687 | ) |
||
1688 | |||
1689 | View Code Duplication | if not_retrieved: |
|
1690 | logger.warning("Generation data from entsoe could not be retrieved.") |
||
1691 | # check for generation backup from former runs |
||
1692 | file_path = Path( |
||
1693 | "./", "entsoe_data", f"gen_entsoe_{scn_name}.csv" |
||
1694 | ).resolve() |
||
1695 | if os.path.isfile(file_path): |
||
1696 | df_gen_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
1697 | df_gen_sq, file_path, not_retrieved |
||
1698 | ) |
||
1699 | save_entsoe_data(df_gen_sq, file_path=file_path) |
||
1700 | |||
1701 | if not_retrieved: |
||
1702 | logger.warning( |
||
1703 | f"Backup data of 2019 is used instead for {not_retrieved}" |
||
1704 | ) |
||
1705 | df_gen_sq_backup = pd.read_csv( |
||
1706 | "data_bundle_egon_data/entsoe/gen_entsoe.csv", index_col="Index" |
||
1707 | ) |
||
1708 | df_gen_sq = pd.concat( |
||
1709 | [df_gen_sq, df_gen_sq_backup.loc[not_retrieved]], axis=1 |
||
1710 | ) |
||
1711 | |||
1712 | sto_sq = df_gen_sq.loc[:, df_gen_sq.columns == "Hydro Pumped Storage"] |
||
1713 | sto_sq.rename(columns={"Hydro Pumped Storage": "p_nom"}, inplace=True) |
||
1714 | |||
1715 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1716 | |||
1717 | # Delete existing data |
||
1718 | db.execute_sql( |
||
1719 | f""" |
||
1720 | DELETE FROM {targets['storage']['schema']}.{targets['storage']['table']} |
||
1721 | WHERE bus IN ( |
||
1722 | SELECT bus_id FROM |
||
1723 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1724 | WHERE country != 'DE' |
||
1725 | AND scn_name = '{scn_name}') |
||
1726 | AND scn_name = '{scn_name}' |
||
1727 | """ |
||
1728 | ) |
||
1729 | |||
1730 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
1731 | parameters_pumped_hydro = get_sector_parameters( |
||
1732 | sector="electricity", scenario=scn_name |
||
1733 | )["efficiency"]["pumped_hydro"] |
||
1734 | |||
1735 | # Set bus_id |
||
1736 | entsoe_to_bus = entsoe_to_bus_etrago(scenario=scn_name) |
||
1737 | sto_sq["bus"] = sto_sq.index.map(entsoe_to_bus) |
||
1738 | |||
1739 | # Insert carrier specific parameters |
||
1740 | sto_sq["carrier"] = "pumped_hydro" |
||
1741 | sto_sq["scn_name"] = scn_name |
||
1742 | sto_sq["dispatch"] = parameters_pumped_hydro["dispatch"] |
||
1743 | sto_sq["store"] = parameters_pumped_hydro["store"] |
||
1744 | sto_sq["standing_loss"] = parameters_pumped_hydro["standing_loss"] |
||
1745 | sto_sq["max_hours"] = parameters_pumped_hydro["max_hours"] |
||
1746 | sto_sq["cyclic_state_of_charge"] = parameters_pumped_hydro[ |
||
1747 | "cyclic_state_of_charge" |
||
1748 | ] |
||
1749 | |||
1750 | next_id = int(db.next_etrago_id("storage")) |
||
1751 | sto_sq["storage_id"] = range(next_id, next_id + len(sto_sq)) |
||
1752 | |||
1753 | # Delete entrances without any installed capacity |
||
1754 | sto_sq = sto_sq[sto_sq["p_nom"] > 0] |
||
1755 | |||
1756 | # insert data pumped_hydro storage |
||
1757 | |||
1758 | with session_scope() as session: |
||
1759 | for i, row in sto_sq.iterrows(): |
||
1760 | entry = etrago.EgonPfHvStorage( |
||
1761 | scn_name=scn_name, |
||
1762 | storage_id=row.storage_id, |
||
1763 | bus=row.bus, |
||
1764 | max_hours=row.max_hours, |
||
1765 | efficiency_store=row.store, |
||
1766 | efficiency_dispatch=row.dispatch, |
||
1767 | standing_loss=row.standing_loss, |
||
1768 | carrier=row.carrier, |
||
1769 | p_nom=row.p_nom, |
||
1770 | cyclic_state_of_charge=row.cyclic_state_of_charge, |
||
1771 | ) |
||
1772 | session.add(entry) |
||
1773 | session.commit() |
||
1774 | |||
1775 | # big scale batteries |
||
1776 | # info based on EASE data. https://ease-storage.eu/publication/emmes-7-0-march-2023/ |
||
1777 | # batteries smaller than 100MW are neglected |
||
1778 | |||
1779 | # TODO: include capacities between 2020 and 2023 |
||
1780 | bat_per_country = { |
||
1781 | "LU": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1782 | "AT": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1783 | "FR": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1784 | "NL": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1785 | "DK_1": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1786 | "DK_2": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1787 | "PL": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1788 | "CH": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1789 | "NO": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1790 | "BE": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1791 | "SE": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1792 | "GB": [723.8, 952.3, 1380.9, 2333.3, 3928.5], |
||
1793 | "CZ": [0, pd.NA, pd.NA, pd.NA, pd.NA], |
||
1794 | } |
||
1795 | bat_sq = pd.DataFrame(bat_per_country).T.set_axis( |
||
1796 | ["2019", "2020", "2021", "2022", "2023"], axis=1 |
||
1797 | ) |
||
1798 | |||
1799 | # Select year of interest |
||
1800 | bat_sq = bat_sq[[str(year)]] |
||
1801 | bat_sq.rename(columns={str(year): "p_nom"}, inplace= True) |
||
1802 | |||
1803 | # Add missing information suitable for eTraGo selected from scenario_parameter table |
||
1804 | parameters_batteries = get_sector_parameters( |
||
1805 | sector="electricity", scenario=scn_name |
||
1806 | )["efficiency"]["battery"] |
||
1807 | |||
1808 | # Set bus_id |
||
1809 | entsoe_to_bus = entsoe_to_bus_etrago() |
||
1810 | bat_sq["bus"] = bat_sq.index.map(entsoe_to_bus) |
||
1811 | |||
1812 | # Insert carrier specific parameters |
||
1813 | bat_sq["carrier"] = "battery" |
||
1814 | bat_sq["scn_name"] = scn_name |
||
1815 | bat_sq["dispatch"] = parameters_batteries["dispatch"] |
||
1816 | bat_sq["store"] = parameters_batteries["store"] |
||
1817 | bat_sq["standing_loss"] = parameters_batteries["standing_loss"] |
||
1818 | bat_sq["max_hours"] = parameters_batteries["max_hours"] |
||
1819 | bat_sq["cyclic_state_of_charge"] = parameters_batteries[ |
||
1820 | "cyclic_state_of_charge" |
||
1821 | ] |
||
1822 | |||
1823 | next_id = int(db.next_etrago_id("storage")) |
||
1824 | bat_sq["storage_id"] = range(next_id, next_id + len(bat_sq)) |
||
1825 | |||
1826 | # Delete entrances without any installed capacity |
||
1827 | bat_sq = bat_sq[bat_sq["p_nom"] > 0] |
||
1828 | |||
1829 | # insert data pumped_hydro storage |
||
1830 | with db.session_scope() as session: |
||
1831 | for i, row in bat_sq.iterrows(): |
||
1832 | entry = etrago.EgonPfHvStorage( |
||
1833 | scn_name=scn_name, |
||
1834 | storage_id=row.storage_id, |
||
1835 | bus=row.bus, |
||
1836 | max_hours=row.max_hours, |
||
1837 | efficiency_store=row.store, |
||
1838 | efficiency_dispatch=row.dispatch, |
||
1839 | standing_loss=row.standing_loss, |
||
1840 | carrier=row.carrier, |
||
1841 | p_nom=row.p_nom, |
||
1842 | cyclic_state_of_charge=row.cyclic_state_of_charge, |
||
1843 | ) |
||
1844 | session.add(entry) |
||
1845 | session.commit() |
||
1846 | |||
1847 | |||
1848 | def insert_generators_sq(scn_name="status2019"): |
||
1849 | """ |
||
1850 | Insert generators for foreign countries based on ENTSO-E data |
||
1851 | |||
1852 | Parameters |
||
1853 | ---------- |
||
1854 | gen_sq : pandas dataframe |
||
1855 | df with all the foreign generators produced by the function |
||
1856 | entsoe_historic_generation_capacities |
||
1857 | scn_name : str |
||
1858 | The default is "status2019". |
||
1859 | |||
1860 | Returns |
||
1861 | ------- |
||
1862 | None. |
||
1863 | |||
1864 | """ |
||
1865 | if "status" in scn_name: |
||
1866 | year = int(scn_name.split("status")[-1]) |
||
1867 | year_start_end = { |
||
1868 | "year_start": f"{year}0101", |
||
1869 | "year_end": f"{year+1}0101", |
||
1870 | } |
||
1871 | else: |
||
1872 | raise ValueError("No valid scenario name!") |
||
1873 | |||
1874 | df_gen_sq, not_retrieved = entsoe_historic_generation_capacities( |
||
1875 | **year_start_end |
||
1876 | ) |
||
1877 | |||
1878 | View Code Duplication | if not_retrieved: |
|
1879 | logger.warning("Generation data from entsoe could not be retrieved.") |
||
1880 | # check for generation backup from former runs |
||
1881 | file_path = Path( |
||
1882 | "./", "entsoe_data", f"gen_entsoe_{scn_name}.csv" |
||
1883 | ).resolve() |
||
1884 | if os.path.isfile(file_path): |
||
1885 | df_gen_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
1886 | df_gen_sq, file_path, not_retrieved |
||
1887 | ) |
||
1888 | save_entsoe_data(df_gen_sq, file_path=file_path) |
||
1889 | |||
1890 | if not_retrieved: |
||
1891 | logger.warning( |
||
1892 | f"Backup data of 2019 is used instead for {not_retrieved}" |
||
1893 | ) |
||
1894 | df_gen_sq_backup = pd.read_csv( |
||
1895 | "data_bundle_egon_data/entsoe/gen_entsoe.csv", index_col="Index" |
||
1896 | ) |
||
1897 | df_gen_sq = pd.concat( |
||
1898 | [df_gen_sq, df_gen_sq_backup.loc[not_retrieved]], axis=1 |
||
1899 | ) |
||
1900 | |||
1901 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
1902 | # Delete existing data |
||
1903 | db.execute_sql( |
||
1904 | f""" |
||
1905 | DELETE FROM |
||
1906 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1907 | WHERE bus IN ( |
||
1908 | SELECT bus_id FROM |
||
1909 | {targets['buses']['schema']}.{targets['buses']['table']} |
||
1910 | WHERE country != 'DE' |
||
1911 | AND scn_name = '{scn_name}') |
||
1912 | AND scn_name = '{scn_name}' |
||
1913 | AND carrier != 'CH4' |
||
1914 | """ |
||
1915 | ) |
||
1916 | |||
1917 | db.execute_sql( |
||
1918 | f""" |
||
1919 | DELETE FROM |
||
1920 | {targets['generators_timeseries']['schema']}. |
||
1921 | {targets['generators_timeseries']['table']} |
||
1922 | WHERE generator_id NOT IN ( |
||
1923 | SELECT generator_id FROM |
||
1924 | {targets['generators']['schema']}.{targets['generators']['table']} |
||
1925 | ) |
||
1926 | AND scn_name = '{scn_name}' |
||
1927 | """ |
||
1928 | ) |
||
1929 | entsoe_to_bus = entsoe_to_bus_etrago(scn_name) |
||
1930 | carrier_entsoe = map_carriers_entsoe() |
||
1931 | df_gen_sq = df_gen_sq.groupby(axis=1, by=carrier_entsoe).sum() |
||
1932 | |||
1933 | # Filter generators modeled as storage and geothermal |
||
1934 | df_gen_sq = df_gen_sq.loc[ |
||
1935 | :, ~df_gen_sq.columns.isin(["Hydro Pumped Storage", "geo_thermal"]) |
||
1936 | ] |
||
1937 | |||
1938 | list_gen_sq = pd.DataFrame( |
||
1939 | dtype=int, columns=["carrier", "country", "capacity"] |
||
1940 | ) |
||
1941 | for carrier in df_gen_sq.columns: |
||
1942 | gen_carry = df_gen_sq[carrier] |
||
1943 | for country, cap in gen_carry.items(): |
||
1944 | gen = pd.DataFrame( |
||
1945 | {"carrier": carrier, "country": country, "capacity": cap}, |
||
1946 | index=[1], |
||
1947 | ) |
||
1948 | # print(gen) |
||
1949 | list_gen_sq = pd.concat([list_gen_sq, gen], ignore_index=True) |
||
1950 | |||
1951 | list_gen_sq = list_gen_sq[list_gen_sq.capacity > 0] |
||
1952 | list_gen_sq["scenario"] = scn_name |
||
1953 | |||
1954 | # Add marginal costs |
||
1955 | list_gen_sq = add_marginal_costs(list_gen_sq) |
||
1956 | |||
1957 | # Find foreign bus to assign the generator |
||
1958 | list_gen_sq["bus"] = list_gen_sq.country.map(entsoe_to_bus) |
||
1959 | |||
1960 | # insert generators data |
||
1961 | session = sessionmaker(bind=db.engine())() |
||
1962 | for i, row in list_gen_sq.iterrows(): |
||
1963 | entry = etrago.EgonPfHvGenerator( |
||
1964 | scn_name=row.scenario, |
||
1965 | generator_id=int(db.next_etrago_id("generator")), |
||
1966 | bus=row.bus, |
||
1967 | carrier=row.carrier, |
||
1968 | p_nom=row.capacity, |
||
1969 | marginal_cost=row.marginal_cost, |
||
1970 | ) |
||
1971 | |||
1972 | session.add(entry) |
||
1973 | session.commit() |
||
1974 | |||
1975 | renewable_timeseries_pypsaeur(scn_name) |
||
1976 | |||
1977 | |||
1978 | def renewable_timeseries_pypsaeur(scn_name): |
||
1979 | # select generators from database to get index values |
||
1980 | foreign_re_generators = db.select_dataframe( |
||
1981 | f""" |
||
1982 | SELECT generator_id, a.carrier, country, x, y |
||
1983 | FROM grid.egon_etrago_generator a |
||
1984 | JOIN grid.egon_etrago_bus b |
||
1985 | ON a.bus = b.bus_id |
||
1986 | WHERE a.scn_name = '{scn_name}' |
||
1987 | AND b.scn_name = '{scn_name}' |
||
1988 | AND b.carrier = 'AC' |
||
1989 | AND b.country != 'DE' |
||
1990 | AND a.carrier IN ('wind_onshore', 'wind_offshore', 'solar') |
||
1991 | """ |
||
1992 | ) |
||
1993 | |||
1994 | # Import prepared network from pypsa-eur |
||
1995 | network = prepared_network() |
||
1996 | |||
1997 | # Select fluctuating renewable generators |
||
1998 | generators_pypsa_eur = network.generators.loc[ |
||
1999 | network.generators[ |
||
2000 | network.generators.carrier.isin(["onwind", "offwind-ac", "solar"]) |
||
2001 | ].index, |
||
2002 | ["bus", "carrier"], |
||
2003 | ] |
||
2004 | |||
2005 | # Align carrier names for wind turbines |
||
2006 | generators_pypsa_eur.loc[ |
||
2007 | generators_pypsa_eur[generators_pypsa_eur.carrier == "onwind"].index, |
||
2008 | "carrier", |
||
2009 | ] = "wind_onshore" |
||
2010 | generators_pypsa_eur.loc[ |
||
2011 | generators_pypsa_eur[ |
||
2012 | generators_pypsa_eur.carrier == "offwind-ac" |
||
2013 | ].index, |
||
2014 | "carrier", |
||
2015 | ] = "wind_offshore" |
||
2016 | |||
2017 | # Set coordinates from bus table |
||
2018 | generators_pypsa_eur["x"] = network.buses.loc[ |
||
2019 | generators_pypsa_eur.bus.values, "x" |
||
2020 | ].values |
||
2021 | generators_pypsa_eur["y"] = network.buses.loc[ |
||
2022 | generators_pypsa_eur.bus.values, "y" |
||
2023 | ].values |
||
2024 | |||
2025 | # Get p_max_pu time series from pypsa-eur |
||
2026 | generators_pypsa_eur["p_max_pu"] = network.generators_t.p_max_pu[ |
||
2027 | generators_pypsa_eur.index |
||
2028 | ].T.values.tolist() |
||
2029 | |||
2030 | session = sessionmaker(bind=db.engine())() |
||
2031 | |||
2032 | # Insert p_max_pu timeseries based on geometry and carrier |
||
2033 | for gen in foreign_re_generators.index: |
||
2034 | entry = etrago.EgonPfHvGeneratorTimeseries( |
||
2035 | scn_name=scn_name, |
||
2036 | generator_id=foreign_re_generators.loc[gen, "generator_id"], |
||
2037 | temp_id=1, |
||
2038 | p_max_pu=generators_pypsa_eur[ |
||
2039 | ( |
||
2040 | ( |
||
2041 | generators_pypsa_eur.x |
||
2042 | - foreign_re_generators.loc[gen, "x"] |
||
2043 | ).abs() |
||
2044 | < 0.01 |
||
2045 | ) |
||
2046 | & ( |
||
2047 | ( |
||
2048 | generators_pypsa_eur.y |
||
2049 | - foreign_re_generators.loc[gen, "y"] |
||
2050 | ).abs() |
||
2051 | < 0.01 |
||
2052 | ) |
||
2053 | & ( |
||
2054 | generators_pypsa_eur.carrier |
||
2055 | == foreign_re_generators.loc[gen, "carrier"] |
||
2056 | ) |
||
2057 | ].p_max_pu.iloc[0], |
||
2058 | ) |
||
2059 | |||
2060 | session.add(entry) |
||
2061 | session.commit() |
||
2062 | |||
2063 | |||
2064 | def insert_loads_sq(scn_name="status2019"): |
||
2065 | """ |
||
2066 | Copy load timeseries data from entso-e. |
||
2067 | |||
2068 | Returns |
||
2069 | ------- |
||
2070 | None. |
||
2071 | |||
2072 | """ |
||
2073 | sources = config.datasets()["electrical_neighbours"]["sources"] |
||
2074 | targets = config.datasets()["electrical_neighbours"]["targets"] |
||
2075 | |||
2076 | if scn_name == "status2019": |
||
2077 | year_start_end = {"year_start": "20190101", "year_end": "20200101"} |
||
2078 | elif scn_name == "status2023": |
||
2079 | year_start_end = {"year_start": "20230101", "year_end": "20240101"} |
||
2080 | else: |
||
2081 | raise ValueError("No valid scenario name!") |
||
2082 | |||
2083 | df_load_sq, not_retrieved = entsoe_historic_demand(**year_start_end) |
||
2084 | |||
2085 | if not_retrieved: |
||
2086 | logger.warning("Demand data from entsoe could not be retrieved.") |
||
2087 | # check for generation backup from former runs |
||
2088 | file_path = Path( |
||
2089 | "./", "entsoe_data", f"load_entsoe_{scn_name}.csv" |
||
2090 | ).resolve() |
||
2091 | if os.path.isfile(file_path): |
||
2092 | df_load_sq, not_retrieved = fill_by_backup_data_from_former_runs( |
||
2093 | df_load_sq, file_path, not_retrieved |
||
2094 | ) |
||
2095 | save_entsoe_data(df_load_sq, file_path=file_path) |
||
2096 | |||
2097 | if not_retrieved: |
||
2098 | logger.warning( |
||
2099 | f"Backup data of 2019 is used instead for {not_retrieved}" |
||
2100 | ) |
||
2101 | df_load_sq_backup = pd.read_csv( |
||
2102 | "data_bundle_egon_data/entsoe/load_entsoe.csv", index_col="Index" |
||
2103 | ) |
||
2104 | df_load_sq_backup.index = df_load_sq.index |
||
2105 | df_load_sq = pd.concat( |
||
2106 | [df_load_sq, df_load_sq_backup.loc[:, not_retrieved]], axis=1 |
||
2107 | ) |
||
2108 | |||
2109 | # Delete existing data |
||
2110 | db.execute_sql( |
||
2111 | f""" |
||
2112 | DELETE FROM {targets['load_timeseries']['schema']}. |
||
2113 | {targets['load_timeseries']['table']} |
||
2114 | WHERE |
||
2115 | scn_name = '{scn_name}' |
||
2116 | AND load_id IN ( |
||
2117 | SELECT load_id FROM {targets['loads']['schema']}. |
||
2118 | {targets['loads']['table']} |
||
2119 | WHERE |
||
2120 | scn_name = '{scn_name}' |
||
2121 | AND carrier = 'AC' |
||
2122 | AND bus NOT IN ( |
||
2123 | SELECT bus_i |
||
2124 | FROM {sources['osmtgmod_bus']['schema']}. |
||
2125 | {sources['osmtgmod_bus']['table']})) |
||
2126 | """ |
||
2127 | ) |
||
2128 | |||
2129 | db.execute_sql( |
||
2130 | f""" |
||
2131 | DELETE FROM {targets['loads']['schema']}. |
||
2132 | {targets['loads']['table']} |
||
2133 | WHERE |
||
2134 | scn_name = '{scn_name}' |
||
2135 | AND carrier = 'AC' |
||
2136 | AND bus NOT IN ( |
||
2137 | SELECT bus_i |
||
2138 | FROM {sources['osmtgmod_bus']['schema']}. |
||
2139 | {sources['osmtgmod_bus']['table']}) |
||
2140 | """ |
||
2141 | ) |
||
2142 | |||
2143 | # get the corresponding bus per foreign country |
||
2144 | entsoe_to_bus = entsoe_to_bus_etrago(scn_name) |
||
2145 | |||
2146 | # Calculate and insert demand timeseries per etrago bus_id |
||
2147 | with session_scope() as session: |
||
2148 | for country in df_load_sq.columns: |
||
2149 | load_id = db.next_etrago_id("load") |
||
2150 | |||
2151 | entry = etrago.EgonPfHvLoad( |
||
2152 | scn_name=scn_name, |
||
2153 | load_id=int(load_id), |
||
2154 | carrier="AC", |
||
2155 | bus=int(entsoe_to_bus[country]), |
||
2156 | ) |
||
2157 | |||
2158 | entry_ts = etrago.EgonPfHvLoadTimeseries( |
||
2159 | scn_name=scn_name, |
||
2160 | load_id=int(load_id), |
||
2161 | temp_id=1, |
||
2162 | p_set=list(df_load_sq[country]), |
||
2163 | ) |
||
2164 | |||
2165 | session.add(entry) |
||
2166 | session.add(entry_ts) |
||
2167 | session.commit() |
||
2168 | |||
2169 | |||
2170 | tasks = (grid,) |
||
2171 | |||
2172 | insert_per_scenario = set() |
||
2173 | |||
2174 | for scn_name in config.settings()["egon-data"]["--scenarios"]: |
||
2175 | |||
2176 | if scn_name == "eGon2035": |
||
2177 | insert_per_scenario.update([tyndp_generation, tyndp_demand]) |
||
2178 | |||
2179 | if "status" in scn_name: |
||
2180 | postfix = f"_{scn_name.split('status')[-1]}" |
||
2181 | insert_per_scenario.update( |
||
2182 | [ |
||
2183 | wrapped_partial( |
||
2184 | insert_generators_sq, scn_name=scn_name, postfix=postfix |
||
2185 | ), |
||
2186 | wrapped_partial( |
||
2187 | insert_loads_sq, scn_name=scn_name, postfix=postfix |
||
2188 | ), |
||
2189 | wrapped_partial( |
||
2190 | insert_storage_units_sq, scn_name=scn_name, postfix=postfix |
||
2191 | ), |
||
2192 | ] |
||
2193 | ) |
||
2194 | |||
2195 | tasks = tasks + (insert_per_scenario,) |
||
2196 | |||
2197 | |||
2198 | class ElectricalNeighbours(Dataset): |
||
2199 | """ |
||
2200 | Add lines, loads, generation and storage for electrical neighbours |
||
2201 | |||
2202 | This dataset creates data for modelling the considered foreign countries and writes |
||
2203 | that data into the database tables that can be read by the eTraGo tool. |
||
2204 | Neighbouring countries are modelled in a lower spatial resolution, in general one node per |
||
2205 | country is considered. |
||
2206 | Defined load timeseries as well as generatrion and storage capacities are connected to these nodes. |
||
2207 | The nodes are connected by AC and DC transmission lines with the German grid and other neighbouring countries |
||
2208 | considering the grid topology from ENTSO-E. |
||
2209 | |||
2210 | |||
2211 | *Dependencies* |
||
2212 | * :py:class:`Tyndp <egon.data.datasets.tyndp.Tyndp>` |
||
2213 | * :py:class:`PypsaEurSec <egon.data.datasets.pypsaeursec.PypsaEurSec>` |
||
2214 | |||
2215 | |||
2216 | *Resulting tables* |
||
2217 | * :py:class:`grid.egon_etrago_bus <egon.data.datasets.etrago_setup.EgonPfHvBus>` is extended |
||
2218 | * :py:class:`grid.egon_etrago_link <egon.data.datasets.etrago_setup.EgonPfHvLink>` is extended |
||
2219 | * :py:class:`grid.egon_etrago_line <egon.data.datasets.etrago_setup.EgonPfHvLine>` is extended |
||
2220 | * :py:class:`grid.egon_etrago_load <egon.data.datasets.etrago_setup.EgonPfHvLoad>` is extended |
||
2221 | * :py:class:`grid.egon_etrago_load_timeseries <egon.data.datasets.etrago_setup.EgonPfHvLoadTimeseries>` is extended |
||
2222 | * :py:class:`grid.egon_etrago_storage <egon.data.datasets.etrago_setup.EgonPfHvStorageUnit>` is extended |
||
2223 | * :py:class:`grid.egon_etrago_generator <egon.data.datasets.etrago_setup.EgonPfHvGenerator>` is extended |
||
2224 | * :py:class:`grid.egon_etrago_generator_timeseries <egon.data.datasets.etrago_setup.EgonPfHvGeneratorTimeseries>` is extended |
||
2225 | * :py:class:`grid.egon_etrago_transformer <egon.data.datasets.etrago_setup.EgonPfHvTransformer>` is extended |
||
2226 | |||
2227 | """ |
||
2228 | |||
2229 | #: |
||
2230 | name: str = "ElectricalNeighbours" |
||
2231 | #: |
||
2232 | version: str = "0.0.11" |
||
2233 | |||
2234 | def __init__(self, dependencies): |
||
2235 | super().__init__( |
||
2236 | name=self.name, |
||
2237 | version=self.version, |
||
2238 | dependencies=dependencies, |
||
2239 | tasks=tasks, |
||
2240 | ) |
||
2241 |