| Conditions | 6 |
| Total Lines | 204 |
| Code Lines | 79 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | """ |
||
| 13 | def hts_to_etrago(scenario): |
||
| 14 | sources = config.datasets()["etrago_heat"]["sources"] |
||
| 15 | targets = config.datasets()["etrago_heat"]["targets"] |
||
| 16 | carriers = ["central_heat", "rural_heat", "rural_gas_boiler"] |
||
| 17 | |||
| 18 | if "status" in scenario: |
||
| 19 | carriers = ["central_heat", "rural_heat"] |
||
| 20 | |||
| 21 | for carrier in carriers: |
||
| 22 | if carrier == "central_heat": |
||
| 23 | # Map heat buses to district heating id and area_id |
||
| 24 | # interlinking bus_id and area_id |
||
| 25 | bus_area = db.select_dataframe( |
||
| 26 | f""" |
||
| 27 | SELECT bus_id, area_id, id FROM |
||
| 28 | {targets['heat_buses']['schema']}. |
||
| 29 | {targets['heat_buses']['table']} |
||
| 30 | JOIN {sources['district_heating_areas']['schema']}. |
||
| 31 | {sources['district_heating_areas']['table']} |
||
| 32 | ON ST_Transform(ST_Centroid(geom_polygon), 4326) = geom |
||
| 33 | WHERE carrier = '{carrier}' |
||
| 34 | AND scenario='{scenario}' |
||
| 35 | AND scn_name = '{scenario}' |
||
| 36 | """, |
||
| 37 | index_col="id", |
||
| 38 | ) |
||
| 39 | |||
| 40 | # district heating time series time series |
||
| 41 | disct_time_series = db.select_dataframe( |
||
| 42 | f""" |
||
| 43 | SELECT * FROM |
||
| 44 | demand.egon_timeseries_district_heating |
||
| 45 | WHERE scenario ='{scenario}' |
||
| 46 | """ |
||
| 47 | ) |
||
| 48 | # bus_id connected to corresponding time series |
||
| 49 | bus_ts = pd.merge( |
||
| 50 | bus_area, disct_time_series, on="area_id", how="inner" |
||
| 51 | ) |
||
| 52 | |||
| 53 | elif carrier == "rural_heat": |
||
| 54 | # interlinking heat_bus_id and mv_grid bus_id |
||
| 55 | bus_sub = db.select_dataframe( |
||
| 56 | f""" |
||
| 57 | SELECT {targets['heat_buses']['schema']}. |
||
| 58 | {targets['heat_buses']['table']}.bus_id as heat_bus_id, |
||
| 59 | {sources['egon_mv_grid_district']['schema']}. |
||
| 60 | {sources['egon_mv_grid_district']['table']}.bus_id as |
||
| 61 | bus_id FROM |
||
| 62 | {targets['heat_buses']['schema']}. |
||
| 63 | {targets['heat_buses']['table']} |
||
| 64 | JOIN {sources['egon_mv_grid_district']['schema']}. |
||
| 65 | {sources['egon_mv_grid_district']['table']} |
||
| 66 | ON ST_Transform(ST_Centroid({sources['egon_mv_grid_district']['schema']}. |
||
| 67 | {sources['egon_mv_grid_district']['table']}.geom), |
||
| 68 | 4326) = {targets['heat_buses']['schema']}. |
||
| 69 | {targets['heat_buses']['table']}.geom |
||
| 70 | WHERE carrier = '{carrier}' |
||
| 71 | AND scn_name = '{scenario}' |
||
| 72 | """ |
||
| 73 | ) |
||
| 74 | ##**scenario name still needs to be adjusted in bus_sub** |
||
| 75 | |||
| 76 | # individual heating time series |
||
| 77 | ind_time_series = db.select_dataframe( |
||
| 78 | f""" |
||
| 79 | SELECT scenario, bus_id, dist_aggregated_mw FROM |
||
| 80 | demand.egon_etrago_timeseries_individual_heating |
||
| 81 | WHERE scenario ='{scenario}' |
||
| 82 | AND carrier = 'heat_pump' |
||
| 83 | """ |
||
| 84 | ) |
||
| 85 | |||
| 86 | # bus_id connected to corresponding time series |
||
| 87 | bus_ts = pd.merge( |
||
| 88 | bus_sub, ind_time_series, on="bus_id", how="inner" |
||
| 89 | ) |
||
| 90 | |||
| 91 | # Connect heat loads to heat buses |
||
| 92 | bus_ts.loc[:, "bus_id"] = bus_ts.loc[:, "heat_bus_id"] |
||
| 93 | |||
| 94 | else: |
||
| 95 | efficiency_gas_boiler = get_sector_parameters("heat", scenario)[ |
||
| 96 | "efficiency" |
||
| 97 | ]["rural_gas_boiler"] |
||
| 98 | |||
| 99 | # Select rural heat demand coverd by individual gas boilers |
||
| 100 | ind_time_series = db.select_dataframe( |
||
| 101 | f""" |
||
| 102 | SELECT * FROM |
||
| 103 | demand.egon_etrago_timeseries_individual_heating |
||
| 104 | WHERE scenario ='{scenario}' |
||
| 105 | AND carrier = 'CH4' |
||
| 106 | """ |
||
| 107 | ) |
||
| 108 | |||
| 109 | # Select geoetry of medium voltage grid districts |
||
| 110 | mvgd_geom = db.select_geodataframe( |
||
| 111 | f""" |
||
| 112 | SELECT bus_id, ST_CENTROID(geom) as geom FROM |
||
| 113 | {sources['egon_mv_grid_district']['schema']}. |
||
| 114 | {sources['egon_mv_grid_district']['table']} |
||
| 115 | """ |
||
| 116 | ) |
||
| 117 | |||
| 118 | # Select geometry of gas (CH4) voronoi |
||
| 119 | gas_voronoi = db.select_geodataframe( |
||
| 120 | f""" |
||
| 121 | SELECT bus_id, geom FROM |
||
| 122 | grid.egon_gas_voronoi |
||
| 123 | WHERE scn_name = '{scenario}' |
||
| 124 | AND carrier = 'CH4' |
||
| 125 | """ |
||
| 126 | ) |
||
| 127 | |||
| 128 | # Map centroid of mvgd to gas voronoi |
||
| 129 | join = mvgd_geom.sjoin(gas_voronoi, lsuffix="AC", rsuffix="gas")[ |
||
| 130 | ["bus_id_AC", "bus_id_gas"] |
||
| 131 | ].set_index("bus_id_AC") |
||
| 132 | |||
| 133 | # Assign gas bus to each rural heat demand coverd by gas boiler |
||
| 134 | ind_time_series["gas_bus"] = join.loc[ |
||
| 135 | ind_time_series.bus_id |
||
| 136 | ].values |
||
| 137 | |||
| 138 | # Initialize dataframe to store final heat demand per gas node |
||
| 139 | gas_ts = pd.DataFrame( |
||
| 140 | index=ind_time_series["gas_bus"].unique(), columns=range(8760) |
||
| 141 | ) |
||
| 142 | |||
| 143 | # Group heat demand per hour in the year |
||
| 144 | for i in range(8760): |
||
| 145 | gas_ts[i] = ( |
||
| 146 | ind_time_series.set_index("gas_bus") |
||
| 147 | .dist_aggregated_mw.str[i] |
||
| 148 | .groupby("gas_bus") |
||
| 149 | .sum() |
||
| 150 | .div(efficiency_gas_boiler) |
||
| 151 | ) |
||
| 152 | |||
| 153 | # Prepare resulting DataFrame |
||
| 154 | bus_ts = pd.DataFrame(columns=["dist_aggregated_mw", "bus_id"]) |
||
| 155 | |||
| 156 | # Insert values to dataframe |
||
| 157 | bus_ts.dist_aggregated_mw = gas_ts.values.tolist() |
||
| 158 | bus_ts.bus_id = gas_ts.index |
||
| 159 | |||
| 160 | # Delete existing data from database |
||
| 161 | db.execute_sql( |
||
| 162 | f""" |
||
| 163 | DELETE FROM grid.egon_etrago_load |
||
| 164 | WHERE scn_name = '{scenario}' |
||
| 165 | AND carrier = '{carrier}' |
||
| 166 | AND bus IN ( |
||
| 167 | SELECT bus_id FROM grid.egon_etrago_bus |
||
| 168 | WHERE country = 'DE' |
||
| 169 | AND scn_name = '{scenario}' |
||
| 170 | ) |
||
| 171 | """ |
||
| 172 | ) |
||
| 173 | |||
| 174 | db.execute_sql( |
||
| 175 | f""" |
||
| 176 | DELETE FROM |
||
| 177 | grid.egon_etrago_load_timeseries |
||
| 178 | WHERE scn_name = '{scenario}' |
||
| 179 | AND load_id NOT IN ( |
||
| 180 | SELECT load_id FROM |
||
| 181 | grid.egon_etrago_load |
||
| 182 | WHERE scn_name = '{scenario}') |
||
| 183 | """ |
||
| 184 | ) |
||
| 185 | |||
| 186 | next_id = next_etrago_id("load") |
||
| 187 | |||
| 188 | bus_ts["load_id"] = np.arange(len(bus_ts)) + next_id |
||
| 189 | |||
| 190 | etrago_load = pd.DataFrame(index=range(len(bus_ts))) |
||
| 191 | etrago_load["scn_name"] = scenario |
||
| 192 | etrago_load["load_id"] = bus_ts.load_id |
||
| 193 | etrago_load["bus"] = bus_ts.bus_id |
||
| 194 | etrago_load["carrier"] = carrier |
||
| 195 | etrago_load["sign"] = -1 |
||
| 196 | |||
| 197 | etrago_load.to_sql( |
||
| 198 | "egon_etrago_load", |
||
| 199 | schema="grid", |
||
| 200 | con=db.engine(), |
||
| 201 | if_exists="append", |
||
| 202 | index=False, |
||
| 203 | ) |
||
| 204 | |||
| 205 | etrago_load_timeseries = pd.DataFrame(index=range(len(bus_ts))) |
||
| 206 | etrago_load_timeseries["scn_name"] = scenario |
||
| 207 | etrago_load_timeseries["load_id"] = bus_ts.load_id |
||
| 208 | etrago_load_timeseries["temp_id"] = 1 |
||
| 209 | etrago_load_timeseries["p_set"] = bus_ts.loc[:, "dist_aggregated_mw"] |
||
| 210 | |||
| 211 | etrago_load_timeseries.to_sql( |
||
| 212 | "egon_etrago_load_timeseries", |
||
| 213 | schema="grid", |
||
| 214 | con=db.engine(), |
||
| 215 | if_exists="append", |
||
| 216 | index=False, |
||
| 217 | ) |
||
| 264 |