1
|
|
|
"""The central module containing all code dealing with power plant data. |
2
|
|
|
""" |
3
|
|
|
|
4
|
|
|
from pathlib import Path |
5
|
|
|
|
6
|
|
|
from geoalchemy2 import Geometry |
7
|
|
|
from sqlalchemy import BigInteger, Column, Float, Integer, Sequence, String |
8
|
|
|
from sqlalchemy.dialects.postgresql import JSONB |
9
|
|
|
from sqlalchemy.ext.declarative import declarative_base |
10
|
|
|
from sqlalchemy.orm import sessionmaker |
11
|
|
|
import geopandas as gpd |
12
|
|
|
import pandas as pd |
13
|
|
|
|
14
|
|
|
from egon.data import config, db |
15
|
|
|
from egon.data.datasets import Dataset |
16
|
|
|
from egon.data.datasets.scenario_parameters import get_sector_parameters |
17
|
|
|
from egon.data.datasets.electrical_neighbours import entsoe_to_bus_etrago |
18
|
|
|
from egon.data.datasets.mastr import ( |
19
|
|
|
WORKING_DIR_MASTR_NEW, |
20
|
|
|
WORKING_DIR_MASTR_OLD, |
21
|
|
|
) |
22
|
|
|
from egon.data.datasets.mv_grid_districts import Vg250GemClean |
23
|
|
|
from egon.data.datasets.power_plants import assign_bus_id, assign_voltage_level |
24
|
|
|
from egon.data.datasets.storages.home_batteries import ( |
25
|
|
|
allocate_home_batteries_to_buildings, |
26
|
|
|
) |
27
|
|
|
from egon.data.datasets.storages.pumped_hydro import ( |
28
|
|
|
apply_voltage_level_thresholds, |
29
|
|
|
get_location, |
30
|
|
|
match_storage_units, |
31
|
|
|
select_mastr_pumped_hydro, |
32
|
|
|
select_nep_pumped_hydro, |
33
|
|
|
) |
34
|
|
|
from egon.data.db import session_scope |
35
|
|
|
|
36
|
|
|
Base = declarative_base() |
37
|
|
|
|
38
|
|
|
|
39
|
|
View Code Duplication |
class EgonStorages(Base): |
|
|
|
|
40
|
|
|
__tablename__ = "egon_storages" |
41
|
|
|
__table_args__ = {"schema": "supply"} |
42
|
|
|
id = Column(BigInteger, Sequence("storage_seq"), primary_key=True) |
43
|
|
|
sources = Column(JSONB) |
44
|
|
|
source_id = Column(JSONB) |
45
|
|
|
carrier = Column(String) |
46
|
|
|
el_capacity = Column(Float) |
47
|
|
|
bus_id = Column(Integer) |
48
|
|
|
voltage_level = Column(Integer) |
49
|
|
|
scenario = Column(String) |
50
|
|
|
geom = Column(Geometry("POINT", 4326)) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
class Storages(Dataset): |
54
|
|
|
""" |
55
|
|
|
Allocates storage units such as pumped hydro and home batteries |
56
|
|
|
|
57
|
|
|
This data set creates interim tables to store information on storage units. |
58
|
|
|
In addition the target value for the installed capacity of pumped hydro |
59
|
|
|
storage units are spatially allocated using information of existing plants |
60
|
|
|
from the official registry Markstammdatenregister. After allocating the |
61
|
|
|
plants missing information such as the voltage level and the correct grid |
62
|
|
|
connection point are added. |
63
|
|
|
This data set also allocates the target value of home batteries spatially |
64
|
|
|
on different aggregation levels. In a first step function |
65
|
|
|
:py:func:`allocate_pv_home_batteries_to_grids` spatially distributes the |
66
|
|
|
installed battery capacities to all mv grid districts based on their |
67
|
|
|
installed pv rooftop capacity. |
68
|
|
|
Function :py:func:`allocate_home_batteries_to_buildings` further |
69
|
|
|
distributes the home battery storage systems to buildings with pv |
70
|
|
|
rooftop systems. |
71
|
|
|
|
72
|
|
|
*Dependencies* |
73
|
|
|
* :py:func:`download_mastr_data <egon.data.datasets.mastr.download_mastr_data>` |
74
|
|
|
* :py:func:`define_mv_grid_districts <egon.data.datasets.mv_grid_districts.define_mv_grid_districts>` |
75
|
|
|
* :py:class: `PowerPlants <egon.data.datasets.power_plants.PowerPlants>` |
76
|
|
|
* :py:class:`ScenarioCapacities <egon.data.datasets.scenario_capacities.ScenarioCapacities>` |
77
|
|
|
* :py:class:`ScenarioParameters <egon.data.datasets.scenario_parameters.ScenarioParameters>` |
78
|
|
|
* :py:class:`Vg250MvGridDistricts <egon.data.datasets.vg250_mv_grid_districts.Vg250MvGridDistricts>` |
79
|
|
|
|
80
|
|
|
*Resulting tables* |
81
|
|
|
* :py:class:`supply.egon_storages <egon.data.datasets.storages.EgonStorages>` |
82
|
|
|
|
83
|
|
|
""" |
84
|
|
|
|
85
|
|
|
#: |
86
|
|
|
name: str = "Storages" |
87
|
|
|
#: |
88
|
|
|
version: str = "0.0.8" |
89
|
|
|
|
90
|
|
|
def __init__(self, dependencies): |
91
|
|
|
super().__init__( |
92
|
|
|
name=self.name, |
93
|
|
|
version=self.version, |
94
|
|
|
dependencies=dependencies, |
95
|
|
|
tasks=( |
96
|
|
|
create_tables, |
97
|
|
|
allocate_pumped_hydro_scn, |
98
|
|
|
allocate_other_storage_units, |
99
|
|
|
allocate_pv_home_batteries_to_grids, |
100
|
|
|
allocate_home_batteries_to_buildings, |
101
|
|
|
), |
102
|
|
|
) |
103
|
|
|
|
104
|
|
|
|
105
|
|
|
def create_tables(): |
106
|
|
|
"""Create tables for power plant data |
107
|
|
|
Returns |
108
|
|
|
------- |
109
|
|
|
None. |
110
|
|
|
""" |
111
|
|
|
|
112
|
|
|
cfg = config.datasets()["storages"] |
113
|
|
|
db.execute_sql(f"CREATE SCHEMA IF NOT EXISTS {cfg['target']['schema']};") |
114
|
|
|
engine = db.engine() |
115
|
|
|
db.execute_sql( |
116
|
|
|
f"""DROP TABLE IF EXISTS |
117
|
|
|
{cfg['target']['schema']}.{cfg['target']['table']}""" |
118
|
|
|
) |
119
|
|
|
|
120
|
|
|
db.execute_sql("""DROP SEQUENCE IF EXISTS pp_seq""") |
121
|
|
|
EgonStorages.__table__.create(bind=engine, checkfirst=True) |
122
|
|
|
|
123
|
|
|
|
124
|
|
|
def allocate_pumped_hydro(scn, export=True): |
125
|
|
|
"""Allocates pumped_hydro plants for eGon2035 and scenario2019 scenarios |
126
|
|
|
and either exports results to data base or returns as a dataframe |
127
|
|
|
|
128
|
|
|
Parameters |
129
|
|
|
---------- |
130
|
|
|
export : bool |
131
|
|
|
Choose if allocated pumped hydro plants should be exported to the data |
132
|
|
|
base. The default is True. |
133
|
|
|
If export=False a data frame will be returned |
134
|
|
|
|
135
|
|
|
Returns |
136
|
|
|
------- |
137
|
|
|
power_plants : pandas.DataFrame |
138
|
|
|
List of pumped hydro plants in 'eGon2035' and 'scenario2019' scenarios |
139
|
|
|
""" |
140
|
|
|
|
141
|
|
|
carrier = "pumped_hydro" |
142
|
|
|
|
143
|
|
|
cfg = config.datasets()["power_plants"] |
144
|
|
|
|
145
|
|
|
nep = select_nep_pumped_hydro(scn=scn) |
146
|
|
|
mastr = select_mastr_pumped_hydro() |
147
|
|
|
|
148
|
|
|
# Assign voltage level to MaStR |
149
|
|
|
mastr["voltage_level"] = assign_voltage_level( |
150
|
|
|
mastr.rename({"el_capacity": "Nettonennleistung"}, axis=1), |
151
|
|
|
cfg, |
152
|
|
|
WORKING_DIR_MASTR_OLD, |
153
|
|
|
) |
154
|
|
|
|
155
|
|
|
# Initalize DataFrame for matching power plants |
156
|
|
|
matched = gpd.GeoDataFrame( |
157
|
|
|
columns=[ |
158
|
|
|
"carrier", |
159
|
|
|
"el_capacity", |
160
|
|
|
"scenario", |
161
|
|
|
"geometry", |
162
|
|
|
"MaStRNummer", |
163
|
|
|
"source", |
164
|
|
|
"voltage_level", |
165
|
|
|
] |
166
|
|
|
) |
167
|
|
|
|
168
|
|
|
# Match pumped_hydro units from NEP list |
169
|
|
|
# using PLZ and capacity |
170
|
|
|
matched, mastr, nep = match_storage_units( |
171
|
|
|
nep, |
172
|
|
|
mastr, |
173
|
|
|
matched, |
174
|
|
|
buffer_capacity=0.1, |
175
|
|
|
consider_carrier=False, |
176
|
|
|
scn=scn, |
177
|
|
|
) |
178
|
|
|
|
179
|
|
|
# Match plants from NEP list using plz, |
180
|
|
|
# neglecting the capacity |
181
|
|
|
matched, mastr, nep = match_storage_units( |
182
|
|
|
nep, |
183
|
|
|
mastr, |
184
|
|
|
matched, |
185
|
|
|
consider_location="plz", |
186
|
|
|
consider_carrier=False, |
187
|
|
|
consider_capacity=False, |
188
|
|
|
scn=scn, |
189
|
|
|
) |
190
|
|
|
|
191
|
|
|
# Match plants from NEP list using city, |
192
|
|
|
# neglecting the capacity |
193
|
|
|
matched, mastr, nep = match_storage_units( |
194
|
|
|
nep, |
195
|
|
|
mastr, |
196
|
|
|
matched, |
197
|
|
|
consider_location="city", |
198
|
|
|
consider_carrier=False, |
199
|
|
|
consider_capacity=False, |
200
|
|
|
scn=scn, |
201
|
|
|
) |
202
|
|
|
|
203
|
|
|
# Match remaining plants from NEP using the federal state |
204
|
|
|
matched, mastr, nep = match_storage_units( |
205
|
|
|
nep, |
206
|
|
|
mastr, |
207
|
|
|
matched, |
208
|
|
|
buffer_capacity=0.1, |
209
|
|
|
consider_location="federal_state", |
210
|
|
|
consider_carrier=False, |
211
|
|
|
scn=scn, |
212
|
|
|
) |
213
|
|
|
|
214
|
|
|
# Match remaining plants from NEP using the federal state |
215
|
|
|
matched, mastr, nep = match_storage_units( |
216
|
|
|
nep, |
217
|
|
|
mastr, |
218
|
|
|
matched, |
219
|
|
|
buffer_capacity=0.7, |
220
|
|
|
consider_location="federal_state", |
221
|
|
|
consider_carrier=False, |
222
|
|
|
scn=scn, |
223
|
|
|
) |
224
|
|
|
|
225
|
|
|
print(f"{matched.el_capacity.sum()} MW of {carrier} matched") |
226
|
|
|
print(f"{nep.elec_capacity.sum()} MW of {carrier} not matched") |
227
|
|
|
|
228
|
|
|
if nep.elec_capacity.sum() > 0: |
229
|
|
|
# Get location using geolocator and city information |
230
|
|
|
located, unmatched = get_location(nep) |
231
|
|
|
|
232
|
|
|
# Bring both dataframes together |
233
|
|
|
matched = pd.concat( |
234
|
|
|
[ |
235
|
|
|
matched, |
236
|
|
|
located[ |
237
|
|
|
[ |
238
|
|
|
"carrier", |
239
|
|
|
"el_capacity", |
240
|
|
|
"scenario", |
241
|
|
|
"geometry", |
242
|
|
|
"source", |
243
|
|
|
"MaStRNummer", |
244
|
|
|
] |
245
|
|
|
], |
246
|
|
|
], |
247
|
|
|
ignore_index=True, |
248
|
|
|
) |
249
|
|
|
|
250
|
|
|
# Set CRS |
251
|
|
|
matched.crs = "EPSG:4326" |
252
|
|
|
|
253
|
|
|
# Assign voltage level |
254
|
|
|
matched = apply_voltage_level_thresholds(matched) |
255
|
|
|
|
256
|
|
|
# Assign bus_id |
257
|
|
|
# Load grid district polygons |
258
|
|
|
mv_grid_districts = db.select_geodataframe( |
259
|
|
|
f""" |
260
|
|
|
SELECT * FROM {cfg['sources']['egon_mv_grid_district']} |
261
|
|
|
""", |
262
|
|
|
epsg=4326, |
263
|
|
|
) |
264
|
|
|
|
265
|
|
|
ehv_grid_districts = db.select_geodataframe( |
266
|
|
|
f""" |
267
|
|
|
SELECT * FROM {cfg['sources']['ehv_voronoi']} |
268
|
|
|
""", |
269
|
|
|
epsg=4326, |
270
|
|
|
) |
271
|
|
|
|
272
|
|
|
# Perform spatial joins for plants in ehv and hv level seperately |
273
|
|
|
power_plants_hv = gpd.sjoin( |
274
|
|
|
matched[matched.voltage_level >= 3], |
275
|
|
|
mv_grid_districts[["bus_id", "geom"]], |
276
|
|
|
how="left", |
277
|
|
|
).drop(columns=["index_right"]) |
278
|
|
|
power_plants_ehv = gpd.sjoin( |
279
|
|
|
matched[matched.voltage_level < 3], |
280
|
|
|
ehv_grid_districts[["bus_id", "geom"]], |
281
|
|
|
how="left", |
282
|
|
|
).drop(columns=["index_right"]) |
283
|
|
|
|
284
|
|
|
# Combine both dataframes |
285
|
|
|
power_plants = pd.concat([power_plants_hv, power_plants_ehv]) |
286
|
|
|
|
287
|
|
|
# Delete existing units in the target table |
288
|
|
|
db.execute_sql( |
289
|
|
|
f""" DELETE FROM {cfg ['sources']['storages']} |
290
|
|
|
WHERE carrier IN ('pumped_hydro') |
291
|
|
|
AND scenario='{scn}';""" |
292
|
|
|
) |
293
|
|
|
|
294
|
|
|
# If export = True export pumped_hydro plants to data base |
295
|
|
|
|
296
|
|
|
if export: |
297
|
|
|
# Insert into target table |
298
|
|
|
with session_scope() as session: |
299
|
|
|
for i, row in power_plants.iterrows(): |
300
|
|
|
entry = EgonStorages( |
301
|
|
|
sources={"el_capacity": row.source}, |
302
|
|
|
source_id={"MastrNummer": row.MaStRNummer}, |
303
|
|
|
carrier=row.carrier, |
304
|
|
|
el_capacity=row.el_capacity, |
305
|
|
|
voltage_level=row.voltage_level, |
306
|
|
|
bus_id=row.bus_id, |
307
|
|
|
scenario=row.scenario, |
308
|
|
|
geom=f"SRID=4326;POINT({row.geometry.x} {row.geometry.y})", |
309
|
|
|
) |
310
|
|
|
session.add(entry) |
311
|
|
|
session.commit() |
312
|
|
|
|
313
|
|
|
else: |
314
|
|
|
return power_plants |
315
|
|
|
|
316
|
|
|
|
317
|
|
|
def allocate_storage_units_sq(scn_name, storage_types): |
318
|
|
|
""" |
319
|
|
|
Allocate storage units by mastr data only. Capacities outside |
320
|
|
|
germany are assigned to foreign buses. |
321
|
|
|
|
322
|
|
|
Parameters |
323
|
|
|
---------- |
324
|
|
|
scn_name: str |
325
|
|
|
Scenario name |
326
|
|
|
storage_types: list |
327
|
|
|
contains all the required storage units carriers to be imported |
328
|
|
|
|
329
|
|
|
Returns |
330
|
|
|
------- |
331
|
|
|
|
332
|
|
|
""" |
333
|
|
|
sources = config.datasets()["power_plants"]["sources"] |
334
|
|
|
scn_parameters = get_sector_parameters("global", scn_name) |
335
|
|
|
scenario_date_max = str(scn_parameters["weather_year"]) + "-12-31 23:59:00" |
336
|
|
|
|
337
|
|
|
map_storage = { |
338
|
|
|
"battery": "Batterie", |
339
|
|
|
"pumped_hydro": "Pumpspeicher", |
340
|
|
|
"compressed_air": "Druckluft", |
341
|
|
|
"flywheel": "Schwungrad", |
342
|
|
|
"other": "Sonstige", |
343
|
|
|
} |
344
|
|
|
|
345
|
|
|
for storage_type in storage_types: |
346
|
|
|
# Read-in data from MaStR |
347
|
|
|
mastr_ph = pd.read_csv( |
348
|
|
|
WORKING_DIR_MASTR_NEW / sources["mastr_storage"], |
349
|
|
|
delimiter=",", |
350
|
|
|
usecols=[ |
351
|
|
|
"Nettonennleistung", |
352
|
|
|
"EinheitMastrNummer", |
353
|
|
|
"Kraftwerksnummer", |
354
|
|
|
"Technologie", |
355
|
|
|
"Postleitzahl", |
356
|
|
|
"Laengengrad", |
357
|
|
|
"Breitengrad", |
358
|
|
|
"EinheitBetriebsstatus", |
359
|
|
|
"LokationMastrNummer", |
360
|
|
|
"Ort", |
361
|
|
|
"Bundesland", |
362
|
|
|
"DatumEndgueltigeStilllegung", |
363
|
|
|
"Inbetriebnahmedatum", |
364
|
|
|
], |
365
|
|
|
dtype={"Postleitzahl": str}, |
366
|
|
|
) |
367
|
|
|
|
368
|
|
|
# Rename columns |
369
|
|
|
mastr_ph = mastr_ph.rename( |
370
|
|
|
columns={ |
371
|
|
|
"Kraftwerksnummer": "bnetza_id", |
372
|
|
|
"Technologie": "carrier", |
373
|
|
|
"Postleitzahl": "plz", |
374
|
|
|
"Ort": "city", |
375
|
|
|
"Bundesland": "federal_state", |
376
|
|
|
"Nettonennleistung": "el_capacity", |
377
|
|
|
"DatumEndgueltigeStilllegung": "decommissioning_date", |
378
|
|
|
} |
379
|
|
|
) |
380
|
|
|
|
381
|
|
|
# Select only the required type of storage |
382
|
|
|
mastr_ph = mastr_ph.loc[mastr_ph.carrier == map_storage[storage_type]] |
383
|
|
|
|
384
|
|
|
# Select only storage units in operation |
385
|
|
|
mastr_ph.loc[ |
386
|
|
|
mastr_ph["decommissioning_date"] > scenario_date_max, |
387
|
|
|
"EinheitBetriebsstatus", |
388
|
|
|
] = "InBetrieb" |
389
|
|
|
mastr_ph = mastr_ph.loc[ |
390
|
|
|
mastr_ph.EinheitBetriebsstatus.isin( |
391
|
|
|
["InBetrieb", "VoruebergehendStillgelegt"] |
392
|
|
|
) |
393
|
|
|
] |
394
|
|
|
|
395
|
|
|
# Select only storage units installed before scenario_date_max |
396
|
|
|
mastr_ph = mastr_ph[ |
397
|
|
|
pd.to_datetime(mastr_ph["Inbetriebnahmedatum"]) < scenario_date_max |
398
|
|
|
] |
399
|
|
|
|
400
|
|
|
# Calculate power in MW |
401
|
|
|
mastr_ph.loc[:, "el_capacity"] *= 1e-3 |
402
|
|
|
|
403
|
|
|
# Create geodataframe from long, lat |
404
|
|
|
mastr_ph = gpd.GeoDataFrame( |
405
|
|
|
mastr_ph, |
406
|
|
|
geometry=gpd.points_from_xy( |
407
|
|
|
mastr_ph["Laengengrad"], mastr_ph["Breitengrad"] |
408
|
|
|
), |
409
|
|
|
crs="4326", |
410
|
|
|
) |
411
|
|
|
|
412
|
|
|
# Identify pp without geocord |
413
|
|
|
mastr_ph_nogeo = mastr_ph.loc[mastr_ph["Laengengrad"].isna()] |
414
|
|
|
|
415
|
|
|
# Remove all PP without geocord |
416
|
|
|
mastr_ph = mastr_ph.dropna(subset="Laengengrad") |
417
|
|
|
|
418
|
|
|
# Get geometry of villages/cities with same name of pp with missing geocord |
419
|
|
|
with session_scope() as session: |
420
|
|
|
query = session.query(Vg250GemClean.gen, Vg250GemClean.geometry) |
421
|
|
|
df_cities = gpd.read_postgis( |
422
|
|
|
query.statement, |
423
|
|
|
query.session.bind, |
424
|
|
|
geom_col="geometry", |
425
|
|
|
crs="3035", |
426
|
|
|
) |
427
|
|
|
|
428
|
|
|
# Keep only useful cities |
429
|
|
|
df_cities = df_cities[df_cities["gen"].isin(mastr_ph_nogeo["city"])] |
430
|
|
|
|
431
|
|
|
# Just take the first entry, inaccuracy is negligible as centroid is taken afterwards |
432
|
|
|
df_cities = df_cities.drop_duplicates("gen", keep="first") |
433
|
|
|
|
434
|
|
|
# Use the centroid instead of polygon of region |
435
|
|
|
df_cities.loc[:, "geometry"] = df_cities["geometry"].centroid |
436
|
|
|
|
437
|
|
|
# Change coordinate system |
438
|
|
|
df_cities.to_crs("4326", inplace=True) |
439
|
|
|
|
440
|
|
|
# Add centroid geometry to pp without geometry |
441
|
|
|
mastr_ph_nogeo = pd.merge( |
442
|
|
|
left=df_cities, |
443
|
|
|
right=mastr_ph_nogeo, |
444
|
|
|
right_on="city", |
445
|
|
|
left_on="gen", |
446
|
|
|
suffixes=("", "_no-geo"), |
447
|
|
|
how="inner", |
448
|
|
|
).drop("gen", axis=1) |
449
|
|
|
|
450
|
|
|
mastr_ph = pd.concat([mastr_ph, mastr_ph_nogeo], axis=0) |
451
|
|
|
|
452
|
|
|
# aggregate capacity per location |
453
|
|
|
agg_cap = mastr_ph.groupby("geometry")["el_capacity"].sum() |
454
|
|
|
|
455
|
|
|
# list mastr number by location |
456
|
|
|
agg_mastr = mastr_ph.groupby("geometry")["EinheitMastrNummer"].apply( |
457
|
|
|
list |
458
|
|
|
) |
459
|
|
|
|
460
|
|
|
# remove duplicates by location |
461
|
|
|
mastr_ph = mastr_ph.drop_duplicates( |
462
|
|
|
subset="geometry", keep="first" |
463
|
|
|
).drop(["el_capacity", "EinheitMastrNummer"], axis=1) |
464
|
|
|
|
465
|
|
|
# Adjust capacity |
466
|
|
|
mastr_ph = pd.merge( |
467
|
|
|
left=mastr_ph, |
468
|
|
|
right=agg_cap, |
469
|
|
|
left_on="geometry", |
470
|
|
|
right_on="geometry", |
471
|
|
|
) |
472
|
|
|
|
473
|
|
|
# Adjust capacity |
474
|
|
|
mastr_ph = pd.merge( |
475
|
|
|
left=mastr_ph, |
476
|
|
|
right=agg_mastr, |
477
|
|
|
left_on="geometry", |
478
|
|
|
right_on="geometry", |
479
|
|
|
) |
480
|
|
|
|
481
|
|
|
# Drop small pp <= 30 kW |
482
|
|
|
mastr_ph = mastr_ph.loc[mastr_ph["el_capacity"] > 0.03] |
483
|
|
|
|
484
|
|
|
# Apply voltage level by capacity |
485
|
|
|
mastr_ph = apply_voltage_level_thresholds(mastr_ph) |
486
|
|
|
mastr_ph["voltage_level"] = mastr_ph["voltage_level"].astype(int) |
487
|
|
|
|
488
|
|
|
# Capacity located outside germany -> will be assigned to foreign buses |
489
|
|
|
mastr_ph_foreign = mastr_ph.loc[mastr_ph["federal_state"].isna()] |
490
|
|
|
|
491
|
|
|
# Keep only capacities within germany |
492
|
|
|
mastr_ph = mastr_ph.dropna(subset="federal_state") |
493
|
|
|
|
494
|
|
|
# Asign buses within germany |
495
|
|
|
mastr_ph = assign_bus_id( |
496
|
|
|
mastr_ph, cfg=config.datasets()["power_plants"], drop_missing=True |
497
|
|
|
) |
498
|
|
|
mastr_ph["bus_id"] = mastr_ph["bus_id"].astype(int) |
499
|
|
|
|
500
|
|
|
# Get foreign central buses |
501
|
|
|
sql = f""" |
502
|
|
|
SELECT * FROM grid.egon_etrago_bus |
503
|
|
|
WHERE scn_name = '{scn_name}' |
504
|
|
|
and country != 'DE' |
505
|
|
|
""" |
506
|
|
|
df_foreign_buses = db.select_geodataframe( |
507
|
|
|
sql, geom_col="geom", epsg="4326" |
508
|
|
|
) |
509
|
|
|
central_bus = entsoe_to_bus_etrago(scn_name).to_frame() |
510
|
|
|
central_bus["geom"] = ( |
511
|
|
|
df_foreign_buses.set_index("bus_id") |
512
|
|
|
.loc[central_bus[0], "geom"] |
513
|
|
|
.values |
514
|
|
|
) |
515
|
|
|
df_foreign_buses = df_foreign_buses[ |
516
|
|
|
df_foreign_buses["geom"].isin(central_bus["geom"]) |
517
|
|
|
] |
518
|
|
|
|
519
|
|
|
if len(mastr_ph_foreign) > 0: |
520
|
|
|
# Assign closest bus at voltage level to foreign pp |
521
|
|
|
nearest_neighbors = [] |
522
|
|
|
for vl, v_nom in {1: 380, 2: 220, 3: 110}.items(): |
523
|
|
|
ph = mastr_ph_foreign.loc[ |
524
|
|
|
mastr_ph_foreign["voltage_level"] == vl |
525
|
|
|
] |
526
|
|
|
if ph.empty: |
527
|
|
|
continue |
528
|
|
|
bus = df_foreign_buses.loc[ |
529
|
|
|
df_foreign_buses["v_nom"] == v_nom, |
530
|
|
|
["v_nom", "country", "bus_id", "geom"], |
531
|
|
|
] |
532
|
|
|
results = gpd.sjoin_nearest( |
533
|
|
|
left_df=ph, |
534
|
|
|
right_df=bus, |
535
|
|
|
how="left", |
536
|
|
|
distance_col="distance", |
537
|
|
|
) |
538
|
|
|
nearest_neighbors.append(results) |
539
|
|
|
mastr_ph_foreign = pd.concat(nearest_neighbors) |
540
|
|
|
|
541
|
|
|
# Merge foreign pp |
542
|
|
|
mastr_ph = pd.concat([mastr_ph, mastr_ph_foreign]) |
543
|
|
|
|
544
|
|
|
# Reduce to necessary columns |
545
|
|
|
mastr_ph = mastr_ph[ |
546
|
|
|
[ |
547
|
|
|
"el_capacity", |
548
|
|
|
"voltage_level", |
549
|
|
|
"bus_id", |
550
|
|
|
"geometry", |
551
|
|
|
"EinheitMastrNummer", |
552
|
|
|
] |
553
|
|
|
] |
554
|
|
|
|
555
|
|
|
# Rename and format columns |
556
|
|
|
mastr_ph["carrier"] = storage_type |
557
|
|
|
mastr_ph = mastr_ph.rename( |
558
|
|
|
columns={"EinheitMastrNummer": "source_id", "geometry": "geom"} |
559
|
|
|
) |
560
|
|
|
mastr_ph["source_id"] = mastr_ph["source_id"].apply( |
561
|
|
|
lambda x: {"MastrNummer": ", ".join(x)} |
562
|
|
|
) |
563
|
|
|
mastr_ph = mastr_ph.set_geometry("geom") |
564
|
|
|
mastr_ph["geom"] = mastr_ph["geom"].apply(lambda x: x.wkb_hex) |
565
|
|
|
mastr_ph["scenario"] = scn_name |
566
|
|
|
mastr_ph["sources"] = [ |
567
|
|
|
{"el_capacity": "MaStR aggregated by location"} |
568
|
|
|
] * mastr_ph.shape[0] |
569
|
|
|
|
570
|
|
|
# Delete existing units in the target table |
571
|
|
|
db.execute_sql( |
572
|
|
|
f""" DELETE FROM supply.egon_storages |
573
|
|
|
WHERE carrier = '{storage_type}' |
574
|
|
|
AND scenario = '{scn_name}' |
575
|
|
|
AND sources ->> 'el_capacity' = 'MaStR aggregated by location';""" |
576
|
|
|
) |
577
|
|
|
|
578
|
|
|
with db.session_scope() as session: |
579
|
|
|
session.bulk_insert_mappings( |
580
|
|
|
EgonStorages, |
581
|
|
|
mastr_ph.to_dict(orient="records"), |
582
|
|
|
) |
583
|
|
|
|
584
|
|
|
|
585
|
|
|
def allocate_pumped_hydro_eGon100RE(): |
586
|
|
|
"""Allocates pumped_hydro plants for eGon100RE scenario based on a |
587
|
|
|
prox-to-now method applied on allocated pumped-hydro plants in the eGon2035 |
588
|
|
|
scenario. |
589
|
|
|
|
590
|
|
|
Parameters |
591
|
|
|
---------- |
592
|
|
|
None |
593
|
|
|
|
594
|
|
|
Returns |
595
|
|
|
------- |
596
|
|
|
None |
597
|
|
|
""" |
598
|
|
|
|
599
|
|
|
carrier = "pumped_hydro" |
600
|
|
|
cfg = config.datasets()["power_plants"] |
601
|
|
|
boundary = config.settings()["egon-data"]["--dataset-boundary"] |
602
|
|
|
|
603
|
|
|
# Select installed capacity for pumped_hydro in eGon100RE scenario from |
604
|
|
|
# scenario capacities table |
605
|
|
|
capacity = db.select_dataframe( |
606
|
|
|
f""" |
607
|
|
|
SELECT capacity |
608
|
|
|
FROM {cfg['sources']['capacities']} |
609
|
|
|
WHERE carrier = '{carrier}' |
610
|
|
|
AND scenario_name = 'eGon100RE'; |
611
|
|
|
""" |
612
|
|
|
) |
613
|
|
|
|
614
|
|
|
if boundary == "Schleswig-Holstein": |
615
|
|
|
# Break capacity of pumped hydron plants down SH share in eGon2035 |
616
|
|
|
capacity_phes = capacity.iat[0, 0] * 0.0176 |
617
|
|
|
|
618
|
|
|
elif boundary == "Everything": |
619
|
|
|
# Select national capacity for pumped hydro |
620
|
|
|
capacity_phes = capacity.iat[0, 0] |
621
|
|
|
|
622
|
|
|
else: |
623
|
|
|
raise ValueError(f"'{boundary}' is not a valid dataset boundary.") |
624
|
|
|
|
625
|
|
|
# Get allocation of pumped_hydro plants in eGon2035 scenario as the |
626
|
|
|
# reference for the distribution in eGon100RE scenario |
627
|
|
|
allocation = allocate_pumped_hydro(scn="status2019", export=False) |
628
|
|
|
|
629
|
|
|
scaling_factor = capacity_phes / allocation.el_capacity.sum() |
630
|
|
|
|
631
|
|
|
power_plants = allocation.copy() |
632
|
|
|
power_plants["scenario"] = "eGon100RE" |
633
|
|
|
power_plants["el_capacity"] = allocation.el_capacity * scaling_factor |
634
|
|
|
|
635
|
|
|
# Insert into target table |
636
|
|
|
session = sessionmaker(bind=db.engine())() |
637
|
|
|
for i, row in power_plants.iterrows(): |
638
|
|
|
entry = EgonStorages( |
639
|
|
|
sources={"el_capacity": row.source}, |
640
|
|
|
source_id={"MastrNummer": row.MaStRNummer}, |
641
|
|
|
carrier=row.carrier, |
642
|
|
|
el_capacity=row.el_capacity, |
643
|
|
|
voltage_level=row.voltage_level, |
644
|
|
|
bus_id=row.bus_id, |
645
|
|
|
scenario=row.scenario, |
646
|
|
|
geom=f"SRID=4326;POINT({row.geometry.x} {row.geometry.y})", |
647
|
|
|
) |
648
|
|
|
session.add(entry) |
649
|
|
|
session.commit() |
650
|
|
|
|
651
|
|
|
|
652
|
|
|
def home_batteries_per_scenario(scenario): |
653
|
|
|
"""Allocates home batteries which define a lower boundary for extendable |
654
|
|
|
battery storage units. The overall installed capacity is taken from NEP |
655
|
|
|
for eGon2035 scenario. The spatial distribution of installed battery |
656
|
|
|
capacities is based on the installed pv rooftop capacity. |
657
|
|
|
|
658
|
|
|
Parameters |
659
|
|
|
---------- |
660
|
|
|
None |
661
|
|
|
|
662
|
|
|
Returns |
663
|
|
|
------- |
664
|
|
|
None |
665
|
|
|
""" |
666
|
|
|
|
667
|
|
|
cfg = config.datasets()["storages"] |
668
|
|
|
dataset = config.settings()["egon-data"]["--dataset-boundary"] |
669
|
|
|
|
670
|
|
|
if scenario == "eGon2035": |
671
|
|
|
target_file = ( |
672
|
|
|
Path(".") |
673
|
|
|
/ "data_bundle_egon_data" |
674
|
|
|
/ "nep2035_version2021" |
675
|
|
|
/ cfg["sources"]["nep_capacities"] |
676
|
|
|
) |
677
|
|
|
|
678
|
|
|
capacities_nep = pd.read_excel( |
679
|
|
|
target_file, |
680
|
|
|
sheet_name="1.Entwurf_NEP2035_V2021", |
681
|
|
|
index_col="Unnamed: 0", |
682
|
|
|
) |
683
|
|
|
|
684
|
|
|
# Select target value in MW |
685
|
|
|
target = capacities_nep.Summe["PV-Batteriespeicher"] * 1000 |
686
|
|
|
|
687
|
|
|
else: |
688
|
|
|
target = db.select_dataframe( |
689
|
|
|
f""" |
690
|
|
|
SELECT capacity |
691
|
|
|
FROM {cfg['sources']['capacities']} |
692
|
|
|
WHERE scenario_name = '{scenario}' |
693
|
|
|
AND carrier = 'battery'; |
694
|
|
|
""" |
695
|
|
|
).capacity[0] |
696
|
|
|
|
697
|
|
|
pv_rooftop = db.select_dataframe( |
698
|
|
|
f""" |
699
|
|
|
SELECT bus, p_nom, generator_id |
700
|
|
|
FROM {cfg['sources']['generators']} |
701
|
|
|
WHERE scn_name = '{scenario}' |
702
|
|
|
AND carrier = 'solar_rooftop' |
703
|
|
|
AND bus IN |
704
|
|
|
(SELECT bus_id FROM {cfg['sources']['bus']} |
705
|
|
|
WHERE scn_name = '{scenario}' AND country = 'DE' ); |
706
|
|
|
""" |
707
|
|
|
) |
708
|
|
|
|
709
|
|
|
if dataset == "Schleswig-Holstein": |
710
|
|
|
target = target / 16 |
711
|
|
|
|
712
|
|
|
battery = pv_rooftop |
713
|
|
|
battery["p_nom_min"] = target * battery["p_nom"] / battery["p_nom"].sum() |
714
|
|
|
battery = battery.drop(columns=["p_nom"]) |
715
|
|
|
|
716
|
|
|
battery["carrier"] = "home_battery" |
717
|
|
|
battery["scenario"] = scenario |
718
|
|
|
|
719
|
|
|
if (scenario == "eGon2035") | ("status" in scenario): |
720
|
|
|
source = "NEP" |
721
|
|
|
|
722
|
|
|
else: |
723
|
|
|
source = "p-e-s" |
724
|
|
|
|
725
|
|
|
battery["source"] = ( |
726
|
|
|
f"{source} capacity allocated based in installed PV rooftop capacity" |
727
|
|
|
) |
728
|
|
|
|
729
|
|
|
# Insert into target table |
730
|
|
|
session = sessionmaker(bind=db.engine())() |
731
|
|
|
for i, row in battery.iterrows(): |
732
|
|
|
entry = EgonStorages( |
733
|
|
|
sources={"el_capacity": row.source}, |
734
|
|
|
source_id={"generator_id": row.generator_id}, |
735
|
|
|
carrier=row.carrier, |
736
|
|
|
el_capacity=row.p_nom_min, |
737
|
|
|
bus_id=row.bus, |
738
|
|
|
scenario=row.scenario, |
739
|
|
|
) |
740
|
|
|
session.add(entry) |
741
|
|
|
session.commit() |
742
|
|
|
|
743
|
|
|
|
744
|
|
|
def allocate_pv_home_batteries_to_grids(): |
745
|
|
|
for scn in config.settings()["egon-data"]["--scenarios"]: |
746
|
|
|
home_batteries_per_scenario(scn) |
747
|
|
|
|
748
|
|
|
|
749
|
|
|
def allocate_pumped_hydro_scn(): |
750
|
|
|
for scn in config.settings()["egon-data"]["--scenarios"]: |
751
|
|
|
if scn == "eGon2035": |
752
|
|
|
allocate_pumped_hydro(scn="eGon2035") |
753
|
|
|
elif scn == "eGon100RE": |
754
|
|
|
allocate_pumped_hydro_eGon100RE() |
755
|
|
|
elif "status" in scn: |
756
|
|
|
allocate_storage_units_sq(scn_name=scn, storage_types=["pumped_hydro"]) |
757
|
|
|
|
758
|
|
|
|
759
|
|
|
def allocate_other_storage_units(): |
760
|
|
|
for scn in config.settings()["egon-data"]["--scenarios"]: |
761
|
|
|
if "status" in scn: |
762
|
|
|
allocate_storage_units_sq( |
763
|
|
|
scn_name=scn, storage_types=["battery"] |
764
|
|
|
) |
765
|
|
|
|