Conditions | 6 |
Total Lines | 204 |
Code Lines | 79 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | """ |
||
13 | def hts_to_etrago(scenario): |
||
14 | sources = config.datasets()["etrago_heat"]["sources"] |
||
15 | targets = config.datasets()["etrago_heat"]["targets"] |
||
16 | carriers = ["central_heat", "rural_heat", "rural_gas_boiler"] |
||
17 | |||
18 | if "status" in scenario: |
||
19 | carriers = ["central_heat", "rural_heat"] |
||
20 | |||
21 | for carrier in carriers: |
||
22 | if carrier == "central_heat": |
||
23 | # Map heat buses to district heating id and area_id |
||
24 | # interlinking bus_id and area_id |
||
25 | bus_area = db.select_dataframe( |
||
26 | f""" |
||
27 | SELECT bus_id, area_id, id FROM |
||
28 | {targets['heat_buses']['schema']}. |
||
29 | {targets['heat_buses']['table']} |
||
30 | JOIN {sources['district_heating_areas']['schema']}. |
||
31 | {sources['district_heating_areas']['table']} |
||
32 | ON ST_Transform(ST_Centroid(geom_polygon), 4326) = geom |
||
33 | WHERE carrier = '{carrier}' |
||
34 | AND scenario='{scenario}' |
||
35 | AND scn_name = '{scenario}' |
||
36 | """, |
||
37 | index_col="id", |
||
38 | ) |
||
39 | |||
40 | # district heating time series time series |
||
41 | disct_time_series = db.select_dataframe( |
||
42 | f""" |
||
43 | SELECT * FROM |
||
44 | demand.egon_timeseries_district_heating |
||
45 | WHERE scenario ='{scenario}' |
||
46 | """ |
||
47 | ) |
||
48 | # bus_id connected to corresponding time series |
||
49 | bus_ts = pd.merge( |
||
50 | bus_area, disct_time_series, on="area_id", how="inner" |
||
51 | ) |
||
52 | |||
53 | elif carrier == "rural_heat": |
||
54 | # interlinking heat_bus_id and mv_grid bus_id |
||
55 | bus_sub = db.select_dataframe( |
||
56 | f""" |
||
57 | SELECT {targets['heat_buses']['schema']}. |
||
58 | {targets['heat_buses']['table']}.bus_id as heat_bus_id, |
||
59 | {sources['egon_mv_grid_district']['schema']}. |
||
60 | {sources['egon_mv_grid_district']['table']}.bus_id as |
||
61 | bus_id FROM |
||
62 | {targets['heat_buses']['schema']}. |
||
63 | {targets['heat_buses']['table']} |
||
64 | JOIN {sources['egon_mv_grid_district']['schema']}. |
||
65 | {sources['egon_mv_grid_district']['table']} |
||
66 | ON ST_Transform(ST_Centroid({sources['egon_mv_grid_district']['schema']}. |
||
67 | {sources['egon_mv_grid_district']['table']}.geom), |
||
68 | 4326) = {targets['heat_buses']['schema']}. |
||
69 | {targets['heat_buses']['table']}.geom |
||
70 | WHERE carrier = '{carrier}' |
||
71 | AND scn_name = '{scenario}' |
||
72 | """ |
||
73 | ) |
||
74 | ##**scenario name still needs to be adjusted in bus_sub** |
||
75 | |||
76 | # individual heating time series |
||
77 | ind_time_series = db.select_dataframe( |
||
78 | f""" |
||
79 | SELECT scenario, bus_id, dist_aggregated_mw FROM |
||
80 | demand.egon_etrago_timeseries_individual_heating |
||
81 | WHERE scenario ='{scenario}' |
||
82 | AND carrier = 'heat_pump' |
||
83 | """ |
||
84 | ) |
||
85 | |||
86 | # bus_id connected to corresponding time series |
||
87 | bus_ts = pd.merge( |
||
88 | bus_sub, ind_time_series, on="bus_id", how="inner" |
||
89 | ) |
||
90 | |||
91 | # Connect heat loads to heat buses |
||
92 | bus_ts.loc[:, "bus_id"] = bus_ts.loc[:, "heat_bus_id"] |
||
93 | |||
94 | else: |
||
95 | efficiency_gas_boiler = get_sector_parameters("heat", scenario)[ |
||
96 | "efficiency" |
||
97 | ]["rural_gas_boiler"] |
||
98 | |||
99 | # Select rural heat demand coverd by individual gas boilers |
||
100 | ind_time_series = db.select_dataframe( |
||
101 | f""" |
||
102 | SELECT * FROM |
||
103 | demand.egon_etrago_timeseries_individual_heating |
||
104 | WHERE scenario ='{scenario}' |
||
105 | AND carrier = 'CH4' |
||
106 | """ |
||
107 | ) |
||
108 | |||
109 | # Select geoetry of medium voltage grid districts |
||
110 | mvgd_geom = db.select_geodataframe( |
||
111 | f""" |
||
112 | SELECT bus_id, ST_CENTROID(geom) as geom FROM |
||
113 | {sources['egon_mv_grid_district']['schema']}. |
||
114 | {sources['egon_mv_grid_district']['table']} |
||
115 | """ |
||
116 | ) |
||
117 | |||
118 | # Select geometry of gas (CH4) voronoi |
||
119 | gas_voronoi = db.select_geodataframe( |
||
120 | f""" |
||
121 | SELECT bus_id, geom FROM |
||
122 | grid.egon_gas_voronoi |
||
123 | WHERE scn_name = '{scenario}' |
||
124 | AND carrier = 'CH4' |
||
125 | """ |
||
126 | ) |
||
127 | |||
128 | # Map centroid of mvgd to gas voronoi |
||
129 | join = mvgd_geom.sjoin(gas_voronoi, lsuffix="AC", rsuffix="gas")[ |
||
130 | ["bus_id_AC", "bus_id_gas"] |
||
131 | ].set_index("bus_id_AC") |
||
132 | |||
133 | # Assign gas bus to each rural heat demand coverd by gas boiler |
||
134 | ind_time_series["gas_bus"] = join.loc[ |
||
135 | ind_time_series.bus_id |
||
136 | ].values |
||
137 | |||
138 | # Initialize dataframe to store final heat demand per gas node |
||
139 | gas_ts = pd.DataFrame( |
||
140 | index=ind_time_series["gas_bus"].unique(), columns=range(8760) |
||
141 | ) |
||
142 | |||
143 | # Group heat demand per hour in the year |
||
144 | for i in range(8760): |
||
145 | gas_ts[i] = ( |
||
146 | ind_time_series.set_index("gas_bus") |
||
147 | .dist_aggregated_mw.str[i] |
||
148 | .groupby("gas_bus") |
||
149 | .sum() |
||
150 | .div(efficiency_gas_boiler) |
||
151 | ) |
||
152 | |||
153 | # Prepare resulting DataFrame |
||
154 | bus_ts = pd.DataFrame(columns=["dist_aggregated_mw", "bus_id"]) |
||
155 | |||
156 | # Insert values to dataframe |
||
157 | bus_ts.dist_aggregated_mw = gas_ts.values.tolist() |
||
158 | bus_ts.bus_id = gas_ts.index |
||
159 | |||
160 | # Delete existing data from database |
||
161 | db.execute_sql( |
||
162 | f""" |
||
163 | DELETE FROM grid.egon_etrago_load |
||
164 | WHERE scn_name = '{scenario}' |
||
165 | AND carrier = '{carrier}' |
||
166 | AND bus IN ( |
||
167 | SELECT bus_id FROM grid.egon_etrago_bus |
||
168 | WHERE country = 'DE' |
||
169 | AND scn_name = '{scenario}' |
||
170 | ) |
||
171 | """ |
||
172 | ) |
||
173 | |||
174 | db.execute_sql( |
||
175 | f""" |
||
176 | DELETE FROM |
||
177 | grid.egon_etrago_load_timeseries |
||
178 | WHERE scn_name = '{scenario}' |
||
179 | AND load_id NOT IN ( |
||
180 | SELECT load_id FROM |
||
181 | grid.egon_etrago_load |
||
182 | WHERE scn_name = '{scenario}') |
||
183 | """ |
||
184 | ) |
||
185 | |||
186 | next_id = next_etrago_id("load") |
||
187 | |||
188 | bus_ts["load_id"] = np.arange(len(bus_ts)) + next_id |
||
189 | |||
190 | etrago_load = pd.DataFrame(index=range(len(bus_ts))) |
||
191 | etrago_load["scn_name"] = scenario |
||
192 | etrago_load["load_id"] = bus_ts.load_id |
||
193 | etrago_load["bus"] = bus_ts.bus_id |
||
194 | etrago_load["carrier"] = carrier |
||
195 | etrago_load["sign"] = -1 |
||
196 | |||
197 | etrago_load.to_sql( |
||
198 | "egon_etrago_load", |
||
199 | schema="grid", |
||
200 | con=db.engine(), |
||
201 | if_exists="append", |
||
202 | index=False, |
||
203 | ) |
||
204 | |||
205 | etrago_load_timeseries = pd.DataFrame(index=range(len(bus_ts))) |
||
206 | etrago_load_timeseries["scn_name"] = scenario |
||
207 | etrago_load_timeseries["load_id"] = bus_ts.load_id |
||
208 | etrago_load_timeseries["temp_id"] = 1 |
||
209 | etrago_load_timeseries["p_set"] = bus_ts.loc[:, "dist_aggregated_mw"] |
||
210 | |||
211 | etrago_load_timeseries.to_sql( |
||
212 | "egon_etrago_load_timeseries", |
||
213 | schema="grid", |
||
214 | con=db.engine(), |
||
215 | if_exists="append", |
||
216 | index=False, |
||
217 | ) |
||
264 |